The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions.
Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraft— single-aisle and twin-aisle aircraft that carry 100 or more passengers—because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft.
As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.
National Academies of Sciences, Engineering, and Medicine. 2016. Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions. Washington, DC: The National Academies Press. https://doi.org/10.17226/23490.
Chapters | skim | |
---|---|---|
Front Matter | i-xiv | |
Synopsis | 1-4 | |
Summary | 5-14 | |
1 Introduction | 15-21 | |
2 AircraftPropulsion Integration | 22-34 | |
3 Aircraft Gas Turbine Engines | 35-50 | |
4 Electric Propulsion | 51-70 | |
5 Sustainable Alternative Jet Fuels | 71-87 | |
6 Findings, Recommendations, Roles, and Resources | 88-94 | |
Appendixes | 95-96 | |
Appendix A: Statement of Task | 97-98 | |
Appendix B: Committee and Staff Biographical Information | 99-105 | |
Appendix C: Acronyms | 106-108 |
The Chapter Skim search tool presents what we've algorithmically identified as the most significant single chunk of text within every page in the chapter. You may select key terms to highlight them within pages of each chapter.
The National Academies Press (NAP) has partnered with Copyright Clearance Center's Rightslink service to offer you a variety of options for reusing NAP content. Through Rightslink, you may request permission to reprint NAP content in another publication, course pack, secure website, or other media. Rightslink allows you to instantly obtain permission, pay related fees, and print a license directly from the NAP website. The complete terms and conditions of your reuse license can be found in the license agreement that will be made available to you during the online order process. To request permission through Rightslink you are required to create an account by filling out a simple online form. The following list describes license reuses offered by the National Academies Press (NAP) through Rightslink:
Click here to obtain permission for the above reuses. If you have questions or comments concerning the Rightslink service, please contact:
Rightslink Customer Care
Tel (toll free): 877/622-5543
Tel: 978/777-9929
E-mail: customercare@copyright.com
Web: http://www.rightslink.com
To request permission to distribute a PDF, please contact our Customer Service Department at 800-624-6242 for pricing.
To request permission to translate a book published by the National Academies Press or its imprint, the Joseph Henry Press, pleaseclick here to view more information.