National Academies Press: OpenBook

Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics (2011)

Chapter:Summary of Criteria to Identify Successful K-12 STEM Schools

« Previous: Three Types of Criteria to Identify Successful STEM Schools
Suggested Citation:"Summary of Criteria to Identify Successful K-12 STEM Schools." National Research Council. 2011. Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics. Washington, DC: The National Academies Press. doi: 10.17226/13158.
×

SUMMARY OF CRITERIA TO IDENTIFY SUCCESSFUL K-12 STEM SCHOOLS

image

In this report we identify three types of criteria that can be used to identify successful STEM schools: criteria related to outcomes, criteria related to school types, and criteria related to instruction and school-level practices.

The strongest research comes from criteria related to practices, where the evidence allowed the committee to characterize effective STEM instruction, identify key elements that contribute to effective instruction, and identify school characteristics that support learning. Effective STEM instruction capitalizes on students’ early interest and experiences, identifies and builds on what they know, engages them in STEM practices, and provides them with experiences to sustain their interest. Key elements that contribute to effective STEM instruction include a coherent set of standards and curriculum, teachers with high capacity, a supportive system of assessment and accountability, adequate instructional time, and equal access to quality STEM learning opportunities. The research also suggests that effective elementary schools share common elements, namely, strong leadership, professional capacity among teachers, strong ties to parents and the community, a student-centered learning climate, and instructional guidance for teachers. These elements have been shown to support learning gains even in schools in areas of extreme poverty and hardship.

With respect to criteria related to schools, we identified three types of STEM-focused schools (selective, inclusive, and CTE) that have different goals, strategies, and student populations—all with the potential to improve STEM learning. Because of the challenges with conducting causal research on these schools, little research is available that demonstrates the effectiveness of STEM-focused schools in comparison with other schools or that contrasts the relative effectiveness of their different approaches on a variety of student outcomes. As a result, the committee is not able to identify a distinct set of criteria related to STEM-focused schools themselves. However, these schools do offer a range of compelling models for the ways that the various effective STEM practices can be combined into a working whole. Hence, these schools provide an important resource for extending the implementation of effective STEM practices—to individual students and throughout entire districts and states.

Suggested Citation:"Summary of Criteria to Identify Successful K-12 STEM Schools." National Research Council. 2011. Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics. Washington, DC: The National Academies Press. doi: 10.17226/13158.
×

image

Finally, a wide variety of outcomes can be used as criteria to identify successful schools, though it should be noted that outcomes alone do not provide insight into the practices that contribute to success. Powerful new research is being conducted using longitudinal data on student achievement; among other things, such research will provide a systematic and inclusive way to define schools that have positive student outcomes. Such research should be broadened to include outcomes other than student test scores, graduation rates, and data on the effective STEM practices we have identified. In the years ahead, this approach could provide a much more comprehensive analysis of the relative effectiveness of different schools in promoting STEM and the reasons for the differences across schools.

In many respects, effective practices for STEM are closely related to effective practices for education in general. This is not surprising. Still, it is important to pay attention to these practices in STEM because the research suggests that some strategies are unique to STEM learning and some challenges particularly affect success in STEM. STEM education is vital to our nation’s continued growth, leadership, and development, but this report has documented some important shortcomings that could hinder our progress. Drawing on these findings, we propose a series of next steps at the local, state, and national levels to strengthen K-12 STEM education.

Suggested Citation:"Summary of Criteria to Identify Successful K-12 STEM Schools." National Research Council. 2011. Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics. Washington, DC: The National Academies Press. doi: 10.17226/13158.
×
Page25
Suggested Citation:"Summary of Criteria to Identify Successful K-12 STEM Schools." National Research Council. 2011. Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics. Washington, DC: The National Academies Press. doi: 10.17226/13158.
×
Page26
Next: What Schools and Districts Can Do to Support Effective K-12 STEM Education »
Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics Get This Book
×
Buy Paperback | $17.95 Buy Ebook | $14.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or simply related to the population of students in the school.

Successful K-12 STEM Education defines a framework for understanding "success" in K-12 STEM education. The book focuses its analysis on the science and mathematics parts of STEM and outlines criteria for identifying effective STEM schools and programs. Because a school's success should be defined by and measured relative to its goals, the book identifies three important goals that share certain elements, including learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners. A successful STEM program would increase the number of students who ultimately pursue advanced degrees and careers in STEM fields, enhance the STEM-capable workforce, and boost STEM literacy for all students. It is also critical to broaden the participation of women and minorities in STEM fields.

Successful K-12 STEM Education examines the vast landscape of K-12 STEM education by considering different school models, highlighting research on effective STEM education practices, and identifying some conditions that promote and limit school- and student-level success in STEM. The book also looks at where further work is needed to develop appropriate data sources. The book will serve as a guide to policy makers; decision makers at the school and district levels; local, state, and federal government agencies; curriculum developers; educators; and parent and education advocacy groups.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!