@BOOK{NAP author = "Transportation Research Board", title = "Structural Integrity of Offshore Wind Turbines: Oversight of Design, Fabrication, and Installation - Special Report 305", abstract = "TRB Special Report 305: Structural Integrity of Offshore Wind Turbines: Oversight of Design, Fabrication, and Installation explores the U.S. Department of the Interior's Bureau of Ocean Energy Management, Regulation, and Enforcement (BOEMRE) approach to overseeing the development and safe operation of wind turbines on the outer continental shelf, with a focus on structural safety. The committee that developed the report recommended that in order to facilitate the orderly development of offshore wind energy and support the stable economic development of this nascent industry, the United States needs a set of clear requirements that can accommodate future design development.\nThe report recommends that BOEMRE develop a set of requirements that establish goals and objectives with regard to structural integrity, environmental performance, and energy generation. The committee found that the risks to human life and the environment associated with offshore wind farms are substantially lower than for other industries such as offshore oil and gas, because offshore wind farms are primarily unmanned and contain minimal quantities of hazardous substances. This finding implies that an approach with significantly less regulatory oversight may be taken for offshore wind farms. Under this approach, industry would be responsible for proposing sets of standards, guidelines, and recommended practices that meet the performance requirements established by BOEMRE.\nThe domestic industry can build on standards, guidelines, and practices developed in Europe, where the offshore wind energy is further developed, but will have to fill gaps such as the need to address wave and wind loadings encountered in hurricanes. The report also includes findings and recommendations about the role that certified verification agents (third party evaluators) can play in reviewing packages of standards and project-specific proposals.", url = "https://nap.nationalacademies.org/catalog/13159/structural-integrity-of-offshore-wind-turbines-oversight-of-design-fabrication", year = 2011, publisher = "The National Academies Press", address = "Washington, DC" } @BOOK{NAP author = "National Research Council", title = "Renewable Fuel Standard: Potential Economic and Environmental Effects of U.S. Biofuel Policy", isbn = "978-0-309-18751-0", abstract = "In the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels.\nRenewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate.\nPolicy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.", url = "https://nap.nationalacademies.org/catalog/13105/renewable-fuel-standard-potential-economic-and-environmental-effects-of-us", year = 2011, publisher = "The National Academies Press", address = "Washington, DC" } @BOOK{NAP author = "National Research Council", title = "Transforming Combustion Research through Cyberinfrastructure", isbn = "978-0-309-16387-3", abstract = "Combustion has provided society with most of its energy needs for millenia, from igniting the fires of cave dwellers to propelling the rockets that traveled to the Moon. Even in the face of climate change and the increasing availability of alternative energy sources, fossil fuels will continue to be used for many decades. However, they will likely become more expensive, and pressure to minimize undesired combustion by-products (pollutants) will likely increase. \n\nThe trends in the continued use of fossil fuels and likely use of alternative combustion fuels call for more rapid development of improved combustion systems. In January 2009, the Multi-Agency Coordinating Committee on Combustion Research (MACCCR) requested that the National Research Council (NRC) conduct a study of the structure and use of a cyberinfrastructure (CI) for combustion research. The charge to the authoring committee of Transforming Combustion Research through Cyberinfrastructure was to: identify opportunities to improve combustion research through computational infrastructure (CI) and the potential benefits to applications; identify necessary CI elements and evaluate the accessibility, sustainability, and economic models for various approaches; identify CI that is needed for education in combustion science and engineering; identify human, cultural, institutional, and policy challenges and how other fields are addressing them. Transforming Combustion Research through Cyberinfrastructure also estimates the resources needed to provide stable, long-term CI for research in combustion and recommends a plan for enhanced exploitation of CI for combustion research.", url = "https://nap.nationalacademies.org/catalog/13049/transforming-combustion-research-through-cyberinfrastructure", year = 2011, publisher = "The National Academies Press", address = "Washington, DC" }