National Academies Press: OpenBook
« Previous: References
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

Appendix A
Reflections and Next Steps

Members of the Committee on Improving Learning with Information Technology were active participants in the January 2003 workshop, which involved exploration of the themes identified in the earlier roadmapping exercise: (1) integrating cheap, fast, robust computers into instruction for every student in the United States and (2) combining advances in the science of learning with IT capabilities to improve student learning. The workshop included a discussion of the types of activities that would be useful to pursue in the future to these ends. This Appendix presents personal statements by individual committee members on the issues raised by the 2003 workshop, as well as all the committee’s activities, regarding next steps to encourage the effective use of information technology in K-12 education.

PUTTING HIGH-QUALITY CONTENT ON THE WEB AVAILABLE FREE TO ALL

Louis Pugliese and Marshall S. Smith

The purpose of this effort would be to provide the opportunity for all to easily access effectively free, high-quality, reusable digitized academic content. This includes library collections, courses, courseware, learning objects, public television shows, journals, books, art, music, and historical archives. In a recent meeting held to consider open content and its impli-

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

cation for developing nations, UNESCO’s deputy assistant director general for communication and information stated (UNESCO, 2002):

Knowledge has become a principal force of social transformation. Knowledge-based and -led development holds the promise that many of the problems confronting human societies could be significantly alleviated if only the requisite information and expertise were systematically and equitably employed and shared.

The Internet opens the possibility of equalizing access throughout the world to great slices of knowledge—to inhabitants of the smallest village in Africa, to citizens of the poorest cities in developing nations, and to recent Mexican immigrants in the United States.

Access to high-quality educational content is varied. Students and instructors in Berkeley or Swarthmore do not have easy access to many library collections at Harvard or to the way that a leading physicist at the Massachusetts Institute of Technology (MIT) structures her graduate seminar. Such content is far less accessible in nonelite colleges and universities throughout the United States and institutions in almost all developing nations. Similar disparities in access occur among K-12 schools in the United States. Moreover, much of the educational content now available through technology at the K-12 and postsecondary level is of poor educational quality, difficult to access, or too expensive for many to afford.

Several recent changes have opened the door to a more general strategy for improving access for all to high-quality content. These changes include the bursting of the dot.com bubble, which convinced many that it was not easy to make money on the web, the steps taken by many to place collections of educational materials on the web, and the giant leap taken by MIT to make all of its courseware available to all on the web for free in perpetuity.1 A number of studies are currently being carried out to investigate the use and effects of the MIT initiative. If high-quality content and materials (courses, modules, learning objects, library collections, etc.) were available on the web and open to all for use and reuse, some of the gap in access to knowledge could, in theory, be overcome. In fact, a number of universities and others have set off down the road of attempting to make substantial bodies of content available in ways that have never been available in the past.

One project systematically backs up the entire World Wide Web six times a year, archives the information, and makes it publicly available at www.archive.org. Carnegie Mellon is developing a suite of stand-alone academic courses that use a cognitive tutor approach, based on current cognitive science.2 The courses will be free to all on the web. In addition,

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

some university libraries have made digitized collections of their materials open to all on the web.

There are also examples of projects that make materials available on the web at very low cost, with the money collected for use applied to sustaining the collections. JSTORE3 and ArtSTORE are two such efforts, the first providing at low cost copies of journals and the second making available digitized art collections. The Mellon Foundation has been very active in funding this work.

The opportunity to stimulate such efforts rests, in part, on the premise that many nonprofit and government organizations, including libraries, museums, and universities, see their primary role as developing and transmitting knowledge and that, when given the opportunity to provide this knowledge free to a worldwide audience, they will do so, unless it interferes with their other responsibilities.

The challenges in creating a useful Internet library of free materials are many. At the forefront is to provide ways for people to screen for quality, so that they have ways of sorting through the information. The quality issue intersects with the theoretical and practical issues in the organization and structure of the materials taken one set at a time, whether they are courses, learning objects, library collections, or interactive symposiums. This form of “library” could grow like Topsy—but what kind of internal mechanism will keep it coherent, much like a “complex adaptive system” in biology? Only then can it become a commons that enhances learning and creativity (Lessig, 2001).4 A second set of issues includes technical, business, and legal barriers, such as bandwidth and interoperability, business models for sustainability, and intellectual property issues. A third set involves making the materials as helpful and useful as possible to as many people who now do not have access as possible. For use around the world, this will require creating translations as well as research that provides a better understanding of how to stimulate the effective use of such materials.

A PULL LEARNING PARADIGM

David Vogt

The single best opportunity to improve learning with the emerging generation of information technologies is to finally enable individuals to “own” their lifelong learning experience.

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

None of us has ever truly and tangibly owned our learning. Consider the ownership documents. In grade school our report cards are loaned to us for brief periods of time; we share them with parents and possibly friends as proud or shameful avatars of us. In college we ask for copies of our transcripts. As workers our development is tracked somewhere in human resources files. Even as adult learners, the best we can expect is for our accomplishment to be signified by piece of paper, as if a certificate were the deed to an ephemeral learning landscape somewhere. The only token of ownership entirely in our hands is our resume or curriculum vitae. We create these and use them to represent our abilities, but they are at best grainy and ambiguously legitimate snapshots of what we know and can do.

Also consider the experience. Great teachers consistently attribute their success to granting some part of learning ownership to their students. We use terms like self-directed and learner-centered to describe our intent. We showcase models of autonomous adventure and peer exploration in problem-based learning. But we never actually give up ownership. Even in the best classrooms, students own only moments. The class ends, the school closes for the day, and the fleeting fiction is done. We expect that from occasionally allowing students to work the fields of knowledge, a delusion of land ownership will blossom, motivating them to improve that land for life. It won’t happen.

The essence of the problem is that education—institutionally and technologically—has always been served, not sought. The learning industry is all push. Education has traditionally been the value-added and source-controlled distribution of knowledge and skills. In the information age, however, education itself is rapidly becoming a commodity. The old business model will soon be broken. The new value-adds will be driven by new media technologies and will balance push with pull. This is inevitable, an inescapable consequence of both the capabilities of the new technologies and the requirements of the marketplace.

The innovative applications of technology considered by the committee have all been oriented to improving the established Push Paradigm. Learning objects, content repositories, distribution networks, interoperability frameworks, adaptive learning flow algorithms, embedded assessment technologies, international accountability systems, learning management systems, etc., all enhance push. We’re building a vast vending machine. Countless researchers and companies around the world are building different parts of that machine. It will work. It will become essential to learning. The only problem is that, as a commodity server, the machine will quickly learn to operate without overhead: it will be painful finding profit from the parts. There can only be so many learning management systems, for example. There are already too many. The real

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

opportunity—commercially and educationally—is not the machine itself, but because of it. The top-down, push-dominated machine is exactly what is necessary to feed complementary pull technologies allowing individuals, from the bottom-up, to own, construct, and amplify their own learning experiences. The operative question then becomes, “How will my educational, career, and lifestyle goals, interpreted through the dynamic social contexts of my peers, community, and culture, determine what items I decide to select from this machine?”

Pull technologies aren’t about customization, personalization, or customer relationship management. These are still forces of the push universe. Pull will be realized as a set of applications and services providing individual learners with actionable authority and versatility in the management of their lifelong learning experience. To give dimension to the Pull Learning Paradigm, consider the following scenario:

Imagine owning a diagram that describes everything you know. Each pixel connects to courses, competencies, accomplishments, and knowledge acquired somewhere in your overall formal and informal learning history. It is a dynamic self-portrait, a visualization of who you are, with learning pathways toward who you might be some day. Use it to capture new learning experiences and shop for more. Compare your self-portrait with those of friends and communities to calibrate your differentiated identity and belongingness. Open it to potential employers to quantify your talents. Compile it with those of colleagues to bid effectively on work. Improve yourself as you wish, adorn yourself according to fashion, and market yourself as you may. Most of all, own this image as well as your reflection in the mirror—it is you and yours.

While deliberately general, this pull scenario clearly requires push. The appetite will be whetted by the vending machine. The obvious extension to this analogy is that fast food makes a poor diet: the market will also be driven to deliver more sophisticated learning experiences according to increasingly discerning tastes. Current learning providers will be challenged to compete. My organization and others are developing Pull Learning Paradigm technologies designed for such individually and socially driven pull dynamics.

Teaching and learning are among the most complex social phenomena humanity has evolved. Revolutions are therefore unlikely. Yet no revolution is required to realize the pull paradigm. The education system has been push-dominated only because there has been no mechanism within which pull could operate. The networked digitization of push has changed that. While the transition will be difficult for most institutions, it is simply a healthy balancing of push and pull. The recent transitions of the music industry are instructive. The “Napsterization” of education will

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

be different, but it will just as inevitably and irreversibly install a push-pull dynamic in learning.

The committee was looking for a transformation of learning with information technologies. The hidden opportunity will be to enable learners to transform themselves. Pull technologies offer a very personal mediation of the mind.

A VISION FOR LENS CENTERS: LEARNING EXPEDITIONS IN NETWORKED SYSTEMS FOR 21ST CENTURY LEARNING5

Roy Pea and Edward Lazowska

Two broad classes of test beds are essential to inform the effective and broad-scale use of technology innovations in learning and teaching. Each can be conducted by centers that involve learning science and technology researchers, K-12 schools and stakeholders, and industries that are involved in creating the technologies used for learning and education (including hardware, software, publishing, and services). We refer to these centers as LENS centers (Learning Expeditions in Networked Systems for 21st Century Learning).

Because of their differential nature, these two classes of test beds have quite different purposes and incentives for sector participation, and they are thus likely be productively defined, funded, conducted, studied, and managed in different ways. In an important sense, the two types of test beds map onto the two transformations that the committee workshop has characterized.

The first type of test bed, the LENS “test-beds of today,” take for granted the essential nature of a 1:1 computer-to-student ratio, Internet connectivity at DSL or better access speeds, teacher preparation for effective uses of technology that utilize such access, and a sufficient base of curriculum content and use of assessments that will enable both research and accountability metrics aligned with current educational standards.

5  

The LENS concept and acronym were developed by Roy Pea and Nora Sabelli, with input from Steve Rappoport, and some of the topics suggested here for LENS centers were developed during planning discussions to consider coordinate efforts to advance effective uses of technologies in K-12 education that were hosted by University Corporation for Advanced Internet Development (UCAID). They included participants from Advanced Network and Services, Cisco Systems, CoSN, EduCause, EDC’s Center for Children and Technology, IBM, Internet-2, ISTE, League for Innovation in the Community College, MOREnet, NEA, NSBA, Nortel Networks, NoX GigaPop, Pacific Northwest GigaPop, Quilt, Qwest, SRI International, and TERC. We thank that group for seeding these thoughts on LENS for 21st century learning.

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

The primary role for this type of test bed is to illustrate near-term adoptable approaches for achieving the necessary condition of access to computing and communications by learners and teachers. Once developed, the promise is that what is learned from establishing what we call “test beds of today” could be emulated in other districts, cities, or states with tested technologies available now in the marketplace and be responsive to accountability metrics already in place.

The second type of test bed, the LENS “test beds of tomorrow,” focuses instead on the risky unknown—on transformational innovations for the future of learning. The remainder of our essay focuses on such LENS test beds of tomorrow. Like work funded by the Defense Advanced Research Projects Agency in the 1960s, which led to many of the core technology innovations we take for granted today (President’s Information Technology Advisory Committee, 1999), the target is radical improvements that aim for orders of magnitude possible improvements. These test beds would demonstrate feasibility and early-stage potentialities of substantively new tools, content, and pedagogies that leverage information and communication technology advances and learning science and technology knowledge at the cutting edge of what is possible. To be ready for a future world we need to explore it, as the 1999 President’s Information Technology Advisory Committee report argued with its Lewis and Clark imagery of expeditions at a frontier of knowledge and life experiences transformed by technologies. We need to live in specifically created possible futures as pioneering scouts, reporting on what life is like in such possible futures. Someday the most viable LENS developments might find their way—partnerships and sustainability partners willing—into test beds of today but at a time 7-15 years or more into the future, when they may become woven into the fabric of tomorrow’s societal learning systems.

We first sketch out the rationale for why LENS test beds would fill an essential need in the field today and why center structures make sense as a way to plan and study LENS test beds. We then focus on the distinctive purposes and incentives for participation in LENS centers, sketch out some exemplary LENS test bed topics of tomorrow for illustrative purposes, and then close by considering organizational aspects of the enterprise we believe would take advantage of the opportunity space for LENS centers.

Rationale

Alike in some respects (and different in others) to the pharmaceutical industry, the K-12 learning technologies world needs a pipeline, for both “push” and “pull” technologies, as David Vogt argues in his reflective

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

essay. And research plays different roles at each stage of that pipeline, from innovative design to clinical trials, with drug discovery a crucial early-stage activity. The current policy fervor, given the No Child Left Behind Act, for randomized clinical trials as a primary model for providing scientifically based research for educational interventions does not in itself yield the innovations and programs worth devoting research funds to—we also need early-stage pilots, design research, IT-based curricula, and other forms of inquiry that are guided by science in their own right. As workshop speaker Robert Tinker noted, the Math-Science Partnership programs jointly defined by the National Science Foundation and the U.S. Department of Education, the NSF-funded Centers for Learning and Teaching, and the Department of Education’s regional labs are very focused on the scaling stages of standards-focused and promising educational programs and in the aggregate cost U.S. taxpayers over several hundred million dollars per year. But these efforts will not create the innovative platforms, tools, IT-based curricula, or systemic frameworks that will be needed to take the educational enterprise supported by emerging technologies to progressive next levels.

LENS test beds of the future, organized and conducted by centers that are funded as public-private partnerships, will bring together the appropriate leadership alliances, knowledge, and communities for networking their learning and expertise and for supporting the design and conduct of new learning expeditions. No stakeholder sector alone can make the needed progress, and all have expertise to offer. LENS centers would seek to achieve “reciprocity of influence” among their stakeholders, including K-20 educators and institutions, researchers in the sciences of learning and uses of educational technologies, subject matter experts, advanced telecommunications professionals, schools of education, and industry.

Another factor contributes to the need for LENS partnership expeditions and the centers to plan, conduct, and operate them. Changes in information and computing technologies are proceeding at such a rapid pace that it will take the talented engagements of the education, research, and technology industries to forge the visions and innovations in tools, environments, and instructional practices that build on and advance the sciences and contexts of learning, teaching, and education. We worry that K-12, learning science, and the information and communication technology industry will become increasingly decoupled in their central practices without express attention to strongly supporting their convergence through LENS partnerships.

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

Topics for LENS Test Beds of the Future

LENS test beds might be focused on a broad range of topics of central importance for exploration and investigations concerning the future of technology-supported learning and education in society, and they may leverage and advance any configuration of emerging technologies and learning sciences research. Such expeditions will characterize kinds of demonstrable outcomes and how processes of learning through the expeditions will be documented, so that there could be demand-side interest in making these possible futures actual futures for learning with technology. Ideally, LENS expeditions would be both systemic in design and more than local in nature. By systemic we mean that they would simultaneously investigate transformed but aligned curricula, instruction, assessments, teacher learning, and connections to home and community in the future models they create and study. The following examples are provided by way of illustration as possibilities for a flagship series of LENS test beds of the future:

  • Developing teacher professional development networks that integrally use digital video to share exemplary practices, reflect and advise one another, and enable distributed mentoring in a GRID-supported digital video collaboratory for teacher learning.

  • Tackling the integration of advanced speech recognition, translation, and literacy development tools to make English-language learning readily accessible for all K-12 learners who are not native English speakers.

  • Exploring novel uses of haptic and model-driven tele-immersive environments for learning how complex systems work in the biological and physical sciences.

  • Creating learning environments and pedagogies that educate learners in approaches that foster “thinking with data” that have been collected and used in the physical and social sciences (e.g., earth and environmental sciences; digital sky; census records) and other public resources (including earth- and space-based scientific instrumentation).

  • Learning high-stakes knowledge and skills in significant measure through on-line multiplayer interactive gaming that leverages engagement, motivation, and social networking, perhaps using wireless cell phone/PDA/computer platforms for the test bed and novel networks, such as peer-to-peer and mobile ad hoc networking, not only a carrier-based client-server model.

  • Uses of location-aware computing to integrate learning in and out of school. For example, learning expeditions need to be developed for test beds where local community learning resources have been inventoried and information stored in wireless transmitters attached to resource loca-

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

tions so that a learner passing by, based on their knowledge and interest profiles, triggers the transmission of that information to their PDA.

  • IT-based curricula based on fundamental rethinking of what learners and teachers can know and do and in what sequence they need to do it, based on dynamic and model-based symbolic representations (e.g., for high school students—atomic physics before molecular biology; simulation-based calculus in the upper elementary grades).

  • Advanced assessment methodologies intended to guide instruction and e-learning “work flow” that not only tap into data-mining of learners’ interactions with technology-based learning environments but also incorporate sensing of learning-relevant emotion and brain states that can influence learning and memory.

  • Taking advantage of Internet-based technologies to enable students to remotely control parameters of powerful scientific instruments, such as telescopes and electron microscopes, to enable access to research at a distance concerning developments in such scientific topics as cosmology and nanotechnology.

  • Examining the prospects for remotely controlling parameters of learning technology experiments, such as making available specific tool features or structured guidance for learners, for systematic pursuit of conjectures on interactions between learning technologies and educational environments.

Incentives for Sector Participation in LENS Centers

While test beds of today will attract the interests, expertise, and resources of the three communities we consider central, there will be different reasons for these constituencies to participate in the LENS test beds of tomorrow and centers that enable them:

  • Reasons for industry to participate include the following: (1) pre-competitive sharing of investment risk in testing out risky concepts not yet demonstrated as to their feasibility, readiness for market, or responsiveness to present-day market conditions and “product space” awareness; (2) desire for developing early emerging market understanding from observations of first trials of new technical capabilities in real schools and other learning settings; (3) access to knowledge sharing by learning science researchers who will seek to apply their best uses of scientific understanding in the contexts of design and innovation, to the potential benefit of industry in terms of future product development; (4) leveraging federal and foundation funding involved in the researchers’ prior work or test bed engagements; (5) access to teachers and graduate students who

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

they may wish to hire as consultants or employees later. At the same time, we must recognize that economic conditions may often make sizeable industry engagement unrealistic.

  • Reasons for learning science and technology researchers to participate include the following: (1) access to cost-sharing of real value to projects they care about and could do far less effectively with federal or foundation monies alone, including (but not limited to) uses of new authoring tools and development environments, high-end servers, next-generation hardware platforms, and communication devices; (2) research internship and apprenticeship opportunities for graduate students.

  • Reasons for educators to participate are many, but include the following: (1) states may want to identify and provide special support for their main “sentinel schools” where the capacities and interests are present for taking their educational practices and tools to the next level, and in which an environment of experimentation and risk is present and the new learning from LENS participation would be an attraction; (2) opportunities abound to help advance visions of where teacher professional development and student learning are headed that schools of education could contribute to and learn from.

Organization of LENS Centers

While we believe that the LENS concept has a compelling rationale and believe there are more than sufficient incentives for the diverse stakeholders in the future of learning sciences, practices, and technologies to partake in the partnerships required to achieve them, the programmatic aspects of the LENS enterprise called for requires some consideration. LENS centers would provide institutional hubs for supporting the design, development, design research, and assessment methodologies, implementation, and the communication, groupware, and knowledge management needs that arise in the LENS partnership efforts. They may include registry services for schools, research institutes and universities, industry partners, and other organizations and assistance for brokering the formation and conduct of learning expedition partnerships across stakeholder sectors. Dissemination functions for LENS centers should be much more like interactive communication sites that invite dialogues between LENS partners and staff and the interested parties than simply knowledge-sharing activities. In this manner, the partnership focus wrought by LENS centers and their affiliated test beds for inventing the future of learning could be more successfully achieved.

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

REASONS FOR OPTIMISM, POSSIBILITIES FOR HARDWARE AND SOFTWARE

Edward Lazowska and Roy Pea

The track record of technology in education is clear for all to see: overpromising and underdelivering. Yet at the same time, as many futurists have noted, we tend to overestimate the effects of technology in the near term and underestimate them in the long term (Seely Brown and Duguid, 2000).

In 1922, Thomas Edison said “I believe that the motion picture is destined to revolutionize our educational system and that in a few years it will supplant largely, if not entirely, the use of textbooks.” Similarly grand claims were made for radio, for television, and for computers. (We leave unattributed this 1984 statement by a highly regarded computer scientist: “There won’t be schools in the future . . . the computer will blow up the school.”)

Why, then, should one believe that today information technology offers significant promise to transform teaching and learning? We see scientific, technical, and cultural reasons for optimism.

Scientifically, there have been major advances in our knowledge of how people learn. Coupling these advances in the learning sciences with corresponding advances in educational technology is a key challenge identified in this report. How can we better undergird new designs for technology-enhanced learning environments with research knowledge and continuously improve these environments through informative ongoing assessments? To take but one salient example, we know that one-on-one human tutoring that is responsive to the learner’s individual knowledge and learning pace is highly effective. Unfortunately, it doesn’t scale. Well-designed education technology—education technology guided by knowledge of recent advances in the learning sciences—can augment the one-teacher-to-many-students classroom experience with instruction that simulates one teacher per learner.

Technically, Moore’s Law is finally paying off. Something that matters to people is doubling every 18 months! Consider the Internet as a familiar example of this sort of exponential growth. The Internet began in 1969 with four interconnected computers. It doubled away, year after year, invisible to the public at large. Then, suddenly, in the mid-1990s, it seemed to come out of nowhere to become ubiquitous as a new infrastructure for learning, business, science, entertainment, and commerce. Exponential progress in processors, memory, storage, communication, and displays is coupled with equally rapid progress in algorithms; and the convergence of these advances is driving changes

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

in capability and in cost that are dramatically impacting what we can do. As an example, handwriting recognition and speech recognition have made remarkable strides in the past few years. Simulation and visualization have joined theory and experiment as fundamental approaches to the practice of science; and they are beginning to impact the classroom, making the inaccessible accessible by allowing students to explore phenomena that they could not approach in the real world. Peer-to-peer schemes for rich media-sharing challenge the publishing world and digital rights management but hold great potential for educational use. And another way in which this technology is truly different from the filmstrips, radio, and television of the past is that it is a metarepresentational technology—providing a new digital medium in which one can express and connect all previous media from video, to music, to text, graphics, photography, animations, and beyond. For example, today’s Google search on the World Wide Web spans over 3 billion web pages and 425 million images.

Socially, there is clear recognition that teaching and learning must be the focus, not technology. Networks and the web connect us, fostering exploration, interaction, and connectivity—communities of teachers and learners. Finally, “digital kids” are ready, calling out for learning environments that tap their new forms of digital fluency and screen literacies.

For all of these reasons, we believe that an extraordinary opportunity exists at this point in time—an opportunity that we must seize, for the sake of our children.

REFLECTIONS ON TEACHING AND TEACHERS IN THE LEMONLINK ENVIRONMENT

Barbara Allen

New classroom technologies available today have the potential to radically transform education as we know it. Successful learning no longer needs to depend on the random good fortune of always being assigned to the classes of master teachers who are both content experts and skilled learning facilitators. Instead, high-quality instruction in almost any given subject can be made available to any student of any age and any background. Students in a well-run “networked learning community” will be able to access the best educational resources from across the globe at any time of the day and year (National Association of State Boards of Education, 2001).

As part of the committee’s workshop in January 2003, Darryl LaGace and I made a presentation on the Lemon Grove School District’s decade-

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

long effort to construct a connected learning community, with the district serving as the communication hub for the entire city. At the center of this effort is the district’s technology initiative. Our vision is to promote academic success by providing all Lemon Grove students and their families access to direct linkups with teachers, classroom materials, and the unlimited global resources of the Internet. Project LemonLINK has focused on connectivity and access, engaging web-based curriculum, extensive professional development, and extending educational opportunities through the home connection. The district has joined with business and government partnerships to develop a unique infrastructure that connects all schools and the city via microwave, fiber optic, and laser technologies. In these additional reflections, I focus on some of the lessons we have learned about the roles of teachers and teaching in LemonLINK-like environments.

First, equipment and access should be designed with teachers and teaching in mind. Understanding classroom anomalies is crucial in system design and deployment of the technology as well as the type and focus of the professional development necessary for effective use. Under the traditional model of file servers at the school site with multimedia computers as the user device, there is an expectation that teachers will become technical experts in order to keep the equipment on line. For example, the technology proficiency rubrics for the classroom teacher developed by California’s Technology Assistance Program (CTAP2),6 which are based on the standards for teachers included in the National Educational Technology Standards (NETS) of the International Society for Technology in Education (ISTE),7 specify that teachers who are proficient in the operation and care of hardware should be able to allocate memory needed by applications, access and change control panels, set software preferences, make more system memory available, install software, and select and use appropriate antivirus software. This concept of technological proficiency contradicts the role of the classroom teacher as defined by the profession. The California Standards for the Teaching Profession makes no mention of teachers needing to backup files, install antivirus systems, load software programs, or keep the technology in their classrooms up and running.

The traditional model of education technology using systems and devices modeled after business creates a new and disturbing element in the classroom for most teachers. CTAP2 and ISTE NETS accurately reflect the technical expertise necessary to support education technology based

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

on the traditional model of technology deployment, but they cast teachers in a sometimes ill-fitting technician role to keep classroom equipment up and running for students to use technology every day. The reality is that if equipment is not reliable and functioning regularly, it will be abandoned by teachers, with Plan B quickly being implemented. If we are serious about the expectation that all teachers will use the tools of technology in their instruction, then network systems and devices must allow teachers to focus on creatively embedding electronic resources into everyday use for students rather than on technical support of their classroom computers.

Second, there are a number of tools that could help manage classroom environments that are rich in technology:

  • Search engines for locating quality on-line materials. Time is a crucial factor for teachers to embed technology into their instructional practices. Over the last few years there has been a marked increase in quality on-line resources, from subscription services to materials on the Internet. The difficulty centers on the need to find appropriate on-line materials based on grade level, reading level, subject area, and curriculum standards a critical component for districts to meet No Child Left Behind criteria. For a teacher to be expected to spend hours each night locating and evaluating resources is unrealistic. Some subscription services, such as Bigchalk’s Integrated Classroom and UnitedStreaming.com’s streaming video collection, have built-in search mechanisms for locating targeted resources, but a broader range of products that assist in mining electronic resources based on filters set by the teacher would contribute greatly to frequency of use.

  • Electronic methods to manage on-line materials for student use. Traditional methods of making materials available to students are distributing paper copies of information, using the overhead projector, writing information on the whiteboard, or providing oral instructions regarding the lesson. Some teachers are attempting to save URLs to Favorites on each machine each day. These instructional management practices are cumbersome and time-consuming. Seamless methods of delivery that facilitate student access to the material greatly increase the incidence of use in daily instruction. Once the teacher has located appropriate on-line materials, an electronic method is needed for centrally organizing and delivering the materials and information to students. These can be teacher developed, such as classroom Intranet sites, district-developed instructional management tools, or commercially developed products.

  • Portal technologies. Lemon Grove School District’s technology program doesn’t end with the school day. With the advancement of portal technologies, it has recently developed and introduced MyLearningPortal.com,

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

which allows teachers and students to access district resources and programs from home or anywhere across multiple platforms, including PCs, laptops, or thin clients—all through the web with no programs required to be loaded on the local client’s device. The portal allows users to log on once and gain access to customized resources targeted to the individual user’s needs. For example, a teacher working on a lesson for the next day can log on from home and access materials she has developed at school using Microsoft Office XP and modify them at home even though her personal computer does not have the program loaded locally. She can then save the file back to the district storage network, and it is available to her when she arrives at school the next day. For students opting to use locally installed applications, MYePACK allows users to upload files over the web from their home computer and save it to the district storage network or turn an assignment into the teacher, thus seamlessly linking the home and work setting for teachers and students to do their work anytime, anywhere.

  • Streaming video capabilities to take advantage of the multimedia available on the Internet. The Digital California Project is a state-funded effort to build the necessary network infrastructure required to enable California’s schools to take advantage of tomorrow’s advances in network technology. The network requires that schools be connected at high speeds back to the district before they can take full advantage of the resources. Lemon Grove’s wide-area network now connects schools at gigabyte speeds. Even though a thin client uses very little bandwidth to run applications, the device’s local media player and browsers will take as much as we can deliver in the way of streaming video. Many streaming educational resources are now available and easy to integrate into on-line lessons. No longer does the teacher have to show a 45-minute video on the classroom VCR that all students must watch at the same time. Web-based video libraries offer indexed high-quality educational videos allowing the teacher to select short clips targeting the desired instructional information that are accessed on demand by students from any workstation as many times as needed.

Third, it is important to recognize that professional development is not an event; it is a process. According to National Educational Technology Standards for Students: Connecting Curriculum and Technology (International Society for Teachers in Education, 1999):

Curriculum technology integration involves the infusion of technology as a tool to enhance the learning in a content area or multidisciplinary setting. Effective integration of technology is achieved when students are able to select technology tools to help them obtain information in a timely manner, analyze and synthesize the information, and present it professionally. The technology should become an integral part of how the classroom functions—as accessible as all other classroom tools.

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

In order to accomplish this mighty goal for all teachers and not just the “techies,” issues dealing with connectivity, classroom equipment and access, technical support, and instructional management tools must be resolved. When professional development relating to instructional technology no longer has to train teachers to teach in the one-computer classroom or maintain and repair equipment, the appeal of using technology in instruction becomes more widespread in the teaching ranks. Professional development takes on an entirely different look with the focus channeled to curriculum and teaching pedagogy, areas that are very familiar to teachers.

In Lemon Grove, professional development is a process that is embedded in the culture of not only the district but every school site. We no longer “do technology.” Rather, discussions, demonstrations, and learning opportunities for teachers that occur throughout the work day relating to instruction, time and classroom management, communication, individualized student learning, and assessment all involve the tools that technology provides to complete the task. Skilled administrators artfully provide “just in time” intervention for teachers who need assistance in various areas of growth as they progress to the “invention” stage of the evolution of instruction in technology-rich classrooms. Our approach is quite consistent with the findings in Teaching with Technology: Creating Student-Centered Classrooms (Sandholtz, Ringstaff, and Dwyer, 1997):

In the invention stage, teachers experiment with new instructional patterns and ways of relating to students and to other teachers. As more teachers reach this stage, the whole tenor of the sites begins to change. Interdisciplinary project-based instruction, team teaching, and individually paced instruction become common. Students are busier, more active; the classrooms buzz. Students can be observed helping other students over technology hurdles and they help their teachers. Teachers adapt to the more empowered status of students. Teachers increasingly reflect on their teaching to question old patterns and to speculate about the causes behind changes they see in their students.

Finally, what are our next steps in teaching and learning? Partnering with the San Diego County Office of Education’s Classroom of the Future, Lemon Grove School District will expand LemonLINK by deploying a pilot 1:1 wireless thin client tablet environment in two sixth-grade classrooms beginning in September 2003. This program will not only improve the student-to-computer ratio to 1:1 by providing portable, wireless networked computing devices to each student, but it will also challenge teachers to modify pedagogy and develop new curriculum. Wireless technology will predominate connectivity as students will be provided wireless cable modems in their home to complete the home to school connection. Building on the positive features of the thin client

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

environment, this wireless CE.net tablet will take anytime, anywhere access to a new level. As we continue to gain understanding of technology’s true potential for the teaching and learning process, we stretch our vision of what is possible. The impact on achievement through adequate access and embedded integration underscores the importance of generating solutions that enable all districts to affordably provide sufficient daily teacher and student access to the tools and resources of technology. It is only when this level of systemic use has been realized that we can truly evaluate the impact that technology has on the learning process and student achievement.

THE POTENTIAL FOR COLLABORATION ALREADY EXISTS WITHIN THE EDUCATIONAL COMMUNITY FABRIC

Linda S. Wilson

We intuitively know that information technology tools can serve as an improvement model of education. Case studies and models of success exist throughout this country in diverse school systems and at different grade levels. Whether preparing children for success with rudimentary skills or for an increasingly technological environment, IT tools appear to make the job of education cost-effective, cost-efficient, and equitable regardless of socioeconomic community. We also know of failed systems— failure by definition due to poor implementation, lack of technical support or teacher training, or high cost.

The goodness of such an endeavor to transform education and learning technologies is recognized. It receives quick agreement in principle. How to create an environment and effort to successfully implement this endeavor demands a change in infrastructures and assessments, and it requires research in these areas. How does the education community determine what are the infrastructures, types of assessments, and research paths to pursue, without the cost of attempting several paths and risk of failure, to achieve this common goal?

Thriving organizations, industries, and institutions are such because of the ability to improve and capability to implement such improvement systemically. Similar or competitive organizations have common tasks to analyze their current situation and to determine the best approach for improvement. All must expend resources to understand these factors before implementing change. Likewise, these organizations have elemental or functional communities within them that serve sectors of the larger enterprise. Many of these organizations use a collaborative solution. This approach to cost-effective change leverages resources for research, development, and strategic position.

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

The successful framework of such collaboration has elements that ensure productive partnerships—a proven improvement model, a set of existing standards, a culture ripe for change, a strong leadership element, equitable representation, financial sponsoring, and a shared strategic plan that serves as a guide for the effort. This strategy then becomes pervasive in the membership communities that make up the collaborative organization, which then serve to implement the changes required to ensure success. The implementation is an ongoing effort that requires coordination, management, and review to ensure the strategic path continues to satisfy the community at large.

An example of industry collaboration that is successful and serves as a model of best practices is International SEMATECH. Formed in 1988, this consortium originally was designed to address a national crisis of market share loss in the semiconductor industry. SEMATECH began as a U.S.-only effort and with an initial membership of 14 leading-edge U.S.-based manufacturers of integrated circuits. After ten years of success as a national effort, SEMATECH’s members realized that the consortium needed to reflect the global industry and invited international participation. Acknowledged success is attributed to a focused strategy of its membership, with an equitable voice from all. Extending membership to the world’s leading-edge manufacturers for precompetitive cost leveraging serves to find solutions from which the entire global industry benefits and alleviates the risk of going it alone for its members in particular. The consortium strategy is enabled by continual assessment of the industry market indicators and future technical requirements. Industries around the world now use some form of collaboration and strategic goal setting to leverage cost and effort, and many use a model similar to SEMATECH’s structure.

The good news is that the nature of the education community in this country is the foundation for collaboration. The makeup of the community spans all levels required for such work—policy makers, learning scientists, education administrators, curriculum developers, educators, IT suppliers, and students. These are the leaders, the implementers, and the change agents to promote and synergize partnerships. The organizations of which they are members are the sponsors and stakeholders in the effort of improvement. Each organization has dollars already allocated for research, development, or implementation of education improvement.

Partnerships and relationships exist in the education community that can spawn the groups to work on issues for the next generation of education transformations. National organizations have specific programs and working groups populated with community teams. These groups’ members represent the sectors of the education system. They have established working relationships that span function and locale. The members of

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

associations of educators, district liaisons, industry partners for better education, curriculum suppliers, and IT industries are recognized colleagues in their fields of expertise and shared values.

As a reflection of the current environments that have thriving collaborative communities, what is lacking in the education community is a formal recognition of partnerships and of an agent to serve the collaboration effort. A possible consideration of these two elements is opportune.

First, an agent is formally recognized or newly established as the organization that serves the education community and has the wherewithal to manage the collaborative system. In addition, such an agent manages the budget structure and dollars for the effort, serving the sponsoring stakeholders that are funding members of the organization. The coordination of such an effort is departmental within an organization that can support collaboration by committees populated by members of the community at large. Thus, the agent can be part of an existing organization of which these stakeholders are members or an independent consortium of stakeholders joined specifically for the purpose of next-generation education.

Second, members of the collaborative effort for improved education have a formally recognized responsibility and assignee-ship to the effort. It is crucial their organizations support and salute this membership. Currently, the population of focus groups and committees for efforts for educational improvement are accustomed to an associative membership model—a part-time role that requires some participation biannually or quarterly. The suggested model is neither demanding nor recognized as intrusive but, in most cases, more exclusive of full-time “employed” commitments. So formal termed membership is appropriate and will serve such an effort well.

The better news is that candidates exist for both the agent organization, sponsoring partners, and as group members for the teams to collaborate and form the plan that will guide education toward the next generation system. Those individuals already serving the education community associations, focus groups, and key associate positions are likely to have the credentials and commitment to execute such an endeavor. Former or current memberships of several agencies can participate as termed assignees, as with many committee memberships now existing. Likewise, industry-education partnerships exist at all levels, from national organizations to within school districts. The ability to participate in forming the strategy for the national education model as a sponsor has intrinsic value for those engaged in the beginning. Such enticements, once identified, may spark interest in those organizations motivated to improve education in their community (whether it is their town or their nation).

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

The best news is that formalizing the elements needed to effect change for improving the education system takes advantage of what already exists in the education communities. Industry consortiums and collaborative partnerships are familiar models of proven value in leveraging efforts throughout the country in both the public and private sectors. It makes sense to use a model that already works and one that education associations and partnerships support. The resulting strategy for better education is ensured support and continued improvement by the same population it serves.

As part of the effort of collaboration, success depends on a focused strategy of implementation over time. For serving the effort of planning two transformations in education and learning technologies, this strategic approach could be designed to accommodate the needs of the education community to achieve the next generation of education model in this country. It would comprehend at least the needs for (1) technical support infrastructures, (2) continual and appropriate assessments, (3) curricula, and (4) continuing professional education with the extensive use of IT tools.

The nature of a strategy serving a collaborative effort made of diverse communities and systems is a guide more than a stringent policy. Each local community implements tactically, thus continuing to satisfy individual sensitivities and needs in state and district education systems. Implementation is handled by those administrators and educators in such systems. Such a guide acknowledges the flexibility to address local needs as only resident experts can, while serving the higher goal of a common national objective. Typically, such an approach is known as a roadmap.

Roadmapping has certain elements, as follows: built by recognized community members who are recognized as advisers or experts (who are equitable and inclusive members representing all sectors of the community), acknowledged as a focused guideline that identifies areas of needs and implementation, and formally ratified by both the advising members and the sponsoring partners. Roadmapping is sponsored administratively and financially by partnered leaders. Each roadmap is unique and relative to the community that forms it. In the best of circumstances, it should be designed to become the accepted guide, since it is built and ratified by representatives of that community. It could be noted that the elements for successful collaboration cited earlier are similar, if not the same. As stated earlier, many of these elements need only to be formalized and directed toward the effort of transforming education and learning technologies.

Existing partnerships and alliances in the national education community are success factors for the leadership and collaboration. Working relationships can be formalized into focus teams, and a coordinating organization of such a strategic effort can be recognized. In addition, the

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

strategy produced by such teams, which serves to continually guide the community, such as a roadmap, is critical to the effort.

IMPROVING LEARNING WITH INFORMATION TECHNOLOGY

Edward R. Dieterle II

In the winter of 2001, a project director of the National Research Council (NRC) contacted me with an invitation to serve on the Improving Learning with Information Technology (ILIT) committee. Prior to our conversation, I knew little about the relationship between the NRC and teachers. During the months that I have worked with the committee, I have come to learn of the NRC’s interests in education and education reform. I have also come to appreciate the committee’s attempt at bridging the relatively independent communities of teachers, learning scientists, and the information technology industry. It was also during my service that I made the decision to leave my chemistry classroom and begin a doctoral program in learning and teaching with the ultimate goal of working with emerging teachers. The following reflection draws on my experiences as a classroom teacher and a member of the committee and documents my transformation from a novice to an experienced user of information technology to improve student learning.

During my first two years in the classroom, the professional enculturation of balancing the professional duties with the instructional responsibilities of a teacher overwhelmed me. While computers played an important role in my personal productivity, I did not understand the potential that information technology offered my pedagogy. By my third year of teaching, I began to understand and appreciate the culture of my classroom and my school and had developed good working relationships with my department chair, immediate colleagues, and administration. As I looked for new ways to improve my teaching and my students’ learning, a chance discussion with my department chair concerning the Internet changed my outlook forever.

As my department chair taught me how to effectively search the Internet for images to use in upcoming lessons, I began to value how the Internet could bring up-to-date information and images to my classroom. After finding images and pasting them into multimedia slides, I projected them to my students. My initial projection device was a 30-inch monitor the school had purchased earlier in the year. Since very few teachers in the building were interested in using the monitor, I adopted it as a permanent addition to my classroom. After sharing the multimedia slides with my classes, it became obvious that several students in the class were experienced Internet researchers. Using my Internet-savvy students as

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

resources, I proceeded to relinquish my power to those who knew. Although I comprehended more chemistry than my students did, I became as much a student as everyone else in the class on Internet use and multimedia design. Collectively we tried to determine the properties of good slides and ways of improving poor ones. I then began transforming many of my traditional chemistry projects to include multimedia components. In addition, my students and I began collaborating via email. It was during this time that I realized how students develop different voices while in this alternative medium. Moreover, some students who were less vocal in class thrived in email discussions. Email also afforded the quick exchange of documents in our learning community.

In terms of student learning and my own teaching, I gathered four take-away ideas about multimedia development. First, the novelty of new technology is bound to excite some while intimidating others. Since I was able to highlight my own learning and imperfections in class, I believe my students were less critical of their own mistakes. Second, the multimedia collaboration encouraged students to articulate verbally their own learning. As a teacher, I became a much better educator when I knew how students were thinking and learning. This shift in teaching also led to my first vivid experience of students’ zone of proximal development; that is, the increased learning potential children have while working collaboratively with more capable peers or under adult guidance and ultimately “what a child can do with assistance today she will be able to do by herself tomorrow” (Vygotsky, 1978:86-87).

Third, content is the hallmark of good work. Initially, my students were convinced that bells and whistles were necessary for great presentations and that scientific content was a secondary concern. To redirect and focus everyone, we began developing presentations in black and white with appropriate images, then added colors and effects. Fourth, for students to be effective producers of multimedia products, they need low computer-to-student ratios, fast Internet connections, and regular access. The administration and technology coordinator of my school granted my request for additional resources based on my effective usage of the technology I had and my ability to define future learning potentials.

At the start of my fourth year of teaching, I had four Internet-connected computers in my classroom. While my students and I continued to develop multimedia presentations, we came upon a major roadblock. Not everyone in class had equal access to the multimedia software outside class. It was during this time that a student introduced me to WYSIWYG editors—what you see is what you get web page editors whose interface is similar to that of word processors. WYSIWYGs are free, cross- platform, and do not require state-of-the-art computers.

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

As my students and I began learning about web page design, my teaching shifted again. Instead of developing independent projects or web pages, we developed web sites. The products of this shift became the backbone of my chemistry curriculum. Examples of units we developed include The Virtual Periodic Table (Dieterle and Bois, 1999), Hurricanes Are Low Pressure and High Stress (Dieterle and Gavin, 1999), and Radon Raiders Inc. (Dieterle and Bois, 2000). In each of these projects, groups of students developed web pages for the usable class web site. These lessons were developed for Maryland Public Television and drew on the teaching philosophies of Understanding by Design (Wiggins and McTighe, 1998), Teaching for Understanding (Wiske, 1998), WebQuests (Dodge, 2003), and Public Television’s NTTI program (Maryland Public Television NTTI Home Page, 2003).

My students’ learning and my own teaching transformed again as my maturity and innovation with information technology expanded. Reflecting on this period, I gathered three additional take-away ideas. First, web page viewing and development are possible on almost all computers. Second, students value their work when they realize it is public and meaningful. Third, web page and web site development is an ongoing and iterative process. As students continue to deepen their understandings, they have the ability to update their products, which is very different from my original one-time, individual projects.

As my knowledge of web pages grew, my ability to maintain a class web page also grew. By my last year in the classroom, my students and I had access to technologies that extended the learning experience beyond our face-to-face meetings. Besides access to daily and archived notes, laboratories, and projects, our class maintained an asynchronous discussion board where thoughts and ideas could be unpacked and explored. This particular medium allowed students to find new and powerful voices since they had time to reflect and prepare their responses before posting them. Topics discussed in this medium fostered a level of collaboration and understanding I had never experienced before. In addition, I found the class discussion board equally beneficial to traditionally low- and high-performing students.

As a classroom teacher, I cannot imagine teaching class without the information technology tools that I have become accustomed to using. Not only did they help me organize and streamline my curriculum, but they also helped me teach and learn with students in ways that I could not have previously enjoyed. In addition, my success and the success of many of my teaching peers was possible only because of the harmony between the hardware (e.g., computers and the network), software (a variety of open-ended applications), and peopleware (a supportive administration and an effective technology coordinator) in my school and

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

county. My recommendation to fellow teachers is to start small and to use the technology that you have available to you for your own productivity. When you see the value in something that you find or produce, share it with your students and colleagues and ask them to do the same. Powerful learning media such as asynchronous discussion boards, instant messengers, and email allow students to assume different classroom roles. Those who are quiet face-to-face might find their voice on line. Just as Rome was not built in a day, expert use of information technology in classroom instruction to improve student learning does not happen overnight.

During my period with the committee, I regularly observed the appetite and potential to bring the teaching, learning scientists, and information technology industry communities together in order to improve learning with information technology. Since I have become a doctoral candidate at the Harvard Graduate School of Education, I have taken many courses that deeply explore bridging learning theory, design, practice, and policy. The successes highlighted during my first year tend to exemplify constructive and collaborative communication among the communities of teachers, learning scientists, and the information technology industry. While the success stories of these courses were small in scale, each magnified the complications and frustrations I observed while on the committee surrounding community, scale, and sustainability. Just as an individual teacher transforms himself and increases the opportunities for his students to learn by finding value in the power of the technology and by successfully bridging his microcosm of teaching, learning theories, and information technology, it is my hope that the work of the committee continues to expand the communication webs of teachers, learning scientists, and the information technology industry.

DEVELOPING, DEPLOYING, AND EVALUATING HIGH-QUALITY SOFTWARE FOR TEACHING ENGLISH TO ENGLISH LANGUAGE LEARNER STUDENTS AND FOR TUTORING AND PROVIDING PRACTICE IN READING AND MATHEMATICS FOR STUDENTS WHO NEED EXTRA SUPPORT

Marshall S. Smith

This essay focuses attention on the needs of students who are now at risk of failure, and it addresses the issues that schools are most concerned with—teaching English to non-English speakers and competence for all in reading and mathematics. The idea is not to replace teachers or require

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

teachers to alter their practice. Instead it is to complement existing teaching by providing opportunities to students to spend more time learning and practicing the use of language and mathematics skills.

Those most in need often are not given the support and educational experiences at home and in their neighborhood that more advantaged students take for granted. Between ages 5 and 17, students are in school for less than 20 percent of their waking hours. Many low-income students enter school with vocabularies that are far smaller than average middle-income students. While they are growing up, their opportunities to practice reading and mathematics at home are substantially lower than the opportunities of middle-income students. A high percentage of Hispanic immigrants live in homes in which the predominant language is Spanish and they get no opportunity to practice speaking or listening to English. These students need the opportunity that others have to have their school experiences expanded and reinforced beyond the normal classroom. They need more time on task to have an equal opportunity (e.g., Hart and Risley, 1995; Alexander, Entwisle, and Olson, 2001).

For a variety of reasons, this is the right time to develop and test new teaching programs for these purposes. First, there is increased emphasis in the United States on providing extra educational opportunities for needy students during school and through after-school and summer programs. The general policy of extending time is reflected in the federal government’s 21st century after school program, in the new requirements for Title I of the Elementary and Secondary Education Act, in state accountability laws throughout the country, and in the rise of charter schools like KIPP (Knowledge Is Power Program), which provide educational services for 10 hours a day, six days a week. Second, there are increased numbers of poor and minority families with access to computers and opportunities for using computers outside of normal school hours in schools, libraries, and youth clubs.

Third, we have learned a lot about designing instructional IT programs and about how students learn. There has been a substantial amount of applied research on how students learn most effectively using the computer. Moreover, cognitive science and technology have made it possible to provide sophisticated and very transparent (to the user) cognitive tutoring and practice on basic skills both on CDs and through the web so it is available anytime, anywhere. Computer tutoring and practice have been used for years and have been shown to be effective. In recent years we have learned large amounts about how to incorporate cognitive tutoring and smart adaptive approaches based on built-in formative assessments. But straightforward, transparent programs for low-income students and English-language learners that incorporate up-to-date

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

knowledge about instructional design and cognitive science are not available (O’Neil, 2003; National Research Council, 2002).

Finally, new technology in voice recognition, voice generation, and language translation makes possible powerful software that provides effective tutoring and structured practice in primary and second language learning for students of all ages. The largest need for such programs is for recent immigrants from Spanish speaking and Asian language nations.

An aggressive program of design, development, and research is needed to develop effective tutoring and practice software for learning to read, language development, arithmetic, and English-language learning. The instructional software must go well beyond the existing rote, drill, and practice programs that are currently used. We have the technology and the knowledge to do this; all we need is the will.

One initial target population would be second through fifth graders in schools, extended after-school and summer school programs, libraries, clubs, and homes. Programs could be designed for stand-alone PCs and Game Boy-like play machines. Versions should be designed for students to work alone as well as for pairs and groups of students. The use of the programs and their purposes need to be very transparent.

The teaching programs should be provided free on the web for use by anyone at any time. Teacher professional development for ways of providing support for students could also be provided in linked web-based and free programs.

CHANGES IN TECHNOLOGY AND ITS APPLICATION TO LEARNING

Miriam Masullo

Technology trends are emerging faster and with increasing impact on everyday activities. On an extended time scale, the rate of growth of information technology power, performance, and corresponding improvement in price is today about 60 percent from 20 percent in the early 20th century. The fundamental technologies that have changed the world are extremely dense storage, enormous bandwidth, and faster and smaller transistors. And while we expect substantial technical and physical barriers to progress in these areas, history has shown that we always find new technologies to go beyond those that are reaching their natural limitations.

In 1965, just a few years after the first planar integrated circuit was invented in 1959, Moore predicted that the number of transistors per integrated circuit would double every 18 months. He forecast that this trend would continue through 1975, for a mere 10 years. We continue to break down barriers to Moore’s Law, and today a Pentium 4 processor

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

introduced in the year 2000 reaches more than 50 million transistors. In what has been called “disruptive technologies,” we see a threat in IT progress because we cannot incorporate technologies as fast as we break the laws that govern them.

In the next 10 to 20 years, some key thresholds will be crossed. For example, it will cheaper to store images digitally, and they will be played back with higher resolution than the human eye can see. Not only will we be interacting with billions of devices, but also billions of devices will be interacting with each other. Wireless connected pervasive devices will be the dominant means of information processing and access. Environment-aware, locality-aware, and scenario-aware products will guide us, creating a digitally enhanced physical world. Indeed, at some point in time it will be hard to differentiate between physical and digital realities—both will be real in our future, the IT-enhanced world of the future.

Successful companies upgrade constantly, but that is not something we can do with schools or with policies. Home learners and private and charter schools are making fundamental changes to their IT environments that public schools cannot make. Should we hold back all school learning? Should we provide equity access to emerging technologies? Neither will work because neither is possible.

Our classrooms will exist in the IT-enhanced world of the future, unless we force them to remain in the past. Socially, future generations of students will not remain in the past, and this will create social and intellectual problems for which we may not have any solutions. Simply put, the problem for education is: How will people learn to live with these technologies if we don’t find a way for people to learn with technologies?

Web technologies of the present developed over the last decade through an unprecedented burst of entrepreneurial energy and global cooperation. Competitive forces led to innovative technologies. The competitive tension and global cooperative standards that ensued created an IT climate irrelevant to education and learning. Web-standard technologies without reliance on market license fees are a by-product of business and the only benefit to education, a fragile benefit at that. The second decade of the web demonstrated that patents are a factor in the ongoing evolution of the web infrastructure. Schools, education, and learning stand to be left out of the ultimate phase of web-based IT; this is important because of the inseparable involvement of the web with telecommunications. It is unclear what will happen without effective and profoundly knowledgeable policies. We cannot afford not to know what laws to pass, but not a single member of Congress is an expert in IT. Therefore, our IT-enhanced future is in the minds of lobbyists and politics. Schools, education, and learning stand to lose out.

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

To guide the use of IT in K-12 education, we should agree on some core principles:

  • We cannot allow politics to chart the future of our schools.

  • We must explicitly define IT policy requirements for our schools.

  • We must not allow schools to be second to industry in the IT future.

How do we enforce these guiding principles in a nation that is guided by a notable free enterprise system that is the envy of the world? How do we enforce these guiding principles in the midst of a global economy in which our schools stand to challenge no one in the world? Who cares what happens to our schools?

E-learning is the application of e-business technology to education and learning. It is a currently a web-enabled enterprise application, including the entire spectrum from back-end systems to front-end linkages, such as learning delivery systems, learning management, and the underlying infrastructure, including network infrastructure, middleware, storage, servers, and client systems. E-learning requires a successful evolution of learning objects as part of the ongoing evolution of IT.

According to industry research, customers (e.g., schools) want to be able to buy fine-grained content from multiple publishers, so that teachers can deliver personalized classes. Publishers have historically adopted proprietary standards for delivering coarse-grained, rigidly structured content; and they will need to adapt to the market requirements of the e-learning industry, which are different from traditional education markets.

Publishers strongly desire standards in this industry, but a lack of conviction that current processes will yield useful results in the short term is holding back such standards development. The emergence of an open standards-based economy for the creation, distribution, composition, and delivery of learning objects supporting digital rights management would turn this industry into the future of IT-based education; and that might be the only hope for participation of schools in the IT-enhanced future described earlier.

TECHNOLOGY AND THE ADVANCEMENT OF EDUCATIONAL ASSESSMENT

James W. Pellegrino

A theme of this workshop, as well as this committee’s activities since its inception, is that extremely powerful information technologies will become as ubiquitous in educational settings as they are in other aspects of people’s daily lives. They are almost certain to provoke fundamental

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

changes in learning environments at all levels of the education system. Indeed, reports by groups such as the President’s Council of Advisers on Science and Technology and the Web-Based Education Commission, as well as examples of transformations of practice such as the Lemon Grove school system, indicate that many of these changes are already occurring. Conjecture abounds about the consequences for children, teachers, policy makers, and the public, even though many of the implications of technology are beyond people’s speculative capacity. A decade ago, for example, few could have predicted the sweeping effects of the Internet on education and other segments of society.

While it is always risky to predict the future, it appears clear that advances in technology will continue to impact the world of education in powerful and provocative ways. Many technology-driven advances in the design of learning environments will reshape the terrain of what is both possible and desirable in education. Advances in curriculum, instruction, assessment, and technology are likely to continue to move educational practice toward a more individualized and mastery-oriented approach to learning. This evolution will occur across the K-20 spectrum. To manage learning and instruction effectively, people will want and need to know considerably more about what has been mastered, at what level, when, and by whom. To do so we must have highly effective ways of assessing the processes and outcomes of teaching and learning.

It is frightening then to juxtapose today’s educational assessment practices with the realities of today’s, much less tomorrow’s, technology-enabled educational practices. Much of contemporary educational assessment continues to be predicated largely on the use of highly restricted, drop-in-from-the-sky external accountability tests, administered primarily in paper-and-pencil formats. As argued in the recent NRC report Knowing What Students Know (National Research Council, 2001b), the knowledge base exists to put in place a more rational and educationally useful approach to assessment. Furthermore, much of what needs to be done to design and implement such assessments rests on intelligent uses of technology. The NRC report devotes an entire chapter to the opportunities afforded by technology for improving teaching and learning by improving the design and use of educational assessments.

At a very basic level, information technologies help remove many of the constraints that have limited assessment practice in the past. Among the most intriguing applications of technology are those that extend the nature of the problems that can be presented and the knowledge and cognitive processes that can be assessed. By enriching task environments through the use of multimedia, interactivity, and control over the stimulus display, it is possible to assess a much wider array of cognitive competencies than has heretofore been feasible. New capabilities enabled by

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

technology include directly assessing problem-solving skills, making visible sequences of actions taken by learners in solving problems, and modeling and simulating complex reasoning processes. Technology also makes possible data collection on the conceptual organization of students’ knowledge, as well as representations of their participation in discussions and group activities.

Another significant contribution of technology to assessment practice is in the design of systems for implementing sophisticated classroom-based formative assessment activities. Technology-based systems have been developed to support individualized instruction by extracting key features of learners’ responses to sets of problems, analyzing patterns of correct and incorrect reasoning, and providing rapid and informative feedback to both student and teacher (see e.g., Kintsch et al., 2000; Minstrell, 2000; Vendlinski and Stevens, 2002).

While selected examples of innovative assessment designs and practices can be found in the research and development literature, it is also clear that much more research and development work needs to be done to understand the design principles on which they are built, to extend them to multiple areas of curriculum and instruction, and to explore the power and impact of such systems on student learning and teacher instructional practices. For further discussion of these issues see the Knowing What Students Know report (National Research Council, 2001b).

Assuming that such an agenda will attract adequate funding and be carefully pursued, it is important to consider the broader possibilities that might arise for educational practice and policy if and when technology-based assessment is systematically integrated into instruction across multiple curricular areas. Technology could then offer ways of creating, over time, complex streams of data about how students think and reason while engaged in important learning activities. Information for assessment purposes could be extracted from this stream and used to serve both classroom and external assessment needs. In such a world, programs of on-demand external assessment, such as state achievement tests, might not be necessary. Instead, it might be possible to extract the information needed for summative and program evaluation purposes from data about student performance continuously available both in and out of the school context.

A metaphor for such a radical shift in how one “does the business of educational assessment” exists in the world of retail outlets, ranging from small businesses to supermarkets to department stores. No longer do these businesses have to close down once or twice a year to take inventory of their stock. Rather, with the advent of automated checkouts and bar codes for all items, these enterprises have access to a continuous stream of information that can be used to monitor inventory and the flow of items.

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

Not only can business continue without interruption, but the information obtained is far richer, enabling businesses to monitor trends and aggregate the data into various kinds of summaries. Similarly, with new assessment technologies, schools would no longer have to interrupt the normal instructional process at various times during the year to administer external tests to students. Nor would they have to spend significant amounts of time preparing for specific external tests peripheral to the ongoing activities of teaching and learning.

Clearly, technological advances will allow for attainment of many of the goals that educators, researchers, policy makers, teachers, and parents have envisioned for assessment—namely that it serve as a viable source of information for educational improvement. When powerful technology-based instructional and assessment systems are implemented in classrooms, rich sources of information about student learning can be continuously available across wide segments of the curriculum and for individual learners over extended periods of time. This is exactly the kind of information we now lack, making it difficult to use assessment data to truly support learning.

The major issue is not whether this type of data collection and information analysis is feasible in the future. Rather, the issue is how the world of education anticipates and embraces this possibility and how it explores the resulting options for effectively using assessment information to meet the multiple purposes served by current assessments and, most important, to enhance student learning. Such an exploration of linkages between technology and assessment practices must also grapple with numerous critical issues, such as utility, practicality, cost, equity, and privacy.

It has been noted that the best way to predict the future is to invent it. Without doubt, multiple futures for educational assessment could be invented based on synergies that we know exist among information technologies and advances in the sciences of learning and measurement. While we are a considerable distance away from implementing the types of fully integrated systems envisioned above, there are steps that must be taken now that would put us on the path to such a future.

REFERENCES

Alexander, K.L., Entwisle, D.R., and Olson, L.S. (2001). Schools, achievement, and inequality: A seasonal perspective. Educational Evaluation and Policy Analysis, 23(2), 171-191.

Dieterle, E., and Bois, J. (1999). The virtual periodic table. Available: http://www.mpt.org/learningworks/teachers/ntti/8-12/periodictoc.shtml [February 22, 2003].

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

Dieterle, E., and Bois, J. (2000). Radon Raiders, Inc.: Radon’s connection to cancer WebQuest. Available: http://www.pgcps.pg.k12.md.us/~nwest/biohealth/Lungs.htm [February 22, 2003].

Dieterle, E., and Gavin, J. (1999). Hurricanes are low pressure and high stress! Available: http://www.mcps.k12.md.us/mtlt/institute99/lesson_plans.html [February 22, 2003].

Dodge, B. (2003). The WebQuest page at San Diego State University. Available: http://webquest.sdsu.edu/webquest.html [February 22, 2003].

Hart, B., and Risley, T.R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: Brookes.


International Society for Teachers in Education. (1999). National educational technology standards for students: Connecting curriculum and technology. Eugene, OR: Author.


Kintsch, E., Steinhart, D., Stahl, G., LSA Research Group, Matthews, C., and Lamb, R. (2000). Developing summarization skills through the use of LSA-based feedback. Interactive Learning Environments, 8(2), 87-109.


Lessig, L. (2001). The future of ideas: The fate of the commons in a connected world. New York: Random House.


Maryland Public Television NTTI Home Page. (2003). Available: http://www.mpt.org/learningworks/teachers/ntti/home.shtml [February 22, 2003].

Minstrell, J. (2000). Student thinking and related assessment: Creating a fact-based learning environment. In National Research Council, Grading the nation’s report card: Research from the evaluation of NAEP (pp. 44-73). Committee on the Evaluation of National and State Assessments of Educational Progress. N.S. Raju, J.W. Pellegrino, M.W. Bertenthal, K.J. Mitchell, and L.R. Jones (Eds.). Commission on Behavioral and Social Sciences and Education. Washington, DC: National Academy Press.


National Association of State Boards of Education. (2001). Any time, any place, any path, any pace: Taking the lead on e-learning policy. Washington, DC: Author.

National Research Council. (2001b). Knowing what students know: The science and design of educational assessment. Committee on the Foundations of Assessment. J. Pellegrino, N. Chudowsky, and R.Glaser (Eds.). Board on Testing and Assessment, Center for Education, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academy Press. Available: http://books.nap.edu/books/0309072727/html/index.html.

National Research Council. (2002). Preparing for the revolution: Information technology and the future of the research university. Panel on the Impact of Information Technology on the Future of the Research University, Policy and Global Affairs. Washington, DC: The National Academies Press. Available: http://books.nap.edu/books/030908640X/html/index.html.


O’Neil, H.R. Jr. (2003). Technology applications in education: A learning view. Mahwah, NJ: Erlbaum.


Sandholtz, J., Ringstaff, C., and Dwyer, D. (1997). Teaching with technology: Creating student-centered classrooms. New York: Teachers College Press.

Seely Brown, J., and Duguid, P. (2002). The social life of information. Cambridge, MA: Harvard Business School Press.

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×

UNESCO. (2002). Forum on the impact of open courseware for higher education in developing countries. Paris: Author. Available: http://www.wcet.info/resources/publications/unescofinalreport.pdf.


Vendlinksi, T., and Stevens, R. (2002). A Markov model analysis of problem-solving progress and transfer. Journal of Technology, Learning and Assessment. 1(3).

Vygotsky, L.S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.


Wiggins, G., and McTighe, J. (1998). Understanding by design. Alexandria: ASCD.

Wiske, M.S. (1998). (Ed.). Teaching for understanding: Linking research with practice. San Francisco: Jossey-Bass.

Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 79
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 80
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 81
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 82
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 83
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 84
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 85
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 86
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 87
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 88
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 89
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 90
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 91
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 92
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 93
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 94
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 95
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 96
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 97
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 98
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 99
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 100
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 101
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 102
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 103
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 104
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 105
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 106
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 107
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 108
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 109
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 110
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 111
Suggested Citation:"Appendix A: Reflections and Next Steps." National Research Council. 2003. Planning for Two Transformations in Education and Learning Technology: Report of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/10789.
×
Page 112
Next: Appendix B: Key Enablers for the Two Transformations »
Planning for Two Transformations in Education and Learning Technology: Report of a Workshop Get This Book
×
Buy Paperback | $48.00 Buy Ebook | $38.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

In response to concerns about the continued unrealized potential of IT in K-12 education, the National Research Council’s Division of Behavioral and Social Sciences and Education, Center for Education (CFE), Board on Behavioral, Cognitive, and Sensory Sciences (BBCSS), and Computer Science and Telecommunications Board (CSTB) undertook a collaborative project to help the IT, education research, and practitioner communities work together to find ways of improving the use of IT in K-12 education for the benefit of all students.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!