National Academies Press: OpenBook
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

Preventing Earthquake Disasters

THE GRAND CHALLENGE IN EARTHQUAKE ENGINEERING

A Research Agenda for the Network for Earthquake Engineering Simulation (NEES)

Committee to Develop a Long-Term Research Agenda for the Network for Earthquake Engineering Simulation (NEES)

Board on Infrastructure and the Constructed Environment

Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS
Washington, D.C.
www.nap.edu

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

THE NATIONAL ACADEMIES PRESS
500 Fifth Street, N.W. Washington, DC 20001

NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.

This study was supported by the National Science Foundation under Grant No. 0135915. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organization that provided support for the project.

Cover: Medieval illustration of biblical earthquake (woodcut, 1493, Germany). Style of buildings is typical of late-Gothic architecture in Germany. Reproduced courtesy of the National Information Service for Earthquake Engineering, University of California, Berkeley. The Kozak Collection.

International Standard Book Number 0-309-09064-4 (Book)

International Standard Book Number 0-309-52723-6 (PDF)

Additional copies of this report are available from the
National Academies Press,
500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu.

Copyright 2003 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Wm. A. Wulf is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. Wm. A. Wulf are chair and vice chair, respectively, of the National Research Council.

www.national-academies.org

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

This page intentionally left blank.

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

COMMITTEE TO DEVELOP A LONG-TERM RESEARCH AGENDA FOR THE NETWORK FOR EARTHQUAKE ENGINEERING SIMULATION (NEES)

WILLIAM F. MARCUSON III, Chair,

U.S. Army Corps of Engineers (retired), Vicksburg, Mississippi

GREGORY C. BEROZA,

Stanford University, Stanford, California

JACOBO BIELAK,

Carnegie Mellon University, Pittsburgh

REGINALD DESROCHES,

Georgia Institute of Technology, Atlanta

ELDON M. GATH,

Earth Consultants International, Tustin, California

ROBERT D. HANSON,

University of Michigan (retired), Ann Arbor

ELIZABETH A. HAUSLER,

University of California, Berkeley

ANNE S. KIREMIDJIAN,

Stanford University, Stanford, California

JAMES R. MARTIN II,

Virginia Polytechnic Institute, Blacksburg

DON E. MIDDLETON,

National Center for Atmospheric Research, Boulder, Colorado

DOUGLAS J. NYMAN,

D.J. Nyman and Associates, Houston

FREDRIC RAICHLEN,

California Institute of Technology, Pasadena

ANDREW TAYLOR,

KPFF Consulting Engineers, Seattle

RICHARD N. WRIGHT,

National Institute of Standards and Technology (retired), Montgomery Village, Maryland

Staff

RICHARD G. LITTLE, Project Director

KERI H. MOORE, Project Officer,

Board on Earth Sciences and Resources (until January 2003)

DANA CAINES, Financial Associate

PATRICIA WILLIAMS, Project Assistant

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

BOARD ON INFRASTRUCTURE AND THE CONSTRUCTED ENVIRONMENT

PAUL GILBERT, Chair,

Parsons, Brinckerhoff, Quade, and Douglas, Seattle

MASSOUD AMIN,

University of Minnesota, Minneapolis

RACHEL DAVIDSON,

Cornell University, Ithaca, New York

REGINALD DESROCHES,

Georgia Institute of Technology, Atlanta

DENNIS DUNNE,

California Department of General Services, Sacramento

PAUL FISETTE,

University of Massachusetts, Amherst

YACOV HAIMES,

University of Virginia, Charlottesville

HENRY HATCH,

U.S. Army Corps of Engineers (retired), Oakton, Virginia

AMY HELLING,

Georgia State University, Atlanta

SUE McNEIL,

University of Illinois, Chicago

DEREK PARKER,

Anshen+Allen, San Francisco

DOUGLAS SARNO,

The Perspectives Group, Inc., Alexandria, Virginia

WILL SECRE,

Masterbuilders, Inc., Cleveland

DAVID SKIVEN,

General Motors Corporation, Detroit

MICHAEL STEGMAN,

University of North Carolina, Chapel Hill

DEAN STEPHAN,

Charles Pankow Builders (retired), Laguna Beach, California

ZOFIA ZAGER,

County of Fairfax, Virginia

CRAIG ZIMRING,

Georgia Institute of Technology, Atlanta

Staff

RICHARD G. LITTLE, Director,

Board on Infrastructure and the Constructed Environment

LYNDA L. STANLEY, Executive Director,

Federal Facilities Council

MICHAEL COHN, Project Officer

DANA CAINES, Financial Associate

JASON DREISBACH, Research Associate

PATRICIA WILLIAMS, Project Assistant

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

Preface

BACKGROUND

The George E. Brown, Jr., Network for Earthquake Engineering Simulation (NEES) is a collaboratory for integrated experimentation, computation, theory, databases, and model-based simulation in earthquake engineering research and education intended to improve the seismic design and performance of the U.S. civil and mechanical infrastructure. Administered by the National Science Foundation (NSF), NEES is mandated to be operational by September 30, 2004.

The NEES collaboratory will include 16 geographically distributed, shared-use, next-generation earthquake engineering experimental research equipment installations, with teleobservation and teleoperation capabilities networked through the Internet. (Appendix A in this report provides information about the equipment installations.) In addition to providing access for telepresence at the NEES equipment sites, the network will use cutting-edge tools to link high-performance computational and data-storage facilities, including a curated repository for experimental and analytical earthquake engineering data. The network will also provide distributed physical and numerical simulation capabilities and resources for the visualization of experimental and computational data. Through NEES, the earthquake engineering community will use advanced experimental capabilities to test and validate analytical and computerized numerical models that are more complex and comprehensive than ever. When the results of the NEES effort are adopted into building codes and

Page viii Cite
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

incorporated into existing and new buildings and infrastructure, they will improve the seismic design and performance of our nation’s civil and mechanical systems. The NEES equipment includes new and upgraded shake tables, centrifuges, an enlarged tsunami wave basin, large-scale laboratory experimentation systems, and field experimentation and monitoring installations.

NEES is envisioned as a new paradigm for earthquake engineering research. To take advantage of NEES’s unique capabilities, NSF requested the assistance of the National Research Council (NRC) in developing a long-term research agenda. The purpose of the NRC effort was both to develop a process for identifying research needs and to consult stakeholders in framing the important questions to be addressed through NEES. The long-term research agenda will guide the next generation of earthquake engineering research and shape the conduct of a program of great national and international importance.

THE INVOLVEMENT OF THE NATIONAL RESEACH COUNCIL

In response to the request to review the NEES program and to offer recommendations for conducting a long-term research program, the NRC assembled an independent panel of experts, the Committee to Develop a Long-Term Research Agenda for the Network for Earthquake Engineering Simulation (NEES), under the auspices of the Board on Infrastructure and the Constructed Environment. The 14 members of the committee have expertise in seismology, earthquake engineering, theoretical structural dynamics, computer modeling and simulation, experimental methods for structures, soil dynamics, coastal engineering, behavior of lifeline infrastructure, group facilitation and consensus building, technology applications for distance learning and remote collaboration, research management, risk assessment, and loss estimation. Members are involved in the major U.S. organizations of the earthquake risk-reduction community (e.g., the Seismological Society of America, the Earthquake Engineering Research Institute, the American Society of Civil Engineers, and the Association of Engineering Geologists). They have had leading roles in the National Earthquake Hazards Reduction Program since its inception in 1978 and attend the major national and international conferences on earthquake risk reduction. (Biographical information about the committee members is provided in Appendix B.)

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

THE STATEMENT OF TASK

The committee was asked to perform the following tasks:

  1. Articulate a dynamic, stakeholder-inclusive process for determining research needs that is capable of utilizing the multi-modal research capability embodied by NEES and assess how NEES might fundamentally change the paradigm for earthquake engineering research.

  2. Identify the principal issues in earthquake engineering (e.g., structural [connections, soil/structure interaction, lifeline dynamics, tsunami effects, materials, reinforced concrete, steel, masonry, wood], appropriate investigative techniques), and possible synergies arising from an integrated research approach that incorporates analysis, computational modeling, simulation, and physical testing.

  3. Assess and comment on the possible roles of information and communication technologies for collaborative on-site and remote research, the sharing of data (including the need for standardization in data reporting), metadata, and simulation codes, and identify additional research resources that are not currently available.

  4. Produce a long-term (at least 10 years) research plan based on the short-, intermediate-, and long-term goals developed through the research needs process; identify general programs to achieve them, the estimated costs and benefits, and a business model for the involvement of industry, government (at all levels), and academia in the program.

Task 1 is addressed in Chapter 5 and by Recommendation 4. In addition, stakeholder involvement in the committee’s process for determining research needs is described in Chapter 5 and Appendix E. Tasks 2 and 3 are addressed in Chapters 2 and 4, respectively. In response to Task 4, a research plan and business model are presented in Chapter 5.

ORGANIZATION OF THIS REPORT

Chapter 1 provides a brief overview of the threat posed by earthquakes, the contributions of earthquake engineering research to reducing that risk, a brief description of NEES, and the role anticipated for NEES in future research. Chapter 2 discusses research issues in the seven topical areas (seismology, tsunamis, geotechnical engineering, buildings, lifelines, risk assessment, and public policy) that the committee believes are key to achieving the prevention of earthquake disasters. Chapter 3 discusses the role of NEES in grand challenge research, outlines several grand challenge research ideas, and presents several examples of how NEES equipment sites could be configured to carry out collaborative research propos-

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

als. Chapter 4 discusses the potential impact and possible roles of new information and communications technologies with respect to earthquake engineering research and how these new and evolving technologies will affect NEES. Chapter 4 also considers the issues associated with teleobservation and teleparticipation in research, as well as sharing, archiving, and mining data. Chapter 5 presents the committee’s research plan. Chapter 6 presents the committee’s overall conclusions and specific recommendations on the role of NSF and NEES in preventing earthquake disasters.

ACKNOWLEDGMENTS

This report represents the efforts of many individuals and organizations. On behalf of the Committee to Develop a Long-Term Research Agenda for the Network for Earthquake Engineering Simulation (NEES), I would like to acknowledge and thank all the engineers and scientists who made presentations to us both in person and via teleconferencing as well as the organizations that supported them. These presentations were informative, understandable, and concise.

I want to express my appreciation to members of the committee for candidly expressing their opinions and views. Composed of engineers and scientists interested in earthquake engineering research generally and in the Network for Earthquake Engineering Simulation specifically, the committee truly represents a cross section of the earthquake engineering profession. The members made substantial contributions to this report and gave unselfishly of their time to ensure its timely completion.

Lastly, I want to thank Richard G. Little and other members of the National Research Council staff for their hard work and conscientious efforts on behalf of the committee.

William. F. Marcuson III, Chair

Committee to Develop a Long-Term Research Agenda for the Network for Earthquake Engineering Simulation (NEES)

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

Acknowledgment of Reviewers

This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the National Research Council’s (NRC’s) Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report:

Jill H. Andrews, California Institute of Technology,

Eddie Bernard, NOAA-Pacific Marine Environmental Laboratory,

Susan Cutter, University of South Carolina,

William J. Hall, University of Illinois at Urbana-Champaign,

James O. Jirsa, University of Texas at Austin,

Chris D. Poland, Degenkolb Engineers,

Robert V. Whitman, Massachusetts Institute of Technology, and

Mary Lou Zoback, U.S. Geological Survey.

Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by Clarence

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

Allen, California Institute of Technology. Appointed by the National Research Council, he was responsible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution.

Page xiii Cite
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
   

 Earthquake Simulation,

 

29

   

 Path Effects,

 

30

   

 Wave Effects,

 

31

   

 Site Effects,

 

32

   

 Soil-Foundation-Structure Interaction,

 

32

   

 Ground Motion Prediction,

 

33

   

 Tsunamis,

 

34

   

 Tsunami Generation,

 

34

   

 Historical Impacts,

 

34

   

 Tsunamis in Waiting,

 

36

   

 Mitigation Measures,

 

37

   

 Knowledge Gaps,

 

39

   

 Geotechnical Engineering,

 

40

   

 Soil Failure and Earthquake Damage,

 

40

   

 Soil Improvement Measures,

 

43

   

 Amplification of Ground Motion,

 

45

   

 Buildings,

 

46

   

 Prediction of the Seismic Capacity and Performance of Existing and New Buildings,

 

46

   

 Evaluation of Nonstructural Systems,

 

48

   

 Performance of Soil-Foundation-Structure Interaction Systems,

 

49

   

 Determination of the Performance of Innovative Materials and Structures,

 

49

   

 Lifelines,

 

50

   

 Highways, Railroads, and Mass Transit Systems,

 

51

   

 Ports and Air Transportation Systems,

 

53

   

 Electric Power Transmission and Distribution Systems,

 

53

   

 Communications,

 

54

   

 Gas and Liquid-Fuel Systems,

 

54

   

 Water and Sewage Systems,

 

55

   

 Industrial Systems,

 

55

   

 Risk Assessment,

 

56

   

 Public Policy,

 

57

   

 References,

 

60

3

 

NEES AND GRAND CHALLENGE RESEARCH

 

63

   

 The Vision for NEES,

 

63

   

 Grand Challenge Research,

 

67

   

 Economical Methods for Retrofit of Existing Structures,

 

67

   

 Cost-Effective Solutions to Mitigate Seismically Induced Ground Failures Within Our Communities,

 

67

   

 Full Suite of Standards for Affordable Performance-Based Seismic Design,

 

68

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
   

 Convincing Loss Prediction Models to Guide Zoning and Land Use Decisions,

 

69

   

 Continuous Operation of Critical Infrastructure Following Earthquakes,

 

70

   

 Prediction and Mitigation Strategies for Coastal Areas Subject to Tsunamis,

 

70

   

 The NEES Contribution to Grand Challenge Research,

 

71

   

 Some Examples of Possible NEES Involvement in Meeting the Grand Challenge,

 

71

   

 Characterizing Soil-Foundation-Structure Interaction,

 

71

   

 Predicting Building Response to Damaging Earthquakes,

 

77

   

 Framing Public Policy Discussions,

 

80

   

 The Promise of NEES,

 

82

   

 References,

 

83

4

 

REVOLUTIONIZING EARTHQUAKE ENGINEERING RESEARCH THROUGH INFORMATION TECHNOLOGY

 

84

   

 Foundations for NEES,

 

88

   

 Collaborative Environments and Directions,

 

89

   

 Managing, Curating, and Sharing Data,

 

91

   

 Beyond Experimentation: Simulation, Data Analysis, Visualization, and Knowledge Systems,

 

95

   

 Building Community,

 

98

   

 Education and Outreach,

 

98

   

 References,

 

99

5

 

ACHIEVING THE GRAND CHALLENGE: A RESEARCH PLAN FOR NEES

 

102

   

 Basis for Planning,

 

102

   

 The Research Plan for NEES,

 

103

   

 Stakeholder Involvement in Developing the Research Plan,

 

105

   

 Goals for Research,

 

106

   

 Seismology,

 

106

   

 Tsunamis,

 

107

   

 Geotechnical Engineering,

 

109

   

 Buildings,

 

111

   

 Lifelines,

 

112

   

 Risk Assessment,

 

113

   

 Public Policy,

 

115

   

 Expected Benefits of the NEES Research Plan,

 

116

   

 Seismology,

 

116

   

 Tsunamis,

 

116

   

 Geotechnical Engineering,

 

116

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page xvii Cite
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

Figures, Tables, and Sidebars

FIGURES

1.1

 

An aerial photo of the Trans-Alaska Pipeline System (TAPS) line near the Denali fault, looking west,

 

23

1.2

 

Comparison of retrofitted and unimproved concrete bridge columns following the 1994 Northridge, California, earthquake,

 

24

2.1

 

Nested linkages of activities and disciplines that NEES will bring to the resolution of earthquake engineering problems,

 

27

2.2

 

A view of damage in Aonae, a small town on Okushiri, an island in the Sea of Japan, from the 1993 Hokkaido tsunami and related fire,

 

35

2.3

 

Foundation failures resulting from liquefaction, 1964 Niigata, Japan, earthquake,

 

42

2.4

 

Embankment failure due to liquefaction at the Lower Van Norman Dam, 1971 San Fernando, California, earthquake,

 

43

2.5

 

Collapse of the Cypress Avenue Freeway, 1989 Loma Prieta, California, earthquake,

 

46

2.6

 

Structural damage to masonry building resulting from the 1994 Northridge, California, earthquake,

 

47

2.7

 

Nonstructural building damage at the Olive View Medical Center experienced in the 1971 San Fernando, California, earthquake,

 

48

2.8

 

Failure of a span of the Nishinomiya Bridge during the 1995 Kobe, Japan, earthquake,

 

52

Page xviii Cite
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

2.9

 

Lateral highway offset of 2.5 meters as a result of the 2002 Denali, Alaska, earthquake,

 

52

2.10

 

A sociotechnical system view for decision making,

 

58

3.1

 

The NEES concept for remote collaboration in analysis, experimentation, simulation, and testing in earthquake engineering research,

 

64

4.1

 

An AccessGrid session on NEESgrid,

 

90

4.2

 

Visualization of the wave propagation in a layer over a half space due to an earthquake generated over an extended strike-slip fault,

 

97

5.1

 

Distribution of costs in the EERI research and action plan budget for fiscal years 2004 to 2023,

 

122

TABLES

ES.1

 

Summary of Topical Problems and Challenges for Earthquake Engineering Research,

 

4

1.1

 

Summary of NEES Equipment Awards,

 

19

A.1

 

NEES Equipment Awards,

 

138

SIDEBARS

1.1

 

Economic Cost of Selected Earthquakes,

 

13

1.2

 

A Note on Annualized Risk,

 

14

1.3

 

The Value of Earthquake Engineering Research,

 

16

1.4

 

The NEES Vision for Collaboration,

 

18

3.1

 

International Benefits of NEES Research,

 

66

3.2

 

NEES and the Graduate Researcher,

 

72

4.1

 

Collaboratories, the Grid, Cyberinfrastructure, and the Future of Science and Engineering,

 

86

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

Acronyms


ANSS

Advanced National Seismic System


COSMOS

Consortium of Organizations for Strong-Motion Observation Systems


EERI

Earthquake Engineering Research Institute


FEMA

Federal Emergency Management Agency


GIS

geographic information system


IRIS

Incorporated Research Institutions for Seismology

IT

information technology


MAST

multiaxial subassemblage testing

MEMS

microelectromechanical system(s)

MRE

major research equipment

MUST-SIM

multiaxial full-scale substructures testing and simulation


NEES

Network for Earthquake Engineering Simulation

NEHRP

National Earthquake Hazards Reduction Program

NOAA

National Oceanic and Atmospheric Administration

NRC

National Research Council

NSF

National Science Foundation

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×

PBSD

performance-based seismic design

PEER

Pacific Earthquake Engineering Research Center

PITAC

President’s Information Technology Advisory Committee


SCEC

Southern California Earthquake Center

SFSI

soil-foundation-structure interaction

SIG

single-investigator grantee

SUNY

State University of New York

Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R1
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R2
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R3
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R4
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R5
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R6
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R7
Page viii Cite
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R8
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R9
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R10
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R11
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R12
Page xiii Cite
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R13
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R14
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R15
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R16
Page xvii Cite
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R17
Page xviii Cite
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R18
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R19
Suggested Citation:"Front Matter." National Research Council. 2003. Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES). Washington, DC: The National Academies Press. doi: 10.17226/10799.
×
Page R20
Next: Executive Summary »
Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering: A Research Agenda for the Network for Earthquake Engineering Simulation (NEES) Get This Book
×
Buy Paperback | $57.00 Buy Ebook | $45.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The Network for Earthquake Engineering Simulation (NEES), administered by the National Science Foundation (NSF), is scheduled to become operational in 2004. These network sites will perform a range of experiments to test and validate complex computer models being developed to simulate the behavior of structures subjected to earthquakes. To assist in this effort, the NSF requested the National Research Council(NRC) to frame the major questions to be addressed by and to develop a long-term research agenda for NEES. Preventing Earthquake Disasters presents an overview of the grand challenge including six critical research problems making up that challenge. The report also provides an assessment of earthquake engineering research issues and the role of information technology in that research effort, and a research plan for NEES.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!