National Academies Press: OpenBook

Fostering Visions for the Future: A Review of the NASA Institute of Advanced Concepts (2009)

Chapter: H Definition of Technology Readiness Levels

« Previous: G The DARPA Model for Advanced Concepts Development
Suggested Citation:"H Definition of Technology Readiness Levels." National Research Council. 2009. Fostering Visions for the Future: A Review of the NASA Institute of Advanced Concepts. Washington, DC: The National Academies Press. doi: 10.17226/12702.
×
Page 76
Suggested Citation:"H Definition of Technology Readiness Levels." National Research Council. 2009. Fostering Visions for the Future: A Review of the NASA Institute of Advanced Concepts. Washington, DC: The National Academies Press. doi: 10.17226/12702.
×
Page 77
Suggested Citation:"H Definition of Technology Readiness Levels." National Research Council. 2009. Fostering Visions for the Future: A Review of the NASA Institute of Advanced Concepts. Washington, DC: The National Academies Press. doi: 10.17226/12702.
×
Page 78

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

H Definition of Technology Readiness Levels Definitions of technology readiness levels (TRLs) from NASA’s Definition of Technology Readiness Levels are given below.1 TRL 1 Basic principles observed and reported: Transition from scientific research to applied research. Essential characteristics and behaviors of systems and architectures. Descriptive tools are mathematical formulations or algorithms. TRL 2 Technology concept and/or application formulated: Applied research. Theory and scientific principles are focused on specific application area to define the concept. Characteristics of the application are described. Analytical tools are developed for simulation or analysis of the application. TRL 3 Analytical and experimental critical function and/or characteristic proof-of-concept: Proof- of-concept validation. Active research and development (R&D) is initiated with analytical and laboratory studies. Demonstration of technical feasibility using breadboard or brassboard implementations that are exercised with representative data. TRL 4 Component/subsystem validation in laboratory environment: Standalone prototyping implementation and test. Integration of technology elements. Experiments with full-scale problems or data sets. TRL 5 System/subsystem/component validation in relevant environment: Thorough testing of prototyping in representative environment. Basic technology elements integrated with reasonably realistic supporting elements. Prototyping implementations conform to target environment and interfaces. TRL 6 System/subsystem model or prototyping demonstration in a relevant end-to-end environment (ground or space): Prototyping implementations on full-scale realistic problems. Partially integrated with existing systems. Limited documentation available. Engineering feasibility fully demonstrated in actual system application. TRL 7 System prototyping demonstration in an operational environment (ground or space): System prototyping demonstration in operational environment. System is at or near scale of the operational system, with most functions available for demonstration and test. Well integrated with collateral and ancillary systems. Limited documentation available. TRL 8 Actual system completed and “mission qualified” through test and demonstration in an operational environment (ground or space): End of system development. Fully integrated with operational hardware and software systems. Most user documentation, training documentation, and 1 National Aeronautics and Space Administration, Definition of Technology Readiness Levels, Washington, D.C., 2005. Available at http://esto.nasa.gov/files/TRL_definitions.pdf. 76

maintenance documentation completed. All functionality tested in simulated and operational scenarios. Verification and Validation (V&V) completed. TRL 9 Actual system “mission proven” through successful mission operations (ground or space): Fully integrated with operational hardware/software systems. Actual system has been thoroughly demonstrated and tested in its operational environment. All documentation completed. Successful operational experience. Sustaining engineering support in place. 77

Fostering Visions for the Future: A Review of the NASA Institute of Advanced Concepts Get This Book
×
Buy Paperback | $29.00 Buy Ebook | $23.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The NASA Institute for Advanced Concepts (NIAC) was formed in 1998 to provide an independent source of advanced aeronautical and space concepts that could dramatically impact how NASA develops and conducts its missions. Until the program's termination in August 2007, NIAC provided an independent open forum, a high-level point of entry to NASA for an external community of innovators, and an external capability for analysis and definition of advanced aeronautics and space concepts to complement the advanced concept activities conducted within NASA. Throughout its 9-year existence, NIAC inspired an atmosphere for innovation that stretched the imagination and encouraged creativity.

As requested by Congress, this volume reviews the effectiveness of NIAC and makes recommendations concerning the importance of such a program to NASA and to the nation as a whole, including the proper role of NASA and the federal government in fostering scientific innovation and creativity and in developing advanced concepts for future systems. Key findings and recommendations include that in order to achieve its mission, NASA must have, and is currently lacking, a mechanism to investigate visionary, far-reaching advanced concepts. Therefore, a NIAC-like entity should be reestablished to fill this gap.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!