National Academies Press: OpenBook
« Previous: References
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

Index

cth

A

Abbott, Donald P., 54

Achaete-scute complex, 65-66

Acid sensitivity channels, 34

Acoela, 49-50, 52-53

Acoustic signaling

call duration, frequency, and amplitude, 175, 179, 180, 181, 188, 189

central pattern generators, 175, 178-185

comparative studies, 175, 177-178, 182

coupling of pectoral–gestural circuitry, 150, 175, 176, 177, 188, 190, 191

coupling of sound production and respiration, 181

evolutionary origins, 150, 175, 176, 177, 181-187

fishes, 150, 175-191

hotspots for novel pattern generators, 178

musculature and central mechanisms, 182-185

pectoral appendage circuitry, 175, 185-188, 190

rhombomere-8 spinal compartment, 175, 178, 182, 183, 184, 185, 186-187, 188-190

shared origins, 182-185, 187-190

social context-dependent, 181-182

sonic–vocal pattern generator, 175, 176, 177, 178-185, 187-188, 190, 191

tetrapods, 150, 175, 176, 177, 181-182, 184, 186, 187, 188, 190, 191

taxonomic analysis, 182

vocal circuitry, 187-188, 189

Acropora millepora, 5 6, 7, 8, 10, 12, 16

Actinopterygian fishes, 36, 176, 182, 184, 185, 186

Action potentials, 1, 22, 31, 168, 169, 170, 242

Adherens junction, 11

Agnathans, 27, 44, 176, 177

Alaama, Roula A., 57-58, 75-90

Ambulacraria, 50

Ammon’s horn, 218

Amniotes, 21, 28, 29

Amphimedon queenslandica, 4, 5, 6, 8, 11, 14, 15, 16

Amygdala, 193, 197, 212

Anemones, 24, 26

Annelids, 2, 39, 43, 44, 48, 49, 51, 54, 226

Anomalocaris, 40, 43, 44

Apical-basal polarity genes, 11

Aplysia, 163, 171, 172

Apteronotidae, 31

Arboreomorphs, 41

Arcila, Mary Luz, 1, 3-19

Arkarua, 39, 40

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

Armina, 156, 158, 171

Arms races, 36, 42, 227

Aromatase (ARO), 193, 195, 197, 203, 207, 209

Arthropods (see also Bilaterians)

appendage morphology, 63-65

body plans, 62-63

brains, 2, 49, 51, 54

Cambrian explosion, 42, 43

homologous structures, 66, 72-74

Hox genes, 57, 62, 63, 65, 68-70, 71, 74

motor circuits, 69, 70-72

nervous system specialization, 2, 54, 57, 61-74

neurogenesis, 61, 65-67, 70-72

olfaction, 213, 216, 225-226

outgroup analysis, 48

segmental neuromeres, 61, 67-70

segmentation network, 62, 67

stem, 39, 44

Arthur M. Sackler Colloquia, iv, viii, xiii, xv

Arthur M. Sackler Gallery of Asian Art, viii

Ascidians, 27

Associative learning, 227

Auditory acuity, 244

Auditory cortex

classic columns, 119

cross-species modifications, 95, 119

extrinsic factors affecting phenotypic variability, 107, 110

homologies, 93, 94, 95

Australopithecus, 147

Avalon assemblage, 41

Avise, John C., xiii-xiv

Axons

arborizations, 71, 138

conduction velocity, 27

cortical connectivity, 138-139

diameter, 139

evolution of centralized nervous systems, 51

genesis, 68

Hox gene regulation, 71, 72

lateral geniculate, 121

length, 139, 265

of motor neurons, 31, 70, 71, 72, 169, 183, 185-186, 187

myelinated/myelination, 2, 21, 27, 101, 233, 276, 277

Nav clusters at initial segments, 2, 21, 27, 31

olfactory, 213

targeting, 71

termination patterns, 121

tracing, xvi, 67, 68, 256

Ayala, Francisco J., xiii-xiv

Aysheaia, 40, 44

B

Bacteria

toxins, 32

voltage-gated ion channels, 22, 23-24

Barn owls, 244

Barrett, H. Clark, 252, 313-333

Bass, Andrew H., 149-150, 175-191

Bassett, Danielle S., 1, 3-19

Bats

behavior, 111

cognitive mapping, 222

cortical organization, 106, 111, 222, 235

echolocating, 109, 221, 222, 223, 263

FOXP2 sequences, 263

limb morphology, 97-98, 106, 110-111

olfaction, 220, 221, 222-223, 226

touch domes, 98, 109, 110-111

wing, 97-98, 110

Behavior (see also Acoustic signaling; Foraging behavior; Nudipleura swimming behavior; Sparrow seasonal sociality)

cortical phenotype and, 103, 105

neural basis for, 154

neuroendocrinology, 103

social affiliation, 206

tongue licking, 189

β-catenin, 76

Bichirs (Polypteriformes), 36, 184

Bilaterians

anterior posterior patterning, 47, 48, 49, 53, 54

brain evolution, 47-48, 49, 50, 51, 54, 226, 227

Cambrian explosion, 42, 43

central neural characters, 49, 50, 51-52

clades, 49-50

dorsoventral patterning, 47, 48, 53, 72

Ediacaran, 37, 39-40, 41, 47, 53, 226-227

genetic basis of body plan, 47-48, 53, 62

Hox genes, 62

last common ancestor, 2, 24, 37, 38, 50, 51, 53-54

locomotory, 41

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

origin and divergence, 37, 47, 53, 236

stem, 53

synaptic gene networks, 5, 6, 7, 9, 14, 15, 53

tripartite brain hypothesis, 37, 54

Vernanimalcula fossils, 39

voltage-gated ion channels, 22, 24, 25, 26, 35

Biodiversity, defined, xiii

Birds (see also Songbirds; Sparrow seasonal sociality)

FOXP2 orthologs, 263

hindbrain segmentation, 178

olfaction, 219, 223-224

telencephalon, 76

vocal circuitry, 178, 184, 190

vocal–respiratory coupling, 181

Blind mole rats, 58, 93, 107

Bonobos, 254, 255, 328

Bornella anguilla, 158, 162

Bowerbirds, 92

Bowfin, 184

Brachiopods, 42, 43, 44

Brain (see also Human brain; individual structures)

“basic uniformity” concept, 257

bilaterian evolution, 47-48, 49, 50, 51, 54, 226, 227

defined, 51

early vertebrate, 44

descent with modification, 318-319

developmental effects on specialization, 316-321

energy cost, 59, 127, 142, 144, 146, 148, 270

independent evolution, 51, 52, 99, 130

mammalian radiation, 131

methodological advances, xvi, 130, 256, 257

ontogenic tuning and module spawning, 317-318

reaction norms, 316-317, 318-319

small-world networks, 138-139

tripartite brain hypothesis, 37, 47, 48, 49, 53, 54

Brain size (see also individual structures and areas)

body size and, 144-146, 147, 257

cell cycle exit delay and, 75, 76, 79

and cognitive ability, 59, 128-129, 138, 140, 141, 326-328

coordination among areas, 58

cortical expansion, gyrification, and connectivity, 138-140

glia/neuron ratio, 141-144

human, xv, 127, 134-135

independent evolution of large brains, 130, 131

and language, xv

mammalian order and, 128, 129, 130, 132, 138

neuronal scaling rules, 130-132 134-135, 140, 141, 142, 145

nonneuronal cells, 132-136, 140, 142

primates, 128, 129, 132, 134-135, 136, 137, 138, 139, 140, 141

relative size of structures, 136-138, 150, 223

shared scaling rules, 132-138

Broca’s area, 190, 251, 260, 261

Bruce, Heather S., 57, 61-74

Burgess Shale biota. 40, 42, 43, 44

Burgessochaeta, 40, 43

C

Caddis flies (Limnephilus flavastellus), 34

Caenorhabditis elegans, 5, 6, 8, 16, 213

Cajal–Retzius cells, 86

Calcium (Ca2+) ion channels, 1, 21, 22, 23, 24, 28, 32

California newts (Taricha torosa), 33

Cambrian explosion, 42-44

Canadaspis, 40, 43

Cantlon, Jessica F., 252, 293-311

Canton, Richard, xvi

Capuchin monkeys, 129

Capybara, 129

Caribbean spiny lobsters, 226

Carnivores, 94, 118, 119, 122, 220, 221, 225, 263

Castor gene, 68

Catania, Kenneth C., 151, 229-249

Catarrhines, 274

Catfish, 177, 187, 188

Cathaymyrus, 43

Cats, 101, 119, 124

Caudal hindbrain, 175, 176, 178, 179, 180, 181, 182, 183, 184, 187

Cebus monkeys, 99

Cell cycle exit, 75, 76, 79

Cell lineage tracing, 66

Centipedes, 66, 73

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

Central pattern generators (CPGs)

sonic–vocal, 175, 176, 177, 178-185, 187-188, 190, 191

swimming behavior, 153, 166, 167-169, 170, 171, 172, 173

vocalization, 175

Centralized nervous system evolution (see also Brain; other specific structures)

Cambrian explosion, 42-44

cephalic neural ganglia, 2, 51, 52, 54

cladistic analysis, 44-46, 47, 49-50

comparative approaches, 37, 44-53

diffuse nerve nets, 2, 7, 37, 48, 50-52, 53-54

Ediacaran biota, 37, 39-40, 41, 47, 53

fossil record, 38-44, 46, 53

genetic basis of bilaterian body plan, 47-48

last common bilaterian ancestor, 37, 53-54

molecular clock hypothesis, 37, 38, 46-47, 53

outgroup analysis of metazoan central neural characters, 37, 45-46, 47-48, 49-53, 54

phenetics, 44, 45, 46

subepidermal nerve plexuses, 50-51

tripartite brain hypothesis, 37, 47, 48, 49, 53, 54

Cephalochordates, 43-44, 51

Cephalopods, 51, 52, 54

Cephalopyge trematoides, 157

Cerebellum, 51, 84, 122, 130, 132, 133, 135, 136-138, 140, 143, 148, 178, 182, 185, 189, 190, 260, 261, 262, 264, 265

Cerebral cortex

comparative studies, 128, 132, 136, 137, 138, 139

expansion, gyrification, and connectivity, 128, 138-140

human, 127, 128, 134-135, 140

number of neurons, 128, 132, 133, 134-135, 140

nonneuronal cells, 133, 134-135, 140

shared scaling rules, 134-138

size comparisons, 128, 132, 136, 137, 138, 139

Cerebrospinal fluid, 75-76, 86, 87

Cerebrum, 51

Cetaceans, 128, 130, 141, 263

Chagnaud, Boris P., 149-150, 175-191

Charnia, 41

Charniodiscus, 39, 40

Charvet, Christine J., 57-58, 75-90

Chelicerates, 66, 67, 73

Chengjiang biota, 42, 43, 44

Cheungkongella, 43

Chick optic tectum

caudomedial, 75, 76, 84, 85

cell cycle exit, 75, 76, 79

FGF2 effects, 57-58, 75-90

folding, 57-58, 75, 76, 84, 85, 86, 87, 88, 90

laminar disruptions, 58, 75, 76, 77, 81, 82, 83, 84, 85, 88

mantle zone, 79

persistence of FGF2-induced alterations, 79

pia mater thinning/holes, 58, 75, 76, 77, 80, 81, 83, 86-87, 88

proliferative zone fraction (PZF), 78, 79, 85, 89

radial thickness, 78-80

ventricular surface area, 78-79, 80, 81

volume, 77, 80

Chimpanzees, 94, 128, 129, 130, 141, 142, 145, 253, 254, 255, 256, 257, 258-259, 261, 262, 266, 268, 270, 328, 330, 332

Chiropterans, 222, 223 (see also Bats)

Choanoflagellates, 5, 21, 23, 24, 25, 26, 35

Chondrichthyes, 176, 186

Chordates

brains, 2, 43, 47-48, 49, 54

fossil record, 43

Nav channels, 21, 27, 29

Circadian functions, 93

Cladistic analysis, centralized nervous system, 44-46, 47, 49-50

Cladobranchia, 155, 156, 158-159, 163, 164, 165, 166

Clark University, vii

Clione limacine, 163, 171

Cloudina, 41

Club-winged manakin, 177, 190

Cnidarians, 5, 6, 7, 14, 22, 24, 26, 39, 41-42, 49, 51

Coast mole (Scapanus orarius), 241

Coelacanth, 176, 186

Cognitive ability (see also Computational ability; Language; Numerical cognition; Speech)

brain size and, 59, 128-129, 138, 140, 141, 326-328

developmental processes and, 316-321

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

“dual system” view, 315

duplication and divergence of new structures, 323-324

energy cost, 144

evolutionary feedback processes, 324-325

explaining, 328-331

genes, gene regulation, and human environments and, 329-330

modified orthologies and, 330

number of cortical neurons and, 129, 140, 141

origin of new specializations, 321-328

paralogies and, 330-331

psychological testing, 320-321

reaction norms and, 316-317, 318-319

spatial navigation, 313

word perception, 325-326

Cognitive mapping, 213-218, 219, 222, 226, 227, 316

Common garter snake (Thamnopis sirtalis), 33

Comparative studies

acoustic signaling, 175, 177-178, 182

centralized nervous systems, 37, 44-53

cerebral cortex, 128, 132, 136, 137, 138, 139

FOXP2 gene, 262-264

genomics, 253, 258-266

molecular biology, 254-256

neurobiological investigations, 256-257

neuroethological studies, 336

olfaction, 220

psychological, 258

Complexity, organismal, 15, 37, 38

Computational ability (see also Numerical cognition)

Nav ion channels and, 21, 31, 35-36

Conaco, Cecilia, 1, 3-19

Convergent evolution, 2, 107, 213

Coral (see also Acropora millepora), 26

Corpus callosum, 120

Corticopontine system, 138

Corticotropin-releasing hormone (CRH), 193, 195, 197, 198, 199, 200, 201, 203, 206, 208, 209

Croaking gouramis, 187

Crustaceans, 43, 63, 64, 65, 66, 67, 72-73, 74, 213, 214, 216, 319, 320

Cryogenian Period, 47

Ctenophores, 22, 49

Cupiennius, 73

D

Danio rerio, 5, 6-7, 8, 16

Dark-eyed juncos (Junco hyemalis), 193-194, 195, 196, 197, 198, 199, 200, 201, 202, 206, 207, 209

Darwin, Charles, xv, xvi, 59, 92, 154, 230, 241, 256-257

Deer mice, 103-104

Degnan, Bernard M., 1, 3-19

Degnan, Sandie M., 1, 3-19

Delta-Notch signaling, 65-66

Dendronotida, 155, 158, 163, 164, 165, 166

Dendronotus iris, 153, 158, 161, 162, 166, 169, 170, 171, 172, 173

Dentate gyrus, 217, 218, 222

Deuterostomes, 43, 44, 48, 49, 50, 51-52, 211, 227

Devonian extinction, 21, 35

Dickinsonia, 39, 40, 53

Diencephalon-tegmentum, 77

Dinomischus, 40, 44

Dobzhansky, Theodosius, xiii, xiv

Dolphins

echolocation, 221, 263

pectoral fin, 97, 98

Doridacea, 155, 156, 160, 163, 164, 165, 166

Doushantuo Formation, 39, 53

Drosophila

D. melanogaster, 5, 6, 8, 16, 62, 213

decapentapelgic (dpp) gene, 48

embryogenesis, 62, 63, 68

gooseberry (gsb) gene, 73

Hox genes, 62, 63, 65, 70, 71, 72

insecticide resistance, 35

motor neurons, 71

Nav channel genes, 28, 35

neurogenesis, 65, 67, 70, 72-74

olfaction, 213

segmentation, 62, 63, 68

short gastrulation (sog) gene, 48

Duck-billed platypus, 94, 95, 96-97, 99

E

Eastern moles (Scalopus aquaticus), 236, 239

Eastern towhees (Pipilo erythropthalmus), 193-194, 195-196, 197, 198, 199, 200, 201, 202, 206, 209

Ecdysozoans, 48, 49, 51

Echinoderms, 39, 43, 44, 49, 68

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

Echolocation, 109, 221, 222, 223, 263

Ectoderm, 48, 61, 62, 64, 65, 66, 67, 68, 71, 73, 74, 108

Ediacaran biota

bilaterians, 37, 39-40, 41, 47, 53, 226-227

centralized nervous system development, 37, 39-40, 41, 47, 53

fossil record, 39-42

morphological complexity, 39-41

phylogeny, 41-42

Egyptian fruit bats, 222

Eimer’s organs, 231, 232, 233, 239, 240, 241, 243

Elasmobranchs, 36, 176

Eldonia, 40, 43

Electric fish, 21-22, 30, 31-32, 36, 188

Elephants, 128, 141, 263

Energy

content of foods, 147, 227

cost of brains, 59, 127, 142, 144, 146, 148, 270

efficiency adaptations, 21-22, 31, 35-36, 236-237, 239, 269-270

genes for aerobic metabolism, 269-270

Nav channels and, 21-22, 31, 35-36

profitability of prey, 151, 229, 230, 235, 238, 239

Enteropneust hemichordates, 43, 48, 51

Entoprocts, 44, 52

Eoporpita, 39, 40

Epithelial gene networks, 6, 11-12, 15

Erniettomorphs, 41

Euarchontoglires, 114

Euctenidiacea, 155, 156, 160-161

Eulipotyphla, 133, 136

F

Feeding

appendages, 74

cooked foods, 147, 148

Ferrets, 107

FGF2

and cell cycle rate, 85

effects on chick optic tectum, 57-58, 75-90

lamination, folding, and pial integrity changes, 79-84

and neurogenesis, 76, 85, 87, 89

persistence of alterations, 79

and tectal progenitor pool, 77-79

Field sparrows (Spizella pusilla), 193, 195-210

Fire, 147

Fishes

acoustic signaling, 150, 175-191

caudal hindbrain rhombomere-8 spinal compartment, 175, 188-190

escape response, 229, 230, 244-247

FOXP2 orthologs, 262-263

pectoral appendage, 97, 98, 150, 175, 176, 177, 178, 179, 181, 184, 185-188, 190, 191

sonic mechanisms, 178-181

swim bladder, 177, 178-179, 184, 187-188

Flabellina, 156, 158, 171

Flatworms, 39, 49, 50, 51, 52

Foraging behavior (see also Star-nosed moles; Tentacled snakes)

optimal foraging theory, 151, 229, 230, 235, 238, 239

FOXP2 gene

comparative genomics, 253, 262-264

discovery, 259-261

expression and sequencing studies, 262-264

in human evolution, 253, 261-262, 264-265

mouse model of human evolution, 264-265

mouse model of R552H substitution, 264

and phenotype, 26-270

regulation of gene expression by, 265-266

Freise, Amanda C., 57-58, 75-90

Frogs

optic tectum, 58, 124

vocalizations, 177, 181, 184

Fugu, 33

G

Galagos, 121, 123

Ganglia, 2, 50-51, 52, 54, 67, 68, 260-261, 262, 265

Ganglion mother cells, 66, 68

Garter snake–newt system, 33-34

Gastropods, 51, 52, 153, 154, 155, 157

Gene expression networks

bilaterian body plans, 47-48, 62-63

conserved, 3, 4, 11, 14, 54, 61, 62, 65, 73, 74, 104, 106, 142, 225-226

coregulation and modality analysis, 3, 7, 9, 10, 11-12, 13, 14, 15, 16-17, 18-19

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

correlation in eumetazoans, 7, 9, 15

epithelial, 6, 11-12, 15

nuclear pore complex, 4, 6, 8, 11, 12, 13, 15, 17, 19

and organismal complexity, 15

proteasome 26S, 4, 6, 8, 11-12, 13, 15, 18-19

scale-free growth, 15

synaptic, 4-10, 11-12

within-species variability, 104

Gestural signaling or communication, 150, 175, 176, 177, 190, 191, 273, 288, 289, 290, 291, 331

Ghost bats, 94

Glia/neuron ratio, 141-144

Glial cells, 59, 66, 68, 69 82, 85, 86, 87-88, 127, 136, 140, 141-142, 144

Glires, 133, 134-135

Gnathostomes, 21, 27, 176, 177

Gogia, 40, 43

Goldfish, 189, 225

Golgi staining, xvi

Gonadotropin-releasing hormone (GnRh), 103

Goodson, James L., 150, 150, 193-210

Gorillas, xvi, 129, 130, 141, 144-146, 190, 254, 261

Gould, Stephen Jay, 256

Grasshoppers, 67, 73

grim gene, 70, 71

Gunaratne, Charuni A., 149, 153-174

H

Hagfishes, 43, 44

Haikouella, 43

Haikouichthys, 44

Hallucigenia, 40, 44

Harvard University, vii-viii

Heater muscles, 32

Hebbian plasticity, 58

Hemichordates, 43, 48, 51

Herculano-Houzel, Suzana, 58-59, 127-148

Hermissenda, 156, 158, 171

Hexabranchus sanguineus, 160, 162

Hindbrain (see Caudal hindbrain)

Hippocampus, 150, 211, 212, 216, 218, 219, 220, 221, 222, 223, 224, 226, 228

Hitzig, Eduard, xvi

Homeobox gene superfamily, 47, 48, 106 (see also Hox genes)

Homing pigeons, 219, 224

Homo antecessor, 147

Homo erectus, 147

Homo heidelbergensis, 147

Homo neanderthalensis, 147

Homo rudolfensis, 147

Homologies

arthropod neurogenesis, 66, 72-74

auditory cortex, 93, 94, 95

bilaterian body plans, 48

brain structures, 66, 72-74, 93, 321-323

peripheral morphology variations in homologous body parts, 97-98

cortical fields, 93-94

and development or function of nonhomologous structures, 1

in gene expression patterns, 2, 335-336

in human synaptic complex, 5

independent evolution distinguished from, xvi-xvii

neurogenesis, 66, 72-74

Nudipleura swimming neurons, 149, 153, 154-155, 164, 166, 167, 168, 169-172, 173-174

somatosensory areas, 93, 94

speech in primates, 330

Honeybees, 226

Horses, 128

Hox genes

abdominal A (abd-A), 69, 70

abdominal B (Abd-B), 69, 71, 72

Antp, 63, 69, 70, 72

and apoptosis, 70

and appendage morphology, 57, 62, 63, 65, 71, 74, 106, 322-323

bilaterian body plan, 47, 57, 62

cofactors, 71

locomotion, 70

and neural morphology, 57, 65, 68-72, 185

Pb, 71, 72

Scr, 71

transcription factors, 62

Ultrabithorax (Ubx), 63, 64, 65, 69, 70 71, 72

and vertebrate forelimb development, 106, 322-323

Huang, Johnny C., 57-58, 75-90

Human brain

cerebral cortex, 127, 128, 134-135, 140

cognitive advantage, 140-141

encephalization quotient, 128-129

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

energy cost, 127, 128, 144-147

FOXP2 gene, 253, 258-266

hierarchical model of specialization, 313-333

homologous traits, 321-323

ideological obstacles to study, 256-257

as outlier, xv, 127, 128-129, 130, 140, 141, 147-148

psychological studies, 258

quantification of numbers of cells, 127, 140

as scaled-up primate brain, 127-128, 140-141

size, xv, 127, 134-135, 257

vocal–gestural coupling, 190

Human hand, 97

Human specializations

chimpanzee-bonobo evolution and, 253, 254, 255, 256, 257, 258-259, 261, 262, 266, 268, 270

comparative molecular and genetic background, 254-256

evolutionary continuity and, 256-257

neurobiological and behavioral background, 256-258

Hunchback gene, 68

Huxley, T. H., xv-xvi, 59, 256-57

Hypothalamus, 194, 197, 203, 207-208, 262

I

Independent evolution, xvi-xvii, 51, 52, 99, 113, 124-125

large brains, 130, 131

Inferior olive, 178, 182, 185, 188-189, 262

Insectivores, 132, 135, 136, 137, 220, 221, 236, 238

Insects

motor circuits, 71

NAV channels, 2, 35, 36

neurogenesis, 65, 66, 67

olfactory system, 213, 216, 226

resistance to pesticides, 35, 36

similarities with vertebrate and annelid nervous systems, 2, 72-74

Interneurons, 31, 68, 70, 167-168, 172, 173

Inversion hypothesis, 48

Invertebrates

Nav channels, 21, 25, 26, 27-28, 33, 34, 35

Ion channels, 22 (see also Calcium ion channels; Potassium leak and voltage-grated ion channels; Voltage-gated sodium channels)

bilaterians, 22, 24, 25, 26, 35

6TM gene family, 22-26, 28

and sound production, 32

types, 24

J

Jacobs, Lucia F., 150-151, 211-228

Jarvis, Erin, 57, 61-74

Jellyfish (medusazoa), 24, 26, 35

Jerboas (Jaculus orientalis), 208

K

Kaas, Jon H., 58, 113-125

Katz, Paul S., 149, 153-174

Kimberella, 40, 41, 53

Kimberellomorpha, 41

Kosik, Kenneth S., 1, 3-19

Krubitzer, Leah A., 58, 91-111

Kruppel gene, 68

L

Lagerstätten, 38, 42, 44

Lagomorphs, 114, 117

Lampreys, 27, 28, 44

Language (see also Speech)

ape-language projects, 258

auditory and visual integration, 251, 274, 278, 279, 283, 285, 288-291

brain areas, 251, 261, 273-274, 276, 278, 279, 283, 285, 289, 325-326, 330-331

brain size and, xv

developmental processes and, 316, 318-319, 332

evolution from generalized precursors, 324, 330

genes, 111, 251, 253, 259, 260, 261, 262, 267

reaction norms and, 323

and runaway evolutionary processes, 325

and symbolic math, 252

vocal vs. gestural origins, 190

word perception, 325-326

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

Lateral geniculate, 94, 103, 120-121

Lateral septum, 193, 194, 197, 205-206, 208

Latimeria, 176, 186

Lillvis, Joshua L., 149, 153-174

Lingulella, 40, 43

Lithobius, 73

Lobopods, 44

Locomotion

appendages, 74, 97, 175

behavior (see also Nudipleura swimming behavior)

bilateria, 41

coupling of vocal circuitry, 175

crawling, 155, 157

mucociliary, 155, 157

Lophotrochozoans, 44

Lungfish, 31, 36, 176, 185, 186

Luteinizing hormone, 103, 194

M

Macaque monkeys, 94, 99, 101, 102, 116, 117, 120, 121, 123-124, 190, 251, 254, 255, 257, 261, 262, 270, 273, 274, 275, 276, 277, 281, 283, 285, 286, 289, 290, 291,

Malacostracans, 66

Mammals

acoustic communication, 181, 190

brain relationships across orders, 128, 129, 130, 132, 138

cell cycle exit, 76 321

cortical evolution in, 75, 76, 88, 91-111

neocortical folding, 88

outgroup analysis, 48

sonic pectoral signaling, 190

Marble crayfish, 64

Marrella, 40, 43

Mathematics (see Numerical cognition)

Maxillipeds, 63-84, 65

McGowan, Luke D., 57-58, 75-90

Megabats, 220

Melibe leonina, 153, 155, 157, 159, 161-162, 166, 167, 169, 170, 171, 172, 173

Mesoderm, 62, 65, 176-177

Mesolimbic dopamine system, 206

Mesotocin, 193, 194, 195, 197, 198, 199, 200, 201, 203, 206, 208, 209

Midbrain, 51, 85, 88, 179, 180, 194, 208

Midshipman fish, 177, 179, 180, 181, 182, 183, 184, 185, 186, 187, 189

Millipedes, 66

Molecular clock, 37, 38, 46-47, 53, 226

Moles, 231 (see also Star-nosed moles)

Molluscs, 39, 44

central neural characters, 2, 49, 51, 52, 53, 54

olfactory system, 213

swimming behaviors, 153, 154

Monoplacophorians, 52

Monosiga brevicollis, 5, 25

Motor cortex, 99, 101, 102, 105-106, 111, 113, 115, 122-123, 190, 317

Motor neurons

apoptosis, 70, 71

arthropods, 69, 70, 71

axons, 31, 70, 71, 72, 169, 183, 185-186, 187

genesis, 68, 71

and hand morphology, 99

Hox gene regulation, 57, 69, 70, 71-72

locomotion, 69, 70, 71, 171-172, 185-186, 187, 188, 190

mapping, 185-186

ventral horn, 99

vertebrates, 71-72

vocal and sonic, 149, 150, 177, 181, 182, 184, 187

Myelin/myelination, 2, 21, 27, 101, 233, 276, 277

Myllokunmingia, 44

Myriapods, 66, 67 72-73

Mysids, 65

N

Naked mole rats (Heterocephalus glaber), 22, 34, 36

Nama assemblage, 41

Namacalathus, 41

Naraoia, 40, 43

Natural selection, xv, 77, 91, 92, 100, 124, 230, 241, 252, 314, 316, 325, 326, 327

Navigation

echolocation, 109, 221, 222, 223, 263

evolution of, 226-227

olfactory, 150, 211, 212, 213, 214-217, 218-220, 222, 223-224, 225, 226-227, 228

spatial, 211, 212, 213, 218, 219, 220, 314

telencephalon, 225

visual, 220

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

Nematodes, 3, 6, 28, 49, 213

Nemertodermatida, 49, 50

Neocortex (see also Visual cortex)

activity-dependent selection, 124-125

areas (specialized regions), 93-95, 99, 101, 102, 113, 114

bats, 106, 111

cell cycle exit, 76, 79

classic columns, 113, 116-118, 124-125

connectional studies, 101

cross-species phenotypic variability, 93-100, 121

development of functional organization, 124-125

domains, 94-95 113, 122-124

extrinsic factors affecting phenotypic variability, 95, 107-110

folding, 88

genetic basis of phenotypic variability, 92, 93, 104-107, 111

homologies, 93

human, 114

mammalian phylogenetic relationships, 94

mice, 88, 101, 103-104, 106, 107, 120

minicolumns, 58, 113, 114-125

modules, 58, 101, 114, 118-121, 124-125

olfactory perception, 213-214

phenotypic variability in mammals, 91-111

pia matter, 77

position-dependent selection, 124-125

primates, 76, 100, 101-103, 113-125

progenitor proliferation, 88

rats, 76, 119-120

representations of stimulus orientations, 118-119

separated parts of sensory surfaces, 119-121

septa, 113, 120, 197, 198, 208, 233

size/organization/connectivity of fields, 94-95, 100, 105-106, 107, 111, 114

somatotopic organization, 58, 101, 119-120, 122-123

star-nosed moles, 235, 248

sulcal patterns, 100

unbounded columns, 58, 113, 118-119

volume and neuron number, 76, 136

within-species phenotypic variability, 100-104, 121

Network theory, 1, 3-19

Neural tube, 51, 54

Neuroblasts (neural stem cells), 66, 67-70, 72-73

Neurogenesis

arthropods, 61, 65-67, 70-72

Drosophila, 65, 67, 70, 72-74

FGF2 and, 76, 85, 87, 89

homologies, 66, 72-74

telencephalic, 21, 35, 76, 85, 89

proliferative zone fraction (PZF), 77, 79, 85, 89

timing, 79

Neurons (see also Motor neurons)

auditory cortex, 119

energy cost, 142-144

giant Mauthner cells, 244

isotropic fractionator enumeration method, 59, 130, 132

neocortex minicolumns, 114-115, 116, 117-119

number, 76, 101, 103, 130-132

orientation-selective, 118-119

premotor, 149, 175, 176, 178, 182, 188, 189, 190, 191

scaling rules for brain size, 130-132 134-135, 140, 141, 142, 145

somatotopic maps, 119

visual cortex, 116, 117-119

vocal pacemaker, 179, 180-181, 182, 183, 184, 188

Neurotransmitters, 22, 68, 265

Neutral theory of molecular evolution, 46

New World monkeys, 94, 99, 120, 121, 123, 274, 283

New York University, vii

Newcomb, James M., 149, 153-174

Newts, 22, 36 (see also Garter snake–newt system)

Nodes of Ranvier, 2, 21, 27

Northcutt, R. Glenn, 2, 37-55

Notochord, 43

Nuclear pore complex, 4, 6, 8, 11, 12, 13, 15, 17, 19

Nudipleura

locomotor behavior categories, 155-163

phylogeny, 153, 156-157, 163

Nudipleura swimming behavior

asymmetric undulation (AU), 156, 157, 161, 163

breaststroke (BS), 156, 157, 158, 163, 164

central pattern generators (CPGs), 153, 166, 167-169, 170, 171, 172, 173

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

dorsal–ventral body flexions, 153, 156, 157, 158-161, 162, 163, 164, 165, 166, 167, 168, 169-172, 173

dorsal–ventral undulation (DU), 156, 157, 162-163, 165

escape response, 161, 163

evolution of neural circuits and, 149, 154, 164-166

flapping (F), 157, 161, 163, 172, 173

homologous neurons, 149, 153, 154-155, 164, 166, 167, 168, 169-172, 173-174

homoplasy, 153, 154, 164, 166, 173

left–right (LR) body flexions, 153, 156, 157, 158-161, 162, 163, 164, 165-166, 167-169, 170, 171, 172, 173

left–right undulation (LU), 156, 157, 158, 159, 162, 163

neural circuits, 166-172

phylogenetic distribution, 163

taxonomy, 158-161

Numerical cognition

amodal representations, 307

analog representations as sole precursors of, 302-306

analogical reasoning, 307

arithmentic, 299-301

automatic cross-activation, 307-308

comparison of values, 297-299

correlational and statistical associations, 306-307

evolutionary history and, 308

math IQ origins, 293, 308-311

oldest numbers, 295-301

representation, 295-297

symbols, 301-302

O

Odontogriphus, 40, 44

Ohno, Susumu, 28

Old World monkeys, 94, 99, 120, 121, 122, 123, 276, 283, 285

Olenoides, 40, 43

Olfaction

allocation of perception and attention, 214

arthropods, 213, 216, 225-226

axons, 213

bats, 220, 221, 222-223, 226

birds, 219, 223-224

chemosensory receptors, 213, 218

cognitive maping, 213-218, 219, 222, 226

comparative studies, 220

convergence in system structure and function, 212-213

discrimination and acuity function, 211, 213, 218, 219

evolutionary origin, 213-214, 223, 226-227

feeding behavior and, 150-151

fish, 216, 225

genes, 213, 219, 225

hippocampus and, 150, 211, 212, 216, 218, 219, 220, 221, 222, 223, 224, 226, 228

mammals, 216, 217, 218, 219-220, 221-223

mechanosensory systems integration, 216, 218, 226

navigation function, 150, 211, 212, 213, 214-217, 218-220, 222, 223-224, 225, 226-227, 228

parallel map theory, 216-218, 219

predatory strategy and, 220-223, 225

rats, 219, 220

reptiles, 224-225

size of olfactory bulb, 150-151, 211, 212, 213, 219, 220, 222

Olfactory bulb

adult neurogenesis in, 222

size considerations, 150-151, 211, 212, 213, 219, 222

Olfactory perception, 213-216

Olfactory spatial hypothesis, 150, 211, 216, 218-219, 220, 222, 223, 224, 225, 226, 227, 228

Onychophoran worms, 44

Opabinia, 40, 43

Opisthobranchia, 154, 155, 157, 163, 171, 173

Opossums, 94, 100, 107

Optic tectum (see also Chick optic tectum)

frogs, 58, 124

species differences in size, 77

tentacle snake, 242, 243

Optimal foraging theory, 151, 229, 230, 235, 238, 239

Orangutans, 145, 234

Ottoia, 40, 43

Otx genes, 47

Outgroup analysis of metazoan central neural characters, 37, 45-46, 47-48, 49-53, 54

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

Owen, Richard, xv, xvi

Owl monkeys, 101, 102-103, 120, 121

Oxytocin, 195, 205

P

Paddlefish, 185

Paedomorphosis, 52

Parallel evolution, 33, 35, 173-174

Paranthropus, 147

Parhyale sp., 63, 73

Parrots, 76

Patel, Nipam H., 57, 61-74

Pax genes, 47

PDM gene, 68

Pectoral appendages, 150, 175, 176, 177, 185-188, 190, 191

Peking University, viii

Phenocopy approach, 76

Phenotypic variability

and behavior, 92

comparative genomics and, 254-256

cross-species, 93-100

discovery approach, 269

extended phenotype, 91, 92, 93

extrinsic factors, 107-110

genes and, 92, 93, 104-107, 111, 266-270

mammalian cortical evolution, 91-111

morphology, 92, 93, 97-98

targets of selection, 92-93

within-species, 100-104

Pheromones, 34

Phylliroë atlantica, 155, 159

Phylliroë bucephala, 155, 159

Phylogenetic systematics

methodological advances, xvi-xvii

Pia mater, 58, 75, 76, 77, 80, 81, 83, 86-87, 88

Pikaia, 40, 43

Pinnipeds, 221, 223, 226

Piranhas, 184

Pit vipers, 244

Pituitary, 103, 206

Placozoans, 49, 53

Platyhelminthes, 49, 52, 53

Pleiotropy, 267

Pleurobranchaea californica, 153, 161, 162, 166, 167, 168, 171, 172

Pleurobranchomorpha, 155, 156, 161, 163, 164

Pleurobranchus membranaceus, 161, 163

Plocamopherus, 157, 160-161

Polychaete annelids, 43

Polyplacophorians, 52

Porifera, 3, 4, 5, 15, 49 (see also Sponges)

Postembryonic neuroblasts, 69-70

Posterior parietal cortex, 99, 101, 113, 115, 122, 123

Potassium leak and voltage-gated ion channels, 1, 21, 22, 23, 24, 28, 31

Praecambridium, 39, 40, 54

Predatory strategy (see also Star-nosed moles; Tentacled snakes)

olfaction and, 220-223, 225

Prefrontal cortex, 137, 251, 289, 310, 329, 331 (see also Ventral prefrontal cortex)

Premotor cortex, 115, 122, 123, 180, 190, 274, 276, 283

Premotor-motor circuitry, 175, 176, 178, 183, 184, 191

Preuss, Todd M., 251, 253-271

Priapulid worms, 42, 43

Primates

brain–body scaling, 145-146

brain size, 128, 129, 132, 134-135, 136, 137, 138, 139, 140, 141

cerebral cortex, 132, 136, 137, 138, 139, 140

glia/neuron ratio, 142, 143

hand, 99, 101

neocortex, 76, 99, 101, 113-125

number of neurons, 141

Princeton University, vii

Proliferating cell nuclear antigen (PCNA), 77, 78, 79, 81, 85, 89

Proteasome 26S, 4, 6, 8, 11-12, 13, 15, 18-19

Protostomes, 48, 49, 51, 52, 211, 227, 228

Pufferfish, 2, 22, 33, 34, 36

Pyramidal neurons, 31, 36, 115, 276-277

R

Rabbits, 119, 122, 254

Raccoons, 96, 97

Ramón y Cajal, Santiago, xvi

Rangeomorpha, 41

Rats, 76, 85, 96-97, 100, 101, 103, 107-108, 119-120, 189, 219-220, 262, 297 (see also Blind mole rats; Naked mole rats)

Rattus norvegicus, 100, 103

Ray-finned fish, 31, 36

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

Reaper gene, 69, 70, 71

Red slider turtles, 224

REST transcriptional repressor, 14

Retina, 105, 116, 120-121

Rhesus monkeys (Macaca mulatta), 9, 270, 274, 283, 285

Roboastra, 161

Rodents (see also specific rodents)

brain size, 134-135, 136, 141

glia/neuron ratio, 142, 143

neocortex, 59, 85, 94, 100, 101, 114, 117, 118, 119, 122, 123

number of neurons, 141

olfaction, 213

social affiliation, 206

territoriality, 194

whiskers, 97, 120, 233

Romanski, Lizabeth M., 251-252, 273-291

S

Saccharomyces cerevisiae, 5, 13, 16

Saccoglossus, 48

Sackler, Arthur M., vii-viii. See also Arthur M. Sackler Colloquium

Sackler, Jillian, vii, viii

Sakurai, Akira, 149, 153-174

Salamanders, 52

Salmon, 185, 187, 225

Saltatory conduction, 27

Sarcopterygian fishes, 36, 176, 182, 185, 186

Scandentia, 134-135, 133, 137, 143

Schistocerca, 73

Schizocosa, 73

Schizophrenia, vii

Schrock, Sara E., 150, 193-210

Sculpin, 182, 184, 187-188

Sea robins, 184, 187-188

Sea turtles, 224-225, 226

Seelke, Adele M. H., 58, 91-111

Segment polarity genes, 67

Shankouclava, 43

Sharks, 176, 212, 221, 225

Shiverer mice, 27

Short-finned whales, 128

Short-tailed opossums (Monodelphis domestica), 100, 107

Short-tailed shrews (Blarina brevicauda), 236

Shrews, 114, 117, 118, 119, 122, 235, 236, 238

Sidneyia, 40, 43

Smooth dogfish, 225

Snakes, 224 (see also Tentacled snakes)

Sodium channels (see Voltage-gated sodium channels)

Soma, 27, 31

Somatosensory areas

barrel field, 119-120

homologies, 93, 94

intraspecies variability, 100, 110-111

primates, 116, 120, 121-122

size changes, 96, 98-99, 105-106, 107

star-nosed moles, 120, 233-235

structure, 116, 233-235

tentacle snake, 243

Song sparrows (Melospiza melodia), 193, 195-210

Songbirds, 76, 150, 194, 205, 224, 263

Sound production (see also Acoustic signaling; Vocalization)

coupling of respiration and, 181

muscle evolution, 32

Sparrow seasonal sociality

flocking, 194, 197-201, 205-206

group-size decisions, 195

individual differences in aggression, 193, 203-205

methods, 209-210

neurochemical signals, 193, 197-204, 205-206

plasticity, 205, 208

species-specific territorial behavior, 201-203, 207-208

Speech (see also Language)

audiovisual integration, 252, 273, 288-291

brain areas, 267, 273, 288-291

FOXP2 gene and, 253, 259, 260, 261, 262, 266-267

gesture integration, 190, 289, 290

homologs in other primates, 330

perception, 252, 289

production, 262, 267, 283

Spiders, 66, 73

Spiralians, 48, 49, 51

Sponges, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 22, 24, 41-42

Spriggina, 39, 40, 54

Squirrel monkeys, 101, 102, 120, 147, 177, 274

Squirrels, 94, 100, 101, 103

Star-nosed moles (Condylura cristata)

competition in the swamp, 229, 235-236

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

cortical structure, 95, 96-97, 99, 120, 230, 233-235, 248

hunting behavior, 151, 229, 233, 236-238, 241-242

morphology, 229, 230, 231

optimal foraging theory and, 151, 229, 230, 235-238, 239

prey profitability and foraging behavior, 236-238

sensory organs, 120, 229, 230, 231-233, 239

star evolution, 229, 230, 239-241

star function, 238-239

star innervation, 229, 231-233

tactile fovea, 229, 233

State University of New York at Stony Brook, viii

Striedter, Georg F., 57-58, 75-90

Sturgeon, 184

Synapses, neuronal

assembly, 1, 13-14, 115

bilaterian gene networks, 5, 6, 7, 9, 14, 15, 53

and cognitive capabilities, 129-130

density across species, 129

network analysis of gene expression, 1, 4-10, 11-12, 15

plasticity, 144, 264, 269, 270

protein interactions, 6

scaffolding proteins, 13-14

signaling, 3, 13

vacuolar ATPase complex, 5, 9, 10, 11, 15

vesicles, 4, 5, 9, 10, 13

T

Tambja eliora, 157, 161

Taxonomic analysis, acoustic signaling, 182

Tectum (see Chick optic tectum)

Telencephalon

navigation function, 225

neurogenesis, 21, 35, 76, 85, 89

parrots and songbirds, 76

size/volume, 76, 77, 225

Teleosts

hindbrain segmentation, 178

medial pallium homologue, 225

Nav channel evolution, 21, 28-30, 31-32, 35-36

spatial orientation, 225

vocal-pectoral motor systems, 179, 184, 185

Temporal cortex, 123-124, 331

Tentacled snakes

adaptation to fish escape response, 229, 230, 244-247

hunting behavior, 229-230, 241-242, 243-244

innate ability, 247-248

neural circuits, 243

mechanosensory appendages, 229, 230, 243

morphology, 231

optic tectum response to visual stimuli, 229, 243

Tethys fimbria, 155, 156, 159

Tetrapods

Nav channel evolution, 21, 28-29, 30-31, 35-36

olfactory-spatial hypothesis, 225

vocal-pectoral motor systems, 150, 175, 176, 177, 181-182, 184, 186, 187, 188, 190, 191

Tetrodotoxin (TTX), 2, 21-22, 32-34

TGF-β receptor gene superfamily, 28

Thalamus, 51, 93, 105, 116, 120, 261, 262, 265

Toadfishes, 150, 179, 181-182, 183, 184, 185, 188

Tochina, 171

Touch organs (see also Star-nosed moles)

bat touch domes, 98, 109, 110-111

whiskers, 97, 120, 233

Transcription factors, 5, 62, 68, 104, 105, 106, 109, 256, 260, 264

Trapania velox, 160, 161, 166

Tree shrews, 114, 117, 118, 119, 122

Trilobites, 39, 40, 43, 54

Triopha, 156, 161, 171

Tripartite brain hypothesis, 37, 47, 48, 49, 53, 54

Tritonia diomedea, 153, 159, 162, 166, 167, 168, 171

U

Ultrabithorax (Ubx), 63-64, 70, 71

Urochordates, 43, 52

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

V

Vasoactive intestinal polypeptide (VIP), 193, 195, 196-197, 198, 199, 202, 203, 206-207, 208, 209

Vasopressin, 195

Vasotocin, 193, 195, 196-197, 198, 200-201, 202, 203, 205-206, 207, 208, 210

Vendobionta, 39, 41

Ventral neuroectoderm, 65-66, 71

Ventral prefrontal cortex

anatomical considerations, 274-279

auditory projections to prefrontal cortex, 278-279

audiovisual integration in human brain, 288-291

audiovisual speech evolution, 288-291

auditory responses and function in, 283-286

connectivity with cortical visual processing regions, 277-278

cytoarchitectonic organization, 276-277

functional studies, 279-288

multisensory responses in, 286-288

organization, 274-276

visual processing, 279-282

Ventromedial hypothalamus, 194, 197, 203, 207

Vernanimalcula, 39, 53

Vertebrates

bmp-4 gene, 48

hindbrain segmental blueprint, 176-178

homologies in gene expression patterns, 2

motor neurons, 71-72

olfactory system, 213, 219

phylogeny, 176

Vetulicolians, 43, 44

Vimentin, 82, 87, 90

Visual acuity, 244

Visual cortex

auditory connections, 94, 107, 244

in blind mole rats, 58, 93, 107

blobs and interblobs, 58, 116-117

color selective domain, 103, 124

cross-species variability, 93, 94, 95

hue-selective subregions, 119

middle temporal crescent, 115, 118

neuron number/density, 103

ocular dominance columns, 120-121, 124-125

orientation hypercolumns, 118-119, 124

phenotypic variability, 95, 100, 101, 103, 105, 107, 108-109, 115, 116, 117, 118, 119, 120-121

primary visual cortex, 58, 93-94, 100, 116

primates, 116-117, 121-122, 124

size/organizational changes, 58, 105-106, 107

somatosensory connections, 107, 120-121

stimulus orientations, 118-119

two-cone color vision, 103

within-species variability, 101-103

Vocalization (see also Acoustic signaling; Speech)

central pattern generators, 175

circuitry, 187-188, 189

coupling of sound production and respiration, 175, 181, 182

Voltage-gated sodium (Na+ or Nav) channels

adaptive evolution, 21-22, 28, 31-35

at axon initial segments, 2, 21, 27, 31

and computation ability, 21, 31, 35-36

and energy, 21-22, 31, 35-36

function, 21

gene duplication in teleosts and tetrapods, 21, 27-31, 35-36

genes for 6TM family, 22-26

and insecticide resistance, 22, 35

invertebrates, 21, 25, 26, 27-28, 33, 34, 35

at nodes of Ranvier, 2, 21, 27

maximum likelihood phylogeny, 25

and proton insensitivity, 21-22, 34

structure, 24-25

and tetrodotoxin resistance, 2, 21-22, 32-34

in weakly electric fish, 21-22, 30-32, 36

vertebrates, 2, 28

W

Waddington, Conrad, 77

Weber’s law, 294, 296, 297, 302, 304, 309, 324

Whales, 128, 141, 263

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×

White-footed mice, 103-104

White Sea assemblage, 41

Wilson, Leah C., 150, 193-210

Wnt/planar polarity genes, 11

X

Xenocoelmorphs, 50, 51, 52

Xenopus

chordin (chd) gene, 48

X. tropicalis, 5, 7, 8, 16, 19

Xenoturbella, 49, 50, 52-53

Y

Yunnanozoans, 43-44

Yunnanozoon, 43

Z

Zakon, Harold H., 1-2, 21-36

Zebra finches (Taeniopygia guttata), 177, 195, 205, 263

Zebrafish (see also Danio rerio), 185, 186, 187, 190

Zhongjianichthys, 44

Zhou, Hongjun, 1, 3-19

Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 397
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 398
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 399
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 400
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 401
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 402
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 403
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 404
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 405
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 406
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 407
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 408
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 409
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 410
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 411
Suggested Citation:"Index." National Academy of Sciences. 2013. In the Light of Evolution: Volume VI: Brain and Behavior. Washington, DC: The National Academies Press. doi: 10.17226/13462.
×
Page 412
In the Light of Evolution: Volume VI: Brain and Behavior Get This Book
×
 In the Light of Evolution: Volume VI: Brain and Behavior
Buy Hardback | $69.00 Buy Ebook | $54.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The central goal of the In the Light of Evolution (ILE) series is to promote the evolutionary sciences through state-of-the-art colloquia--in the series of Arthur M. Sackler colloquia sponsored by the National Academy of Sciences--and their published proceedings. Each installment explores evolutionary perspectives on a particular biological topic that is scientifically intriguing but also has special relevance to contemporary societal issues or challenges.

This book is the outgrowth of the Arthur M. Sackler Colloquium "Brain and Behavior," which was sponsored by the National Academy of Sciences on January 20-21, 2012, at the Academy's Arnold and Mabel Beckman Center in Irvine, CA. It is the sixth in a series of Colloquia under the general title "In the Light of Evolution." Specifically, In Light of Evolution: Brain and Behavior focuses on the field of evolutionary neuroscience that now includes a vast array of different approaches, data types, and species.

This volume is also available for purchase with the In the Light of Evolution six-volume set.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!