National Academies Press: OpenBook
« Previous: Executive Summary
Suggested Citation:"Introduction." National Research Council. 2013. Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing?. Washington, DC: The National Academies Press. doi: 10.17226/13509.
×

INTRODUCTION

Recent attention to K-12 education in science, technology, engineering, and mathematics (the disciplines collectively referred to as STEM) has revealed challenges in students’ performance and persistence, particularly for groups that are underrepresented in the STEM fields (Schmidt, 2011; President’s Council of Advisors on Science and Technology, 2010; Lowell et al., 2009; Hill et al., 2008; Higher Education Research Institute, 2010). Although these challenges are daunting, recent education policy developments are creating an unprecedented opportunity to address them.

For example, educational reforms across the country are emphasizing more rigorous common state standards and assessments for all students; increases in school and teacher effectiveness; innovations in teacher preparation and professional development; and new approaches to holding districts, schools, and teachers accountable for results. In addition, the new Common Core State Standards for Mathematics (see National Governors Association and Council of Chief State School Officers, 2010) and A Framework for K-12 Science Education (National Research Council, 2012)1 emphasize conceptual understanding of key ideas in each discipline, greater coherence across grade levels, and the practices of science and mathematics. Together, these changes have the potential to engage students in ways that better prepare them for postsecondary study and STEM careers, and thus eventually, for addressing current and future societal challenges and participating in an increasingly global and technologically driven society. The political will and momentum gathering behind these efforts offer an opportunity to realize improvements to K-12 science and mathematics education that have so far remained elusive.

The success of these efforts depends on many factors, including students’ equitable access to challenging learning opportunities and instructional materials, teachers’ capacity to use those opportunities and materials well, and policies and structures that support effective educational practices. In turn, making informed decisions about improvements to education in STEM requires research and data about the content and quality of the curriculum, teachers’ content knowledge, and the use of instructional practices that have been shown to improve outcomes. However, large-scale data are not available in a readily accessible form, mostly because state and federal data systems provide information about schools (personnel, organization, and enrollment) rather than schooling (key elements of the learning process).

___________________

1Because the Next Generation Science Standards were under development at the time of the report, the committee used the basis for those standards—A Framework for K-12 Science Education—to inform this report.

Suggested Citation:"Introduction." National Research Council. 2013. Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing?. Washington, DC: The National Academies Press. doi: 10.17226/13509.
×

By providing a focused set of key indicators about schooling—students’ access to quality learning, educators’ capacity, and policy and funding initiatives in STEM—this report addresses the need for research and data that can be used to monitor progress in K-12 STEM education and make informed decisions about improving it. It provides a framework for Congress and relevant federal agencies to create and implement a national-level monitoring and reporting system with the capability to:

•     assess progress toward key improvements recommended in the 2011 National Research Council report Successful K-12 STEM Education;

•     measure student knowledge, interest, and participation in the STEM disciplines and STEM-related activities;

•     track financial, human capital, and material investments in K-12 STEM education at the federal, state, and local levels;

•     provide information about the capabilities of the STEM-education workforce, including teachers and principals; and

•     facilitate strategic planning for federal investments in STEM education and workforce development, when used with labor force projections.

Suggested Citation:"Introduction." National Research Council. 2013. Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing?. Washington, DC: The National Academies Press. doi: 10.17226/13509.
×
Page4
Suggested Citation:"Introduction." National Research Council. 2013. Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing?. Washington, DC: The National Academies Press. doi: 10.17226/13509.
×
Page5
Next: Foundation for This Study »
Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing? Get This Book
×
Buy Paperback | $27.00 Buy Ebook | $21.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Following a 2011 report by the National Research Council (NRC) on successful K-12 education in science, technology, engineering, and mathematics (STEM), Congress asked the National Science Foundation to identify methods for tracking progress toward the report's recommendations. In response, the NRC convened the Committee on an Evaluation Framework for Successful K-12 STEM Education to take on this assignment. The committee developed 14 indicators linked to the 2011 report's recommendations. By providing a focused set of key indicators related to students' access to quality learning, educator's capacity, and policy and funding initiatives in STEM, the committee addresses the need for research and data that can be used to monitor progress in K-12 STEM education and make informed decisions about improving it.

The recommended indicators provide a framework for Congress and relevant deferral agencies to create and implement a national-level monitoring and reporting system that: assesses progress toward key improvements recommended by a previous National Research Council (2011) committee; measures student knowledge, interest, and participation in the STEM disciplines and STEM-related activities; tracks financial, human capital, and material investments in K-12 STEM education at the federal, state, and local levels; provides information about the capabilities of the STEM education workforce, including teachers and principals; and facilitates strategic planning for federal investments in STEM education and workforce development when used with labor force projections. All 14 indicators explained in this report are intended to form the core of this system. Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing? summarizes the 14 indicators and tracks progress towards the initial report's recommendations.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!