National Academies Press: OpenBook
« Previous: Workshop Summary
Suggested Citation:"Abstract: Context for New Biomedical Materials." National Research Council. 2006. Proceedings from the Workshop on Biomedical Materials at the Edge: Challenges in the Convergence of Technologies. Washington, DC: The National Academies Press. doi: 10.17226/11639.
×

ABSTRACTS

Suggested Citation:"Abstract: Context for New Biomedical Materials." National Research Council. 2006. Proceedings from the Workshop on Biomedical Materials at the Edge: Challenges in the Convergence of Technologies. Washington, DC: The National Academies Press. doi: 10.17226/11639.
×

Context for New Biomedical Materials

CAN PUBLIC POLICY BE AS INNOVATIVE AS SCIENCE AND TECHNOLOGY?

Susan B. Foote

Division of Health Services Research and Policy

University of Minnesota


The process of making public policy can be characterized as follows: it classifies products, evolves over time, reflects political trends and opportunities, and works incrementally, not globally, to design appropriate regulations. The history of the U.S. Food and Drug Administration (FDA) is characterized by the use of distinctions—for example, drugs, devices, biologics, and procedures. The different centers within FDA have been set up based on these distinctions. For example, combination products are named to reflect the combination of FDA units under whose jurisdiction they fall. New medical technologies do not fall into neat categories, however. As a matter of fact, it is difficult to generalize about technologies. Not all device technologies face the same hurdles, not all hurdles are policy-driven, and the success or failure of a medical technology can be impacted by market factors, turf, costs, the existence of alternatives, or other intangibles. To succeed with a medical technology, it can help to understand the medical marketplace, including the role of intellectual property and public perception. Additional factors to consider are that although public policy should be as innovative as technology, policy values are often in flux, and politics is now an important factor in medical technology.

Suggested Citation:"Abstract: Context for New Biomedical Materials." National Research Council. 2006. Proceedings from the Workshop on Biomedical Materials at the Edge: Challenges in the Convergence of Technologies. Washington, DC: The National Academies Press. doi: 10.17226/11639.
×

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES’ MEDICAL INNOVATION TASK FORCE

Larry G. Kessler

Office of Science and Engineering Laboratories

Center for Devices and Radiological Health

U.S. Food and Drug Administration


Although both government spending and industry spending on biomedical research increased steadily over the past decade, the number of major drug and biological product submissions to the FDA has been decreasing. In May 2004, U.S. Department of Health and Human Services (HHS) Secretary Tommy G. Thompson formed an internal task force to identify steps that HHS could take to speed the development and availability of innovative medical technologies. The task force was asked to weigh new ideas and promote new ways to encourage innovation in health care and speed the development of effective new medical technologies, such as drug and biological products and medical devices. The task force was chaired by the FDA commissioner and included the heads of the CDC, the NIH, the National Cancer Institute, the AHCRQ, and the CMS. The task force issued a report in January 2005; it can be read online at http://www.hhs.gov/reference/medicalinnovations.shtml.

DIALOGUE ON INNOVATION AND RISK

Annabelle R. Hett

Swiss Re


The core business of the insurance industry is the transfer of risk. Thus the insurance business identifies, evaluates, underwrites, and diversifies risk in order to minimize the total capital cost of carrying it. A risk is insurable if the following conditions are met: the probability and severity of losses can be quantified to calculate the premium; the time of the insured event must be unpredictable and its occurrence independent of the will of the insured; the exposed parties are able to join together to form a risk community in which the risk is shared and diversified; insurers and reinsurers are able to charge a premium that is commensurate with the risk; and, in liability insurance, there is a causal relationship between the action or omission of the insured and the resulting damage/injury/financial loss. As one of the major risk takers, the reinsurance business must have a clear picture of the risk landscape in order

Suggested Citation:"Abstract: Context for New Biomedical Materials." National Research Council. 2006. Proceedings from the Workshop on Biomedical Materials at the Edge: Challenges in the Convergence of Technologies. Washington, DC: The National Academies Press. doi: 10.17226/11639.
×

to avoid cumulative and serial loss exposures that exceed the capacity of the private insurance industry.

Nanotechnology challenges the insurance industry because there is great uncertainty about the potential for nanotoxicity or nanopollution, the ubiquity of nanoproducts in the near future, and the long-term possibility of latent, unforeseen claims. The insurance industry is concerned because there are few scientific evaluations of the potential risks for human health and the environment, and the existing evaluations remain inconclusive. Regulatory guidelines that adequately address potential risks are lacking. It is therefore essential to start a risk dialogue among regulators, businesses, scientific institutions, the insurance industry, and the general public. Whether the public accepts the new technology and sees in it advantages for itself, or whether it rejects it, will largely depend on how well informed the public is and to what degree it is able to make objective judgments. The assessment of risks associated with nanotechnology should concern all involved stakeholders. The only way to prevent a polarized debate about nanotechnology, which could slow down future research and economic growth in this field, is to develop a common approach to lessen uncertainty and to answer some questions about potential nanotoxicity and nanopollution.

CONVERGENT CALLING: MG BIOTHERAPEUTICS, A RATIONAL JOINT VENTURE BETWEEN THE DEVICE AND BIOTECHNOLOGY WORLDS

Stephen N. Oesterle

Medtronic, Inc.


Patients with chronic degenerative diseases are responsible for more than 75 percent of U.S. health care expenditures. According to demographic projections, the number of people over age 65 will increase by 20 percent to 50 percent over the next two decades. The implications for health care spending are clear and daunting. Some of the most challenging medical problems associated with chronic degenerative diseases include heart failure, arteriosclerosis, spine disease, and degenerative neurological disorders. Thus far, medical device companies have focused on electromechanical solutions to many of these problems. For the most part, these solutions have been palliative; few are restorative and virtually none are curative.

Biological products, or biologics, are of interest as treatments because they offer the potential for restoration or cures. The term biologics can be broadly viewed as including proteins, cells, small interfering RNA, and

Suggested Citation:"Abstract: Context for New Biomedical Materials." National Research Council. 2006. Proceedings from the Workshop on Biomedical Materials at the Edge: Challenges in the Convergence of Technologies. Washington, DC: The National Academies Press. doi: 10.17226/11639.
×

genes. In order to realize their therapeutic potential, most biologics will require controlled local delivery. This type of delivery can be facilitated by catheter-based systems, implantable pumps, and navigational tools to target diseased organs. The device industry and biotechnology companies can collaborate to create products that incorporate both biologics and delivery systems; such products are known as combination products. Examples of currently approved combination products include the use of recombinant human bone morphogenetic protein (Medtronic’s INFUSE™) with spinal cages and continuous insulin delivery by a wearable pump (Medtronic’s Paradigm®).

Early feasibility studies suggest that cell therapy may enhance cardiac performance in patients suffering from ischemic cardiomyopathies. Seminal work by Genzyme Corporation led to an ongoing trial in Europe of the use of autologous skeletal myoblasts given by injection at the time of bypass surgery. Recently, Genzyme entered into a joint venture, MG Biotherapeutics, with Medtronic. It will explore the use of less invasive catheter-based systems for cell delivery to the heart. This joint venture was propelled by the belief that each of the two companies brings unique and synergistic research and development capabilities to the table. Initially, MG Biotherapeutics will direct its activities toward autologous cell therapy for heart failure. This organizational structure is expected to serve as a model for how biotechnology companies can pair with device companies to effectively deliver biotherapies to targeted areas. Such experience will be particularly important for brain therapies where device tools will be essential for effective delivery across the blood-brain barrier.

Suggested Citation:"Abstract: Context for New Biomedical Materials." National Research Council. 2006. Proceedings from the Workshop on Biomedical Materials at the Edge: Challenges in the Convergence of Technologies. Washington, DC: The National Academies Press. doi: 10.17226/11639.
×
Page 13
Suggested Citation:"Abstract: Context for New Biomedical Materials." National Research Council. 2006. Proceedings from the Workshop on Biomedical Materials at the Edge: Challenges in the Convergence of Technologies. Washington, DC: The National Academies Press. doi: 10.17226/11639.
×
Page 14
Suggested Citation:"Abstract: Context for New Biomedical Materials." National Research Council. 2006. Proceedings from the Workshop on Biomedical Materials at the Edge: Challenges in the Convergence of Technologies. Washington, DC: The National Academies Press. doi: 10.17226/11639.
×
Page 15
Suggested Citation:"Abstract: Context for New Biomedical Materials." National Research Council. 2006. Proceedings from the Workshop on Biomedical Materials at the Edge: Challenges in the Convergence of Technologies. Washington, DC: The National Academies Press. doi: 10.17226/11639.
×
Page 16
Suggested Citation:"Abstract: Context for New Biomedical Materials." National Research Council. 2006. Proceedings from the Workshop on Biomedical Materials at the Edge: Challenges in the Convergence of Technologies. Washington, DC: The National Academies Press. doi: 10.17226/11639.
×
Page 17
Next: Abstract: Stem Cells as Biomaterials of the Future »
Proceedings from the Workshop on Biomedical Materials at the Edge: Challenges in the Convergence of Technologies Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Recent advances in biomedical materials technology hold the promise of a revolution in clinical medicine. These advances are being made possible by a convergence of technologies arising from a wide array of scientific discoveries. This convergence, however, is presenting new challenges as well as new opportunities. To explore these findings and to discuss possible ways to overcome the challenges, a workshop on this topic was held under the auspices of the NRC’s Roundtable on Biomedical Engineering Materials and Applications. This report and accompanying CD provides a summary and the proceedings of the workshop. They present discussions of the context for new biomedical materials and of the three emerging technologies that were covered at the workshop: stem cells as biomaterials of the future, biomolecular materials composites, and superamolecular/nanoscale engineering and design.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!