National Academies Press: OpenBook
« Previous: Introduction
Suggested Citation:"Characteristics of Low-Level Radioactive Waste." National Research Council. 2001. The Impact of Low-Level Radioactive Waste Management Policy on Biomedical Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/10064.
×

Page 11

2

CHARACTERISTICS OF LOW-LEVEL RADIOACTIVE WASTE

Waste characterization is the determination of the radiological, chemical and physical properties of waste to establish the need for treatment, handling, processing, storage, or disposal of radioactive materials. Typically, characterization is helpful in assessing what must be done to meet the requirements regarding transportation and disposal of radioactive waste.

Radiological waste characterization involves quantifying and detecting the radiation characteristics for the principal radionuclides used in clinical and biomedical research and found in hospital and research-institution waste.

Chemical waste characterization involves the determination of chemical components and properties. It can be accomplished by analyzing waste samples or on the basis of knowledge of the process that generated the waste.

Physical waste characterization involves inspection to determine physical form (solid, liquid, or gas) and other physical properties such as dispersability, and other properties such as compressive strength that might be needed to meet disposal requirements.

Some LLRW contains hazardous materials as defined in 40 CFR 261 (USEPA, 2000). Such LLRW is called mixed waste. Hazardous wastes are defined as wastes that are toxic, corrosive, flammable, or reactive. Mixed waste is regulated as LLRW under 10 CFR 61, and as hazardous waste under 40 CFR 261 (USEPA, 2000). A 1990 survey which profiled commercially generated low-level mixed waste (NUREG/CR-5938), indicated that 140,000 ft3 of mixed wastes was generated in the United States (data from http://www.epa.gov/radiation/mixed-waste/nat_prof.htm ) during that one year. This current generation rate is not related to inventories of mixed waste generated from past generation. Typically, the annual amount of mixed waste generated by the commercial sector which included the biomedical users as small contributors, is much smaller than the amount generated by the Department of Energy. Several effective steps have been taken by generators to reduce the amount of mixed waste (CORAR, 1993).

Suggested Citation:"Characteristics of Low-Level Radioactive Waste." National Research Council. 2001. The Impact of Low-Level Radioactive Waste Management Policy on Biomedical Research in the United States. Washington, DC: The National Academies Press. doi: 10.17226/10064.
×
Page 11
Next: Challenges to the Biomedical Investigator »
The Impact of Low-Level Radioactive Waste Management Policy on Biomedical Research in the United States Get This Book
×
 The Impact of Low-Level Radioactive Waste Management Policy on Biomedical Research in the United States
Buy Paperback | $47.00 Buy Ebook | $37.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The National Research Council's Committee on the Impact of Low-Level Radioactive Waste Management Policy on Biomedical Research in the United States was called on to assess the effects of the low-level radioactive waste management policy on the current and future activities of biomedical research. This report provides an assessment of the effects of the current management policy for low-level radioactive waste (LLRW), and resulting consequences, such as higher LLRW disposal costs and onsite storage of LLRW, on the current and future activities of biomedical research. That assessment will include evaluating the effects that the lack of facilities and disposal capacity, and rules of disposal facilities, have on institutions conducting medical and biological research and on hospitals where radioisotopes are used for the diagnosis and treatment of disease.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!