National Academies Press: OpenBook

Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering (2002)

Chapter:Successful Public-Private Research Partnerships

« Previous: Gaining a Seat at the Policy Table
Suggested Citation:"Successful Public-Private Research Partnerships." National Academy of Engineering. 2002. Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering. Washington, DC: The National Academies Press. doi: 10.17226/10386.
×

Successful Public-Private Research Partnerships

KATHLEEN C. TAYLOR

Industry must assume lead responsibility for the development, commercialization, and global dissemination of the technologies needed to meet the environmental, energy, and economic challenges of the new millennium. However, because there is often little or no market pull for more costly technologies that address broad-based environmental concerns, such as climate change, governmental policies, initiatives, and research can and must play a major supporting role.

Innovative public-private partnerships have emerged as one important form of government support for accelerating the development of new technologies. These public-private collaborations can significantly expand the breadth and depth of technical expertise available to the individual partners, reduce the costs and risks of research and development, and bring new technologies to the marketplace faster. The federal government can also provide incentives to promote new technologies and support policy objectives through tax policies and cosponsored research.

Take the Partnership for a New Generation of Vehicles (PNGV),1 for example, an innovative, successful public-private research partnership begun in 1993 to further some extraordinary policy objectives. The program objectives include reducing imports of foreign oil and restoring our balance of trade by improving the energy efficiency of U.S. vehicles. The partnership, therefore, has three interdependent research goals.

The first is to improve significantly the national competitiveness of U.S. auto manufacturers. The second is to implement commercially viable innovations from research on conventional automotive vehicles. The third is to develop a revolutionary new class of vehicles that can achieve fuel economies of up to three

Suggested Citation:"Successful Public-Private Research Partnerships." National Academy of Engineering. 2002. Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering. Washington, DC: The National Academies Press. doi: 10.17226/10386.
×

times those of 1994 family sedans while maintaining comparable performance, size, utility, and cost of ownership, and meeting or exceeding federal safety and emissions requirements. The third goal is not achievable with existing internal combustion engines; the intent was to force the development of radical changes in vehicle materials and power systems.

Under PNGV, the government and private engineering communities work together, supported by the U.S. Department of Energy, to develop technologies and achieve the overall objectives. The collaboration of the auto companies and the federal government in a nonadversarial environment is the most critical factor in the success of PNGV.

Several other elements of this partnership have also been important to its success. First, the goals of the program are significant and compelling, and, therefore, they attracted initial resources and technical talent to the program. In addition, top management actively participates in the program. Second, PNGV has been conducted with full awareness of market forces and the diverse resource base required to move beyond traditional automotive technologies. Third, the relationships among the partners are clearly defined, and an effective organizational structure facilitates program management; intellectual property rights were established at the start. Finally, the program has maintained a high level of accountability, through concrete technical milestones and deliverables for measuring progress and annual external monitoring by a panel assembled by the National Research Council.

As PNGV shows, successful public-private partnerships must maintain transparency and accountability to avoid allegations of “corporate welfare.” They also require managerial and budgetary flexibility to adapt to changing technical and economic conditions throughout the life of the program.

Further innovations in public-private partnerships would enable them to address a range of policy-driven technical objectives:

  • the development of new technologies to support stringent regulatory requirements

  • meeting commercialization requirements for new technologies that have limited market pull but that would provide substantial public benefits

  • the development of new technologies that require large capital investments in new facilities, communications, transportation, or other infrastructures

  • global diffusion of existing new technologies with substantial environmental benefits, such as cleaner, more energy-efficient infrastructures for developing countries

NOTE

1  

Information on PNGV is available online at <http://www.ott.doe.gov/oaat/pngv.html>.

Suggested Citation:"Successful Public-Private Research Partnerships." National Academy of Engineering. 2002. Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering. Washington, DC: The National Academies Press. doi: 10.17226/10386.
×
Page65
Suggested Citation:"Successful Public-Private Research Partnerships." National Academy of Engineering. 2002. Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering. Washington, DC: The National Academies Press. doi: 10.17226/10386.
×
Page66
Next: Defining What We Need to Know »
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering Get This Book
×
Buy Paperback | $45.00 Buy Ebook | $36.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Dealing with the challenges presented by climate change or rapid urban development require cooperation and expertise from engineering, social and natural sciences. Earth systems engineering is an emerging area of multidisclinary study that takes a holistic view of natural and human system interactions to better understand complex systems. It seeks to develop methods and tools that enable technically sound and ethically wise decisions. Engineering and Environmental Challenges presents the proceedings of a National Academy of Engineering public symposium on Earth systems engineering.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!