National Academies Press: OpenBook

Phthalates and Cumulative Risk Assessment: The Tasks Ahead (2008)

Chapter: 6 Data Gaps and Research Needs

« Previous: 5 Cumulative Risk Assessment of Phthalates and Related Chemicals
Suggested Citation:"6 Data Gaps and Research Needs." National Research Council. 2008. Phthalates and Cumulative Risk Assessment: The Tasks Ahead. Washington, DC: The National Academies Press. doi: 10.17226/12528.
×
Page 138
Suggested Citation:"6 Data Gaps and Research Needs." National Research Council. 2008. Phthalates and Cumulative Risk Assessment: The Tasks Ahead. Washington, DC: The National Academies Press. doi: 10.17226/12528.
×
Page 139
Suggested Citation:"6 Data Gaps and Research Needs." National Research Council. 2008. Phthalates and Cumulative Risk Assessment: The Tasks Ahead. Washington, DC: The National Academies Press. doi: 10.17226/12528.
×
Page 140

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

6 Data Gaps and Research Needs On review of the scientific literature on phthalates, the committee found that sufficient data are available to conduct a cumulative risk assessment of these chemicals. Accordingly, progress need not wait for data gaps identified here to be addressed. Instead, the research recommended will allow greater re- finement of the cumulative risk assessment for all health outcomes associated with phthalates and reduce uncertainty associated with such an assessment. EXPOSURE ASSESSMENT As discussed in Chapter 2, phthalates are used in a wide variety of con- sumer products and building materials, and widespread exposure of the general population has been documented through the National Health and Nutrition Ex- amination Surveys (NHANES) conducted by the Centers for Disease Control and Prevention. Research initiatives outlined below would answer important questions concerning human exposure and greatly refine any cumulative risk assessment of phthalates. ● Identify across the human life span the important sources of phthalate exposure and the migration pathways that connect the sources to members of the general population, including highly exposed or susceptible groups. Elucidate across the life span the proportional contributions of exposure media (such as toys, dust, air, food, and soil) and exposure routes (ingestion, inhalation, and dermal) and define which media and routes are most important. Define the de- gree to which phthalates are absorbed by the three exposure routes. ● Identify the full spectrum of phthalate metabolites, particularly the oxi- dized metabolites of DEHP and DINP; determine whether they differ by expo- sure route; and determine the most appropriate metabolites to use as biomarkers of human exposure and the most appropriate biologic matrices in which to measure them. ● Improve the understanding of metabolism and of how metabolism might change over a lifetime. For example, is metabolism in the fetus, infant, or child different from metabolism in adults? 138

Data Gaps and Research Needs 139 ● Determine the basis of differences observed in children’s vs adults’ urinary concentrations. For example, are the observed differences related to dif- ferences in exposure or to differences in metabolism? ● Determine prenatal exposure by using phthalate-exposure biomarkers (that is, urine and amniotic fluid) at multiple relevant times during pregnancy. It is especially important to determine whether the various metabolite concentra- tions vary with time; if so, it might indicate differences in metabolism according to gestational age. ● Determine the relationship between maternal urinary phthalate metabo- lite concentrations and those in the fetal compartment (for example, concentra- tions in amniotic fluid), with an emphasis on understanding the pharmacokinet- ics of phthalates in the fetal compartment. ● Characterize human exposure to other antiandrogens and other factors that contribute to disturbed androgen action. Determine the possibility of coex- posure, in which case the chemicals would exhibit joint action. ● Use existing large databases, such as NHANES, to assess exposure to multiple phthalates and other chemicals that may contribute to common biologic outcomes. Incorporate state-of-the-art exposure-assessment strategies for multi- ple phthalates and other chemicals in large or planned epidemiologic studies, such as the National Children’s Study. ● Develop pharmacokinetic models that can allow better predictions of human fetal exposure on the basis of animal studies. TOXICITY ASSESSMENT As discussed in Chapter 3, although few human data are available, rats ex- posed to a variety of phthalates have exhibited reproductive developmental ef- fects that mirror the hypothesized testicular dysgenesis syndrome in humans. The research initiatives outlined below would add substantially to the scientific database and enable better prediction of effects of phthalate exposure. ● Conduct studies to determine whether there are multigenerational ef- fects of specific phthalates, phthalate-antiandrogen mixtures, and antiandrogen mixtures that have not yet been tested. ● Elucidate the mechanisms of phthalate action in fetal vs adult tissue, mechanistic differences between species, and any potential for differences in effects related to exposure route. ● Determine whether in utero exposure combined with lifetime exposure affects the incidence and severity of cancer outcomes. As discussed in Chapter 3, hepatic, testicular, and pancreatic cancers have been associated with activa- tion of the peroxisome-proliferator-activated receptor-α (PPARα), but there is evidence that these cancer types may be mediated by mechanisms independent of PPARα. Because fetuses and neonates may exhibit sensitivity to PPARα ligands different from that exhibited by adults and the majority of studies have

140 Phthalates and Cumulative Risk Assessment: The Tasks Ahead focused solely on adult animal models, it is important to determine whether in utero exposure affects cancer outcomes and, if so, by what mechanisms. ● Conduct epidemiologic studies to evaluate potential health outcomes of phthalate-antiandrogen exposures. Attempt to characterize and evaluate effects in susceptible or highly exposed groups. Confirm and extend current informa- tion on the relationship between anogenital distance and infant testosterone con- centration. ● Conduct toxicity studies of phthalate metabolites to determine potential adverse effects associated with exposure to them. CUMULATIVE RISK ASSESSMENT As discussed in Chapter 5, available data support the appropriateness of cumulative risk assessment of phthalates and other antiandrogen compounds. Research initiatives that would refine such an assessment are outlined below. ● Explore combination effects of phthalates, other antiandrogens, and other endocrine-disrupting agents. ● Investigate deviations from additivity observed when hypospadias is used as the selected outcome. ● Refine estimates of composite scores for disruption of androgen action. ● Develop approaches to the epidemiologic assessment of the cumulative effects of phthalates and other antiandrogens. DATA RESOURCES FOR CUMULATIVE RISK ASSESSMENT The committee emphasizes that the quality of results of any risk assess- ment is based on the data available. The U.S. Environmental Protection Agency (EPA) Integrated Risk Information System (IRIS) is the source of much of the toxicity information used in risk assessment today. Many of the chemical pro- files in IRIS need to be updated; the information is no longer relevant or accu- rate. The phthalate profiles available in IRIS illustrate that point. The committee recognizes that the task of profile review and revision is enormous; however, linking profiles to current literature would be helpful. For example, IRIS profiles of chemicals that also are the subject of interaction profiles produced by the Agency for Toxic Substances and Disease Registry would ideally be linked to the interaction profiles. Furthermore, as EPA moves toward cumulative risk assessment, some consideration should be given to restructuring IRIS so that its process for identifying chemicals for review includes and sets priorities among chemical mixtures, as appropriate, and facilitates cumulative risk assessment conducted by using common adverse outcomes. For example, listing the no- observed-adverse-effect levels or benchmark doses for a variety of effects would facilitate that approach.

Next: Appendix A: Statement of Task »
Phthalates and Cumulative Risk Assessment: The Tasks Ahead Get This Book
×
Buy Paperback | $63.00 Buy Ebook | $49.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

People are exposed to a variety of chemicals throughout their daily lives. To protect public health, regulators use risk assessments to examine the effects of chemical exposures. This book provides guidance for assessing the risk of phthalates, chemicals found in many consumer products that have been shown to affect the development of the male reproductive system of laboratory animals.

Because people are exposed to multiple phthalates and other chemicals that affect male reproductive development, a cumulative risk assessment should be conducted that evaluates the combined effects of exposure to all these chemicals. The book suggests an approach for cumulative risk assessment that can serve as a model for evaluating the health risks of other types of chemicals.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!