The future development of electronics, optics, and, quite probably, quantum physics is being driven by advances in epitaxial materials. Band gap engineering, wafer bonding techniques, and epitaxial regrowth technology will push transistors far beyond the present speed barriers. Oxide growth within epitaxial layer structures and new advances in tunnel structures will push the development of the next generation of high-performance laser arrays and of efficient cascade laser designs. Perfection of the growth of semiconductor nitrides will move future electronics to higher powers and to suitability for extreme environments while revolutionizing lighting and display. Growth technologies to incorporate metallic particles and magnetic elements within high-quality semiconductors promise ultrafast electro-optical components for chemical and biological applications as well as electronically controlled magnetism for future memories and electrical/magnetic hybrid devices. Quantum dot materials will lead the field of signal electronics while hopefully providing a new proving and discovery ground for quantum physics. This paper dicusses the current progress in these areas.
National Research Council. 2000. Advanced Epitaxy for Future Electronics, Optics, and Quantum Physics. Washington, DC: The National Academies Press. https://doi.org/10.17226/10001.
Chapters | skim | |
---|---|---|
Front Matter | i-viii | |
Abstract | 1-2 | |
Advanced Epitaxy for Future Electronics, Optics, and Quantum Physics | 3-11 |
The Chapter Skim search tool presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter. You may select key terms to highlight them within pages of each chapter.
The National Academies Press (NAP) has partnered with Copyright Clearance Center's Rightslink service to offer you a variety of options for reusing NAP content. Through Rightslink, you may request permission to reprint NAP content in another publication, course pack, secure website, or other media. Rightslink allows you to instantly obtain permission, pay related fees, and print a license directly from the NAP website. The complete terms and conditions of your reuse license can be found in the license agreement that will be made available to you during the online order process. To request permission through Rightslink you are required to create an account by filling out a simple online form. The following list describes license reuses offered by the National Academies Press (NAP) through Rightslink:
Click here to obtain permission for the above reuses. If you have questions or comments concerning the Rightslink service, please contact:
Rightslink Customer Care
Tel (toll free): 877/622-5543
Tel: 978/777-9929
E-mail: customercare@copyright.com
Web: http://www.rightslink.com
To request permission to distribute a PDF, please contact our Customer Service Department at 800-624-6242 for pricing.
To request permission to translate a book published by the National Academies Press or its imprint, the Joseph Henry Press, pleaseclick here to view more information.