%0 Book %A National Research Council %E Kilpatrick, Jeremy %E Swafford, Jane %E Findell, Bradford %T Adding It Up: Helping Children Learn Mathematics %@ 978-0-309-21895-5 %D 2001 %U https://nap.nationalacademies.org/catalog/9822/adding-it-up-helping-children-learn-mathematics %> https://nap.nationalacademies.org/catalog/9822/adding-it-up-helping-children-learn-mathematics %I The National Academies Press %C Washington, DC %G English %K Education %P 460 %X Adding It Up explores how students in pre-K through 8th grade learn mathematics and recommends how teaching, curricula, and teacher education should change to improve mathematics learning during these critical years. The committee identifies five interdependent components of mathematical proficiency and describes how students develop this proficiency. With examples and illustrations, the book presents a portrait of mathematics learning: Research findings on what children know about numbers by the time they arrive in pre-K and the implications for mathematics instruction. Details on the processes by which students acquire mathematical proficiency with whole numbers, rational numbers, and integers, as well as beginning algebra, geometry, measurement, and probability and statistics. The committee discusses what is known from research about teaching for mathematics proficiency, focusing on the interactions between teachers and students around educational materials and how teachers develop proficiency in teaching mathematics. %0 Book %A National Academy of Engineering %A National Research Council %E Honey, Margaret %E Pearson, Greg %E Schweingruber, Heidi %T STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research %@ 978-0-309-29796-7 %D 2014 %U https://nap.nationalacademies.org/catalog/18612/stem-integration-in-k-12-education-status-prospects-and-an %> https://nap.nationalacademies.org/catalog/18612/stem-integration-in-k-12-education-status-prospects-and-an %I The National Academies Press %C Washington, DC %G English %K Education %K Engineering and Technology %P 180 %X STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes. %0 Book %A National Research Council %T The Mathematical Sciences in 2025 %@ 978-0-309-28457-8 %D 2013 %U https://nap.nationalacademies.org/catalog/15269/the-mathematical-sciences-in-2025 %> https://nap.nationalacademies.org/catalog/15269/the-mathematical-sciences-in-2025 %I The National Academies Press %C Washington, DC %G English %K Math, Chemistry, and Physics %K Education %K Surveys and Statistics %P 222 %X The mathematical sciences are part of nearly all aspects of everyday life—the discipline has underpinned such beneficial modern capabilities as Internet search, medical imaging, computer animation, numerical weather predictions, and all types of digital communications. The Mathematical Sciences in 2025 examines the current state of the mathematical sciences and explores the changes needed for the discipline to be in a strong position and able to maximize its contribution to the nation in 2025. It finds the vitality of the discipline excellent and that it contributes in expanding ways to most areas of science and engineering, as well as to the nation as a whole, and recommends that training for future generations of mathematical scientists should be re-assessed in light of the increasingly cross-disciplinary nature of the mathematical sciences. In addition, because of the valuable interplay between ideas and people from all parts of the mathematical sciences, the report emphasizes that universities and the government need to continue to invest in the full spectrum of the mathematical sciences in order for the whole enterprise to continue to flourish long-term. %0 Book %A National Research Council %T Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics %@ 978-0-309-21296-0 %D 2011 %U https://nap.nationalacademies.org/catalog/13158/successful-k-12-stem-education-identifying-effective-approaches-in-science %> https://nap.nationalacademies.org/catalog/13158/successful-k-12-stem-education-identifying-effective-approaches-in-science %I The National Academies Press %C Washington, DC %G English %K Education %K Engineering and Technology %P 44 %X Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or simply related to the population of students in the school. Successful K-12 STEM Education defines a framework for understanding "success" in K-12 STEM education. The book focuses its analysis on the science and mathematics parts of STEM and outlines criteria for identifying effective STEM schools and programs. Because a school's success should be defined by and measured relative to its goals, the book identifies three important goals that share certain elements, including learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners. A successful STEM program would increase the number of students who ultimately pursue advanced degrees and careers in STEM fields, enhance the STEM-capable workforce, and boost STEM literacy for all students. It is also critical to broaden the participation of women and minorities in STEM fields. Successful K-12 STEM Education examines the vast landscape of K-12 STEM education by considering different school models, highlighting research on effective STEM education practices, and identifying some conditions that promote and limit school- and student-level success in STEM. The book also looks at where further work is needed to develop appropriate data sources. The book will serve as a guide to policy makers; decision makers at the school and district levels; local, state, and federal government agencies; curriculum developers; educators; and parent and education advocacy groups. %0 Book %A National Research Council %E Olson, Steve %E Labov, Jay %T STEM Learning Is Everywhere: Summary of a Convocation on Building Learning Systems %@ 978-0-309-30642-3 %D 2014 %U https://nap.nationalacademies.org/catalog/18818/stem-learning-is-everywhere-summary-of-a-convocation-on-building %> https://nap.nationalacademies.org/catalog/18818/stem-learning-is-everywhere-summary-of-a-convocation-on-building %I The National Academies Press %C Washington, DC %G English %K Education %P 90 %X Science, technology, engineering, and mathematics (STEM) permeate the modern world. The jobs people do, the foods they eat, the vehicles in which they travel, the information they receive, the medicines they take, and many other facets of modern life are constantly changing as STEM knowledge steadily accumulates. Yet STEM education in the United States, despite the importance of these subjects, is consistently falling short. Many students are not graduating from high school with the knowledge and capacities they will need to pursue STEM careers or understand STEM-related issues in the workforce or in their roles as citizens. For decades, efforts to improve STEM education have focused largely on the formal education system. Learning standards for STEM subjects have been developed, teachers have participated in STEM-related professional development, and assessments of various kinds have sought to measure STEM learning. But students do not learn about STEM subjects just in school. Much STEM learning occurs out of school—in organized activities such as afterschool and summer programs, in institutions such as museums and zoos, from the things students watch or read on television and online, and during interactions with peers, parents, mentors, and role models. To explore how connections among the formal education system, afterschool programs, and the informal education sector could improve STEM learning, a committee of experts from these communities and under the auspices of the Teacher Advisory Council of the National Research Council, in association with the California Teacher Advisory Council organized a convocation that was held in February 2014. Entitled "STEM Learning Is Everywhere: Engaging Schools and Empowering Teachers to Integrate Formal, Informal, and Afterschool Education to Enhance Teaching and Learning in Grades K-8," the convocation brought together more than 100 representatives of all three sectors, along with researchers, policy makers, advocates, and others, to explore a topic that could have far-reaching implications for how students learn about STEM subjects and how educational activities are organized and interact. This report is the summary of that meeting. STEM Learning is Everywhere explores how engaging representatives from the formal, afterschool, and informal education sectors in California and from across the United States could foster more seamless learning of STEM subjects for students in the elementary and middle grades. The report also discusses opportunities for STEM that may result from the new expectations of the Next Generation Science Standards and the Common Core Standards for Mathematics and Language Arts. %0 Book %A National Research Council %T Fueling Innovation and Discovery: The Mathematical Sciences in the 21st Century %@ 978-0-309-25473-1 %D 2012 %U https://nap.nationalacademies.org/catalog/13373/fueling-innovation-and-discovery-the-mathematical-sciences-in-the-21st %> https://nap.nationalacademies.org/catalog/13373/fueling-innovation-and-discovery-the-mathematical-sciences-in-the-21st %I The National Academies Press %C Washington, DC %G English %K Math, Chemistry, and Physics %K Surveys and Statistics %P 64 %X The mathematical sciences are part of everyday life. Modern communication, transportation, science, engineering, technology, medicine, manufacturing, security, and finance all depend on the mathematical sciences. Fueling Innovation and Discovery describes recent advances in the mathematical sciences and advances enabled by mathematical sciences research. It is geared toward general readers who would like to know more about ongoing advances in the mathematical sciences and how these advances are changing our understanding of the world, creating new technologies, and transforming industries. Although the mathematical sciences are pervasive, they are often invoked without an explicit awareness of their presence. Prepared as part of the study on the Mathematical Sciences in 2025, a broad assessment of the current state of the mathematical sciences in the United States, Fueling Innovation and Discovery presents mathematical sciences advances in an engaging way. The report describes the contributions that mathematical sciences research has made to advance our understanding of the universe and the human genome. It also explores how the mathematical sciences are contributing to healthcare and national security, and the importance of mathematical knowledge and training to a range of industries, such as information technology and entertainment. Fueling Innovation and Discovery will be of use to policy makers, researchers, business leaders, students, and others interested in learning more about the deep connections between the mathematical sciences and every other aspect of the modern world. To function well in a technologically advanced society, every educated person should be familiar with multiple aspects of the mathematical sciences. %0 Book %A National Research Council %E Cross, Christopher T. %E Woods, Taniesha A. %E Schweingruber, Heidi %T Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity %@ 978-0-309-12806-3 %D 2009 %U https://nap.nationalacademies.org/catalog/12519/mathematics-learning-in-early-childhood-paths-toward-excellence-and-equity %> https://nap.nationalacademies.org/catalog/12519/mathematics-learning-in-early-childhood-paths-toward-excellence-and-equity %I The National Academies Press %C Washington, DC %G English %K Education %P 398 %X Early childhood mathematics is vitally important for young children's present and future educational success. Research demonstrates that virtually all young children have the capability to learn and become competent in mathematics. Furthermore, young children enjoy their early informal experiences with mathematics. Unfortunately, many children's potential in mathematics is not fully realized, especially those children who are economically disadvantaged. This is due, in part, to a lack of opportunities to learn mathematics in early childhood settings or through everyday experiences in the home and in their communities. Improvements in early childhood mathematics education can provide young children with the foundation for school success. Relying on a comprehensive review of the research, Mathematics Learning in Early Childhood lays out the critical areas that should be the focus of young children's early mathematics education, explores the extent to which they are currently being incorporated in early childhood settings, and identifies the changes needed to improve the quality of mathematics experiences for young children. This book serves as a call to action to improve the state of early childhood mathematics. It will be especially useful for policy makers and practitioners-those who work directly with children and their families in shaping the policies that affect the education of young children. %0 Book %A National Research Council %E Donovan, M. Suzanne %E Bransford, John D. %T How Students Learn: Mathematics in the Classroom %@ 978-0-309-08949-4 %D 2005 %U https://nap.nationalacademies.org/catalog/11101/how-students-learn-mathematics-in-the-classroom %> https://nap.nationalacademies.org/catalog/11101/how-students-learn-mathematics-in-the-classroom %I The National Academies Press %C Washington, DC %G English %K Education %P 272 %X How Students Learn: Mathematics in the Classroom builds on the discoveries detailed in the best-selling How People Learn. Now these findings are presented in a way that teachers can use immediately, to revitalize their work in the classroom for even greater effectiveness. This book shows how to overcome the difficulties in teaching math to generate real insight and reasoning in math students. It also features illustrated suggestions for classroom activities.