National Academies Press: OpenBook

Science, Medicine, and Animals (1991)

Chapter: How Has Science Advanced as a Result of Animal Experimentation?

« Previous: How Have Animals Contributed to Improving Human Health?
Suggested Citation:"How Has Science Advanced as a Result of Animal Experimentation?." Institute of Medicine. 1991. Science, Medicine, and Animals. Washington, DC: The National Academies Press. doi: 10.17226/10089.
×

How Has Science Advanced as a Result of Animal Experimentation?

Scientists use animals to do both basic and applied research. Applied research seeks to answer specific questions about a given disease or condition, usually in the context of a specific prevention therapy or treatment. Basic research seeks to build a base of knowledge about living organisms and how they function. Both forms of research are essential to continued medical progress.

Some people contend that scientists should use animals only for applied research, since that way the use of animals can be clearly associated with immediate benefits. But such a contention does not take into account the way scientific research works. Basic research provides the foundation on which applied research is built, and without the former the latter would cease.16 For example, research that examines the nerve cells responsible for vocalization in rhesus monkeys may seem far removed from any practical applications. But over 6 million people in the United States suffer from some kind of speech impairment, and without this fundamental research into speech mechanisms the hope for new treatments is slim.

It is difficult to predict which basic research will lead to eventual applications. But much of it eventually does, sometimes in areas far removed from the original research. All living things share certain characteristics, and basic research on one organism often produces knowledge that applies to many other organisms.

Suggested Citation:"How Has Science Advanced as a Result of Animal Experimentation?." Institute of Medicine. 1991. Science, Medicine, and Animals. Washington, DC: The National Academies Press. doi: 10.17226/10089.
×

Both basic and applied research using animals are subject to a number of safeguards that make it very unlikely that the research will be unnecessary or poorly done. Before an experiment using a vertebrate animal is carried out, the protocol for that experiment must be reviewed by an institutional committee that includes a veterinarian and a member of the public, and during the research the animal's health and care are monitored regularly. Researchers need healthy animals for study in science and medicine, because unhealthy animals could lead to erroneous results. This is a powerful incentive for scientists to make certain that any animals they use are healthy and well-nourished. 17 Furthermore, research involving animals is expensive, and because funding is limited in science, only high-quality research is able to compete effectively for support.

These two woodchucks carry a virus similar to hepatitis B in their blood and are being studied to understand the link of the virus to liver cancer.

Suggested Citation:"How Has Science Advanced as a Result of Animal Experimentation?." Institute of Medicine. 1991. Science, Medicine, and Animals. Washington, DC: The National Academies Press. doi: 10.17226/10089.
×

MYASTHENIA GRAVIS

Myasthenia gravis is a disease that causes excessive fatigue and muscle weakness, in some cases leading to death. The history of how researchers have come to understand the disease, which afflicts about 150,000 people in the United States, illustrates how a number of seemingly unrelated strands of biological knowledge can merge to form a significant advance.

An important part of the story begins with curare, a poison derived from plants, insects, and snake toxins that the Indians of Central and South America used on the tips of their arrows to immobilize and kill prey and enemies, in the nineteenth century, French researchers showed in frogs and other animals that curare blocks the transmission of signals from the nervous system to muscles. However, the transmission process itself was not well understood until the 1930s, when English researchers demonstrated in animals that nerves communicate with muscles by releasing a chemical, acetylcholine, that activates receptor molecules on the muscles. Curare somehow blocked the action of acetylcholine, paralyzing the muscle.

Next, two chemists from Taiwan isolated a powerful toxin from snake venom that paralyzed animals by blocking the receptors for acetylcholine. Other investigators used this toxin to obtain large quantities of the receptor from electric eels, which have many receptors in their electricity-generating organs. When researchers injected this receptor into rabbits, the rabbits developed a syndrome virtually identical to myasthenia gravis. The rabbits were making antibodies to the injected receptors, and these antibodies were attacking the rabbits' own receptors, causing the muscle weakness characteristic of the disease.

In this way, scientists came to realize that myasthenia gravis was an autoimmune disease, in which a person's own immune system attacks acetylcholine receptors on muscles. Treatments have been available for some time to lessen the effects of the disease—by improving the transmission of signals, for instance, or by suppressing the effects of the immune system. Further research, again being conducted in animals, is seeking a permanent cure by focusing on what causes the immune system to attack the body's own acetylcholine receptors.

Suggested Citation:"How Has Science Advanced as a Result of Animal Experimentation?." Institute of Medicine. 1991. Science, Medicine, and Animals. Washington, DC: The National Academies Press. doi: 10.17226/10089.
×
Page 8
Suggested Citation:"How Has Science Advanced as a Result of Animal Experimentation?." Institute of Medicine. 1991. Science, Medicine, and Animals. Washington, DC: The National Academies Press. doi: 10.17226/10089.
×
Page 9
Suggested Citation:"How Has Science Advanced as a Result of Animal Experimentation?." Institute of Medicine. 1991. Science, Medicine, and Animals. Washington, DC: The National Academies Press. doi: 10.17226/10089.
×
Page 10
Next: Why Are Animals Used to Study the Brain? »
Science, Medicine, and Animals Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The necessity for animal use in biomedical research is a hotly debated topic in classrooms throughout the country. Frequently teachers and students do not have access to balanced, factual material to foster an informed discussion on the topic. This colorful, 50-page booklet is designed to educate teenagers about the role of animal research in combating disease, past and present; the perspective of animal use within the whole spectrum of biomedical research; the regulations and oversight that govern animal research; and the continuing efforts to use animals more efficiently and humanely.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!