TY - BOOK AU - National Research Council TI - Practical Applications of a Space Station DO - 10.17226/18603 PY - 1984 UR - https://nap.nationalacademies.org/catalog/18603/practical-applications-of-a-space-station PB - The National Academies Press CY - Washington, DC LA - English KW - KW - Earth Sciences AB - The demonstrated capabilities of the Space Shuttle and rapid advancements in both ground- and space-based technology offer new opportunities for developing space systems for practical use, including a manned space station and one or more unmanned space platforms. The Space Applications Board conducted a study to determine the technical requirements that should be considered in the conceptual design of a space station and/or space platforms so that, if developed, these spacecraft would have utility for practical applications. Practical Applications of a Space Station is a formal report of the study, in which six panels met, one in each of the following areas: earth's resources, earth's environment, ocean operations, satellite communications, materials science and engineering, and system design factors. Each panel was asked to consider what practical applications of space systems may be expected in their particular areas beginning around 1990. The panels were also asked to identify technological progress that would need to be made and that should be emphasized in order for space systems with practical uses to have greater utility by the time a space station might be available. ER - TY - BOOK AU - National Research Council TI - Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era SN - DO - 10.17226/13048 PY - 2011 UR - https://nap.nationalacademies.org/catalog/13048/recapturing-a-future-for-space-exploration-life-and-physical-sciences PB - The National Academies Press CY - Washington, DC LA - English KW - Space and Aeronautics AB - More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles—an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight—thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good. ER -