National Academies Press: OpenBook

Climate Change Science: An Analysis of Some Key Questions (2001)

Chapter: 2. Natural Climatic Variations

« Previous: 1. Climate, Climate Forcings, Climate Sensitivity, and Transient Climate Change
Suggested Citation:"2. Natural Climatic Variations." National Research Council. 2001. Climate Change Science: An Analysis of Some Key Questions. Washington, DC: The National Academies Press. doi: 10.17226/10139.

Page 8

2 Natural Climatic Variations

What is the range of natural variability in climate?

Climate is continually varying on time scales ranging from seasons to the lifetime of Earth. Natural climate changes can take place on short time scales as a result of the rapid alterations to forcings (as described in section 1). For example, the injection of large quantities of sulfur dioxide (SO2), which changes to sulfuric acid droplets, and fine particulate material into the stratosphere (the region between 10 and 30 miles altitude where the temperature rises with increasing altitude) by major volcanic eruptions like that of Mt. Pinatubo in 1991 can cause intervals of cooler than average global temperatures. Climate variability also can be generated by processes operating within the climate system— the periodic rapid warming trend in the eastern Pacific Ocean known as El Niño being perhaps the best known example. Each of these different processes produces climate variability with its own characteristic spatial and seasonal signature. For example, El Niño typically brings heavy rainstorms to coastal Ecuador, Peru, and California and droughts to Indonesia and Northeast Brazil.

Over long time scales, outside the time period in which humans could have a substantive effect on global climate (e.g., prior to the Industrial Revolution), proxy data (information derived from the content of tree rings, cores from marine sediments, pollens, etc.) have been used to estimate the range of natural climate variability. An important recent addition to the collection of proxy evidence is ice cores obtained by international teams of scientists drilling through miles of ice in Antarctica and at the opposite end of the world in Greenland. The results can be used to make inferences about climate and atmospheric composition extending back as long as 400,000 years. These and other proxy data indicate that the range of natural climate variability is in excess of several degrees C on local and regional space scales over periods as short as a decade. Precipitation has also varied widely. For example, there is evidence to suggest that droughts as severe as the “dust bowl” of the 1930s were much more common in the central United States during the 10th to 14th centuries than they have been in the more recent record.

Temperature variations at local sites have exceeded 10°C (18°F) in association with the repeated glacial advances and retreats that occurred over the course of the past million years. It is more difficult to estimate the natural variability of global mean temperature because large areas of the world are not sampled and because of the large uncertainties inherent in temperatures inferred from proxy evidence. Nonetheless, evidence suggests that global warming rates as large as 2°C (3.6°F) per millennium may have occurred during the retreat of the glaciers following the most recent ice age.

Suggested Citation:"2. Natural Climatic Variations." National Research Council. 2001. Climate Change Science: An Analysis of Some Key Questions. Washington, DC: The National Academies Press. doi: 10.17226/10139.
Page 8
Next: 3. Human Caused Forcings »
Climate Change Science: An Analysis of Some Key Questions Get This Book
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The warming of the Earth has been the subject of intense debate and concern for many scientists, policy-makers, and citizens for at least the past decade. Climate Change Science: An Analysis of Some Key Questions, a new report by a committee of the National Research Council, characterizes the global warming trend over the last 100 years, and examines what may be in store for the 21st century and the extent to which warming may be attributable to human activity.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook,'s online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!