Skip to main content
Consensus Study Report

VIEW LARGER COVER

Armor plays a significant role in the protection of warriors. During the course of history, the introduction of new materials and improvements in the materials already used to construct armor has led to better protection and a reduction in the weight of the armor. But even with such advances in materials, the weight of the armor required to manage threats of ever-increasing destructive capability presents a huge challenge.

Opportunities in Protection Materials Science and Technology for Future Army Applications explores the current theoretical and experimental understanding of the key issues surrounding protection materials, identifies the major challenges and technical gaps for developing the future generation of lightweight protection materials, and recommends a path forward for their development. It examines multiscale shockwave energy transfer mechanisms and experimental approaches for their characterization over short timescales, as well as multiscale modeling techniques to predict mechanisms for dissipating energy. The report also considers exemplary threats and design philosophy for the three key applications of armor systems: (1) personnel protection, including body armor and helmets, (2) vehicle armor, and (3) transparent armor.

Opportunities in Protection Materials Science and Technology for Future Army Applications recommends that the Department of Defense (DoD) establish a defense initiative for protection materials by design (PMD), with associated funding lines for basic and applied research. The PMD initiative should include a combination of computational, experimental, and materials testing, characterization, and processing research conducted by government, industry, and academia.

Suggested Citation

National Research Council. 2011. Opportunities in Protection Materials Science and Technology for Future Army Applications. Washington, DC: The National Academies Press. https://doi.org/10.17226/13157.

Import this citation to:

Publication Info

176 pages |  8.5 x 11 | 

ISBNs: 
  • Paperback:  978-0-309-21285-4
  • Ebook:  978-0-309-21288-5
DOI: https://doi.org/10.17226/13157

Copyright Information

The National Academies Press (NAP) has partnered with Copyright Clearance Center's Marketplace service to offer you a variety of options for reusing NAP content. Through Marketplace, you may request permission to reprint NAP content in another publication, course pack, secure website, or other media. Marketplace allows you to instantly obtain permission, pay related fees, and print a license directly from the NAP website. The complete terms and conditions of your reuse license can be found in the license agreement that will be made available to you during the online order process. To request permission through Marketplace you are required to create an account by filling out a simple online form. The following list describes license reuses offered by the NAP through Marketplace:

  • Republish text, tables, figures, or images in print
  • Post on a secure Intranet/Extranet website
  • Use in a PowerPoint Presentation
  • Distribute via CD-ROM
  • Photocopy

Click here to obtain permission for the above reuses. If you have questions or comments concerning the Marketplace service, please contact:

Marketplace Support
International +1.978.646.2600
US Toll Free +1.855.239.3415
E-mail: support@copyright.com
marketplace.copyright.com

To request permission to distribute a PDF, please contact our Customer Service Department at customer_service@nap.edu.

loading iconLoading stats for Opportunities in Protection Materials Science and Technology for Future Army Applications...