National Academies Press: OpenBook

Dietary Supplements: A Framework for Evaluating Safety (2005)

Chapter: Appendix G: Chromium Picolinate: Prototype Monograph Summary

« Previous: Appendix F: Melatonin: Prototype Monograph Summary
Suggested Citation:"Appendix G: Chromium Picolinate: Prototype Monograph Summary." Institute of Medicine and National Research Council. 2005. Dietary Supplements: A Framework for Evaluating Safety. Washington, DC: The National Academies Press. doi: 10.17226/10882.
×

Appendix G
Chromium Picolinate: Prototype Monograph Summary1

V. SUMMARY AND CONCLUSIONS

Chromium picolinate is chromium(III) trispicolinate, the chromium salt of three picolinic acid molecules. The chemical formula of chromium picolinate is C18H12CrN3O6, and the formula weight is 418. Chromium is present in the diet and in human tissues. The normal range of plasma chromium values is 0.1 to 2.1 μg/mL (Cerulli et al., 1998). The content of chromium in human liver has been reported at 5.4 to 470 η/g wet weight liver (~0.1–9 μM) (Versieck, 1985). The tolerable upper intake level for chromium is 25 μg/day (IOM, 2001). The estimated chromium content of

1  

This is a summary of a prototype monograph, prepared for the purpose of illustrating how a safety review of a dietary supplement ingredient might be prepared following the format described in this report. While it was prepared as a prototype using the processes described in the report, it was not conducted under the auspices of the Food and Drug Administration utilizing all the resources available to the agency. Thus some pertinent information not available to the Committee could be of importance in evaluating safety to determine if use of this dietary supplement ingredient would present an unreasonable risk of illness or injury. Also, the development and review of this prototype was conducted by individuals whose backgrounds are in general aspects of evaluating science and whose expertise is not necessarily focused specifically on this dietary ingredient, although significant additional assistance was provided by consultants with relevant expertise. Therefore, this prototype monograph, while extensive, does not represent an authoritative statement regarding the safety of this dietary supplement ingredient. The full prototype monograph and its data tables on chromium picolinate may be accessed at http://www.iom.edu/fnb.

Suggested Citation:"Appendix G: Chromium Picolinate: Prototype Monograph Summary." Institute of Medicine and National Research Council. 2005. Dietary Supplements: A Framework for Evaluating Safety. Washington, DC: The National Academies Press. doi: 10.17226/10882.
×

the usual diet consumed in the United States is 15 μg/1,000 kcal (Anderson and Kozlovsky, 1985).

Picolinic acid, as an endogenous metabolite of tryptophan metabolism, is present in human tissues only in trace amounts (Rebello et al., 1982). Some picolinic acid is expected to be present in the diet in small amounts; however, this subject has not been studied extensively.

Chromium picolinate is widely included in dietary supplements, especially in multivitamin, multimineral products. These supplements are usually available in capsule or tablet form.

Typical amounts of chromium picolinate used in multivitamin, multimineral dietary supplements range from 50 to 400 μg/day. Specialty dietary supplements may contain much more chromium picolinate and may include other forms of both chromium and picolinate. Chromium picolinate is also readily available in single-ingredient preparations or in combination with a few ingredients.

A. Summary

This monograph summary considers the safety of chromium picolinate as well as Cr(III) and picolinic acid to the degree to which they are expected to impact the safety of chromium picolinate.

The human data regarding chromium picolinate safety was derived from 17 randomized, double-blind, placebo-controlled human clinical trials of oral chromium picolinate; 2 similar trials (confounded by the choice of subjects with gestational diabetes or publication in German); 3 cross-over-design trials; 1 uncontrolled study in subjects with diabetes; 1 phase II study; 2 pilot studies; 1 questionnaire; 11 clinical case reports; 1 case series report; and 21 spontaneous adverse event reports to Special Nutrition/ Adverse Event Monitoring System where chromium picolinate was the lone supplement reported. Data were also examined from adverse event reports in which two or more supplements containing chromium picolinate were ingested; all of these reports involved serious adverse events.

Animal and in vitro general toxicity data, as well as data addressing the questions raised by human data, were collected using literature searches. The quality and quantity of the data from in vitro, animal, and human experiments and studies is good and also reasonable. The benchmark for this conclusion is the quality and quantity of data for nutritional supplements in general. Data from questionable sources outside the widely accepted medical literature were included in footnotes to the data tables in the full monograph to indicate awareness of this data; however, little value was placed on this type of data.

No consistent, frequent adverse events were evident from the human data, although most of the human studies were not informative with regard

Suggested Citation:"Appendix G: Chromium Picolinate: Prototype Monograph Summary." Institute of Medicine and National Research Council. 2005. Dietary Supplements: A Framework for Evaluating Safety. Washington, DC: The National Academies Press. doi: 10.17226/10882.
×

to adverse effects of chromium picolinate that might manifest after long-term consumption. Similarly, no clear or distinct patterns were observed from the diverse congeries of literature.

Possible concerns arise from in vitro data that suggest Cr(III) increases oxidative stress and carcinogenesis (including carcinogenesis that may not be mediated by oxidative stress). However, data about such intracellular effects of Cr(III) (e.g., DNA fragmentation) are difficult to integrate into the evaluation of the safety of chromium picolinate as a dietary supplement; it is not clear whether intracellular Cr(III) concentrations sufficient to cause nuclear mutations and/or oxidative stress would result from chromium picolinate ingestion at doses found in the dietary supplements. Controversy concerning the relevance of in vitro studies to human health commonly evolves from a general skepticism about the physiologic relevance of high intracellular concentrations attained during in vitro studies. In the case of chromium picolinate, the controversy comes from a different source; a particular question arises about picolinate as a carrier of chromium into the cell and the subsequent release of Cr(III). At this time, there is insufficient experimental data to evaluate the long-term safety of chromium picolinate regarding carcinogenesis.

The human studies evaluated would not have detected carcinogenesis; only two of the studies might have detected oxidative stress if it did occur. These two studies examined measures indicative of oxidative stress and did not detect them; an 8-week study using 400 μg/day of Cr(III) failed to demonstrate oxidative damage to DNA (Kato et al., 1998), and a 12-week study using 924 μg/day Cr(III) failed to demonstrate a shift from proteinbound iron to the free (reactive) metal ion (Campbell et al., 1997). Additionally, animal studies provide some mitigation of the concern raised by in vitro studies; a 24-week study in female Sprague-Dawley rats with chromium picolinate (up to 100 μg Cr(III)/g diet) and lifespan studies in several strains of rats with chromium chloride (at 5–25 ppm Cr(III) in the drinking water) or chromium oxide (up to 5 percent w/w in bread dough) failed to demonstrate toxicity or carcinogenicity.

B. Conclusions and Recommendations About the Safety of the Ingredient Based on the Strength of the Scientific Evidence

Considering the totality of the data reviewed, there is no consistent evidence of reasonable expectation of harm from chromium picolinate. There is also not sufficient evidence to raise concern regarding the safety or toxicity of chromium picolinate when used in the intended manner for a length of time consistent with the published clinical data, that is, up to 1.6 mg of chromium picolinate/day (200 μg of Cr(III)/day) for 3 to 6 months.

This conclusion is consistent with the findings of the Agency for Toxic

Suggested Citation:"Appendix G: Chromium Picolinate: Prototype Monograph Summary." Institute of Medicine and National Research Council. 2005. Dietary Supplements: A Framework for Evaluating Safety. Washington, DC: The National Academies Press. doi: 10.17226/10882.
×

Substances and Disease Registry in a recent toxicological profile for chromium (ATSDR, 2000).

C. Unresolved Issues and Uncertainties in the Available Data

There are some unresolved issues given the currently available data regarding the safety of chromium picolinate. However, at this time, the totality of the data does not indicate an urgent need for additional research studies or data gathering. An issue of concern is the lack of information on the long-term effects of chronic chromium picolinate at the recommended doses. Long-term effects might be addressed by determining if ingestion of chromium picolinate in the amount and duration typical of dietary supplements results in sufficient intracellular Cr(III) concentration to cause nuclear damage and/or oxidative stress.

The individual usage patterns of chromium picolinate are needed in a published format that is readily accepted by the scientific community. To know how many people take how much chromium and for how long is an important consideration in evaluating long-term safety.

Since there are studies in which adverse effects are not mentioned or in which the rate of subject withdrawal data is missing, it is advised that the authors of those studies be contacted and specifics be obtained.

D. Data Gaps and Future Research Recommended

There are no recommendations for future research at this time.

REFERENCES

Anderson RA, Kozlovsky AS. 1985. Chromium intake, absorption and excretion of subjects consuming self-selected diets. Am J Clin Nutr 41:1177–1183.

ATSDR (Agency for Toxic Substances and Disease Registry). 2000. Toxicologial Profile for Chromium. Atlanta: ATSDR.


Campbell WW, Beard JL, Joseph LJ, Davey SL, Evans WJ. 1997. Chromium picolinate supplementation and resistive training by older men: Effects on iron-status and hematologic indexes. Am J Clin Nutr 66:944–949.

Cerulli J, Grabe DW, Gauthier I, Malone M, McGoldrick MD. 1998. Chromium picolinate toxicity. Ann Pharmacother 32:428–431.


IOM (Institute of Medicine). 2001. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press.


Kato I, Vogelman JH, Dilman V, Karkoszka J, Frenkel K, Durr NP, Orentreich N, Toniolo P. 1998. Effect of supplementation with chromium picolinate on antibody titers to 5-hydroxymethyl uracil. Eur J Epidemiol 14:621–626.


Rebello T, Lonnerdal B, Hurley LS. 1982. Picolinic acid in milk, pancreatic juice, and intestine: Inadequate for role in zinc absorption. Am J Clin Nutr 35:1–5.


Versieck J. 1985. Trace elements in human body fluids and tissues. Crit Rev Clin Lab Sci 22:97–184.

Suggested Citation:"Appendix G: Chromium Picolinate: Prototype Monograph Summary." Institute of Medicine and National Research Council. 2005. Dietary Supplements: A Framework for Evaluating Safety. Washington, DC: The National Academies Press. doi: 10.17226/10882.
×
Page 372
Suggested Citation:"Appendix G: Chromium Picolinate: Prototype Monograph Summary." Institute of Medicine and National Research Council. 2005. Dietary Supplements: A Framework for Evaluating Safety. Washington, DC: The National Academies Press. doi: 10.17226/10882.
×
Page 373
Suggested Citation:"Appendix G: Chromium Picolinate: Prototype Monograph Summary." Institute of Medicine and National Research Council. 2005. Dietary Supplements: A Framework for Evaluating Safety. Washington, DC: The National Academies Press. doi: 10.17226/10882.
×
Page 374
Suggested Citation:"Appendix G: Chromium Picolinate: Prototype Monograph Summary." Institute of Medicine and National Research Council. 2005. Dietary Supplements: A Framework for Evaluating Safety. Washington, DC: The National Academies Press. doi: 10.17226/10882.
×
Page 375
Next: Appendix H: Saw Palmetto: Prototype Monograph Summary »
Dietary Supplements: A Framework for Evaluating Safety Get This Book
×
Buy Hardback | $81.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The growing consumer interest in health and fitness has expanded the market for a wide range of products, from yoga mats to the multiple dietary supplements now on the market. Supplements are popular, but are they safe? Many dietary supplements are probably safe when used as recommended. However, since 1994 when Congress decided that they should be regulated as if they were foods, they are assumed to be safe unless the Food and Drug Administration can demonstrate that they pose a significant risk to the consumer. But there are many types of products that qualify as dietary supplements, and the distinctions can become muddled and vague. Manufacturers are not legally required to provide specific information about safety before marketing their products. And the sales of supplements have been steadily increasing—all together, the various types now bring in almost $16 billion per year. Given these confounding factors, what kind of information can the Food and Drug Administration use to effectively regulate dietary supplements? This book provides a framework for evaluating dietary supplement safety and protecting the health of consumers.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!