Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.
B-i Appendix B NCHRP 10-71 Design Examples
B-ii Foreword The NCHRP 10-71 study involved the development of design recommendations and details for Cast-in-Place Concrete Connections for Precast Deck Systems. The project covered two very different systems: (1) the precast composite slab-span system (PCSSS), which is an entire bridge system, and (2) transverse and longitudinal cast-in-place connection concepts between the flanges of precast decked bulb-Ts and full-depth precast deck panels on girders. In the case of the longitudinal connections, flexure and flexure-shear are to be transferred across the joint. In the case of the transverse joints, tension or compression is to be transferred across the joint depending upon the location of the joint along the span. The most critical location for the transverse connection would be at a pier in a continuous system, where the connection would be required to transmit tension, equilibrated by compression in the girder. The five design examples presented in this appendix are separated according to the connection concepts, and the level of detail and complexity in the examples is commensurate with the type of connection concept. The first two examples represent a 50 ft. simply-supported PCSSS bridge (Example 1) and a 40-50-40 ft. three-span continuous PCSSS bridge (Example 2). Because these examples cover the design of complete systems, they have a significant level of detail. The latter three examples provide guidance on the detailing of longitudinal and transverse connection concepts. Example 3 details the design of a longitudinal joint between decked bulb- T members, while the design of a transverse joint over the piers of a continuous bulb-T girder bridge that incorporates full-depth deck panels is presented in Example 4. Finally, Example 5 illustrates the longitudinal connection between two full-depth deck panels. The connection in the latter example is required where the width of the bridge exceeds the practical span of a single full-depth deck panel. Because Examples 3 through 5 cover the longitudinal (flexure or flexure-shear) or transverse joints (tension) that transfer flexure, flexure- shear, or tension, the level of detail In the examples is restricted to the detailing of the connections themselves, rather than the entire bridge systems. Each of the five examples illustrates the use of the recommendations from the design guide provided in Appendix A.
Example Problem 1 1.1 Introduction This example covers the design of the primary load-carrying superstructure elements of a precast composite slab-span system (PCSSS) bridge. The structural system is single span, simple-span beam with a 50' design span. The steps required to design a representative composite panel are illustrated. The design is generally carried out in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Edition, plus interim revisions through 2010. 1.2 Materials, Geometry, Loads and Load Factors Units: kcf kip ft 3ïïïºï½ Defined unit: kips per cubic foot ksf kip ft 2ï ïïºï½ Defined unt: kips per square foot Materials: Concrete: f'c 7.0 ksiïïºï½ Strength of beam concrete at 28 days f'ci 5.5 ksiïïºï½ Strength of beam concrete at transfer of prestressing force wc 0.150 kcfïïºï½ Density of beam concrete f'ct 4.0 ksiïïºï½ Strength of CIP concrete at 28 days wct 0.15 kcfïïºï½ Density of CIP concrete H 70ïºï½ Average ambient relative humidity α 0.000006ïºï½ /oF Coefficient of thermal expansion Strand: Astrand 0.217 in 2 ïïºï½ Area of one prestressing strand. db 0.6 inïïºï½ Nominal diameter of prestressed strand. fpu 270 ksiïïºï½ Tensile strength of prestressing steel Ep 28500 ksiïïºï½ Modulus of elasticity of prestressing steel fpy 0.9 fpuïïºï½ Yield strength of prestressing steel Pull 0.75ïºï½ Pull of strands expressed as a fraction of fpu t 18 hrïïºï½ Time from tensioning to detensioning of strands Rebar: fy 60 ksiïïºï½ Yield stress of ordinary rebar Es 29000 ksiïïºï½ Modulus of elasticity of non-prestressed reinforcement Geometry: Beam: Section "IT"ïºï½ Precast section name h 18.0 inïïºï½ Height of precast A 936.0 in 2 ïïºï½ Gross area of precast section I 27120 in 4 ïïºï½ Gross moment of inertia of precast cross section about centroidal x-x axis yb 8.42 inïïºï½ Center of gravity of gross precast cross section bf 72.0 inïïºï½ Width of bottom flange of precast section tflg 3.00 inïïºï½ Effective thickness of bottom flange B1-1
bv 72.00 inïïºï½ Shear width of precast section (web and longitudinal trough width) Ac 450 in 2 ïïºï½ Area of concrete on flexural tension side of member (see LRFD B5.2-3) VSb 5.2 inïïºï½ Volume to surface ratio of precast section VSd 6.0 inïïºï½ Volume to surface ratio of CIP slab Slab: tslab 6.00 inïïºï½ Thickness of CIP slab above precast beam th 15.00 inïïºï½ Thickness of CIP region between precast beams bh 24.00 inïïºï½ Width of CIP region between precast units. tws 0.0 inïïºï½ Thickness of portion of CIP slab assumed to be wear Span: Lovr 50.0 ftïïºï½ Overall length of precast section Ldes 49.0 ftïïºï½ Design span of precast section Lpad 12 inïïºï½ Length of bearing pad Bridge: S 6.00 ftïïºï½ Beam spacing Ng 8ïºï½ Number of precast sections in bridge cross section Widthoverall 47.5 ftïïºï½ Overall width of bridge Widthctc 44.0 ftïïºï½ Curb to curb width of bridge Nl 2ïºï½ Number of lanes Loads: Dead: Nbarriers 2ïºï½ Number of barriers wbarrier 0.300 klfïïºï½ Weight of single barrier wfws 0.023 ksfïïºï½ Weight of future wearing surface allowance Live: HL-93 Notional live load per LRFD Specs wlane 0.64 klfïïºï½ Design lane load wconst 10 psfïïºï½ Construction live load Construction Timing: ttransfer 1.00 dayïïºï½ Time from release tensioning of strands to release of prestress tdeck 90 dayïïºï½ Time to placement of superimposed dead load (SDL) tfinal 20000 dayïïºï½ Time final Load & Resistance Factors: ï¦f (variable) Resistance factor for flexure Ïv 0.90ïºï½ Resistance factor for shear DLA 0.33ïºï½ Dynamic load allowance (LRFD 3.6.2.1-1) B1-2
1.3 Plan, Elevation, and Typical Section Figure 2: General elevation of bridge. Figure 1: General plan of bridge. Figure 3: Typical cross section of bridge. Strand Pattern: No, Strands Elevation (in) Pat_n 0 0 12 12 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ ïºï½ Pat_h 16 6 4 2 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ inïïºï½ B1-3
1.4 Section Properties Note: Flange assumed to be a constant thickness of 3" for computation of section properties. Figure 4: Precast slab dimensions. Non-Composite Section Properties: Sb I yb ïºï½ Sb 3220.9 in 3 ïï½ yt h ybïïºï½ St I yt ïºï½ St 2830.9 in 3 ïï½ Effective Width: (LRFD 4.6.2.6.1) The effective width of the composite section may be taken as 1/2 the distance to the adjacent beam. beff S 2 S 2 ï«ïºï½ beff 72 inïï½ n f'ct f'c ïºï½ n 0.7559ï½ btran n beffïïºï½ btran 54.4269 inïï½ Composite Section Properties: Aslab btran tslab twsïï¨ ï©ïïºï½ Aslab 326.6 in2ïï½ Ah n thï bhïïºï½ Ah 272.1 in2ïï½ Acomp A Ahï« Aslabï«ïºï½ Acomp 1534.7 in 2 ïï½ ybc A ybï Ah tflg th 2 ï« ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï« Aslab h tslab twsï 2 ï« ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï« Acomp ïºï½ ybc 11.466 inïï½ hc h tslabï« twsïïºï½ hc 24 inïï½ ytc hc ybcïïºï½ ytc 12.53 inïï½ Islab btran tslab twsïï¨ ï©3ï 12 ïºï½ Islab 979.7 in 4 ïï½ Ih n bhï th 3 ï 12 ïºï½ Ih 5102.5 in 4 ïï½ Ic I A yb ybcïï¨ ï©2ïï« Ihï« Ah tflg th 2 ï« ybcï ï¦ ï§ ï¨ ï¶ ï· ï¸ 2 ïï« Islabï« Aslab h tslab twsï 2 ï« ybcï ï¦ ï§ ï¨ ï¶ ï· ï¸ 2 ïï«ïºï½ Ic 71824 in 4 ïï½ Sbc Ic ybc ïºï½ Sbc 6264.3 in 3 ïï½ Stc Ic ytc nï ïºï½ Stc 7580.3 in 3 ïï½ B1-4
Composite section modulus at the top of the prestressed beam: ytcb h ybcïïºï½ Stcb Ic ytcb ïºï½ Stcb 10991.8 in 3 ïï½ 1.5 Strand Pattern Properties Figure 5: Cross section with reinforcement. No_Strands Pat_nï¥ïºï½ No_Strands 24ï½ i 1 last Pat_n( )ï®ï®ïºï½ ycg i Pat_ni Pat_hiïï¨ ï©ï¥ No_Strands ïºï½ ycg 3 inïï½ ecc yb ycgïïºï½ ecc 5.42 inïï½ 1.6 Moments and Shears At Release: Self-weight of beam at release: At transfer, there are two locations along the beam that are of interest: 1. Transfer point of strands: xr1 60 dbïïºï½ (LRFD 5.8.2.3) 2. Midspan of beam: xr2 Lovr 2 ïºï½ xr T 3 25( ) ftïï½ wsw wc Aïïºï½ wsw 0.975 klfïï½ i 1 2ï®ï®ïºï½ Mswri wsw xri ï 2 Lovr xri ïï¦ï¨ ï¶ï¸ ïïºï½ Mswr T 68.7 304.7( ) kip ftïïï½ B1-5
At Final Conditions: Beam self-weight at final: At final conditions, there are also two points of interest: 1. The critical section for shear is dv from the face of the support, with dv taken as 0.72h (see discussion in Theory section). xf1 0.72 hcï Lpad 2 ï«ïºï½ 2. Midspan of beam: xf2 0.5 Ldesïïºï½ xf T 1.94 24.5( ) ftïï½ j 1 2ï®ï®ïºï½ Mswfj wsw xfj ï 2 Ldes xfj ïï¦ï¨ ï¶ï¸ ïïºï½ Mswf T 44.5 292.6( ) kip ftïïï½ Vswfj wsw Ldes 2 xfj ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Vswf T 22 0( ) kipïï½ Deck Weight: wd tslab twsïï¨ ï© Sï th bhïï«ï©ï« ï¹ï» wctïïºï½ wd 0.825 klfïï½ Mdeckj wd xfj ï 2 Ldes xfj ïï¦ï¨ ï¶ï¸ ïïºï½ Mdeck T 37.7 247.6( ) kip ftïïï½ Vdeckj wd Ldes 2 xfj ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Vdeck T 18.6 0( ) kipïï½ Barrier Weight (Composite Dead Load): wbarrier 0.3 klfïï½ Per barrier: wb Nbarriers wbarrierï Ng ïºï½ wb 0.075 klfïï½ Mbarrierj wb xfj ï 2 Ldes xfj ïï¦ï¨ ï¶ï¸ ïïºï½ Mbarrier T 3.4 22.5( ) kip ftïïï½ Vbarrierj wb Ldes 2 xfj ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Vbarrier T 1.7 0( ) kipïï½ Future Wearing Surface: wfws 0.023 ksfïï½ Per Beam: wf Widthctc wfwsï Ng ïºï½ wf 0.1265 klfïï½ Mfwsj wf xfj ï 2 Ldes xfj ïï¦ï¨ ï¶ï¸ ïïºï½ Mfws T 5.8 38( ) kip ftïïï½ Vfwsj wf Ldes 2 xfj ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Vfws T 2.9 0( ) kipïï½ B1-6
Live Load: Live Load Distribution Factors: Assume superstructure acts like a slab-type bridge. Utilize provisions of LRFD Art. 4.6.2.3 to compute width of equivalent strip to resist lane load. Single-Lane Loading: L1 if Ldes 60 ftïï¾ 60 ftïï¬ï Ldesï¬ï ï¨ ï©ïºï½ L1 49.00 ftï½ W1_1 if Widthoverall 30 ftïï¾ 30 ftïï¬ï Widthoverallï¬ï ï¨ ï©ïºï½ W1_1 30.00 ftï½ Estrip1 10 inï 5.0 inï L1 ft W1_1 ft ïïï«ïºï½ Estrip1 202 inïï½ Estrip1 16.8 ftï½ Put in terms of fraction of one lane to be distributed to one precast unit: DF1lane bf Estrip1 ïºï½ DF1lane 0.357ï½ Double-Lane Loading: W1_2 if Widthoverall 60 ftïï¾ 60 ftïï¬ï Widthoverallï¬ï ï¨ ï©ïºï½ W1_2 47.50 ftï½ Estrip2 84 inï 1.44 inï L1 ft W1_2 ft ïïï«ïºï½ Estrip2 153 inïï½ Estrip2 12.8 ftï½ DF2lane bf Estrip2 ïºï½ DF2lane 0.4691ï½ Governing Case: DF if DF1lane DF2laneï¾ DF1laneï¬ï DF2laneï¬ï ï¨ ï©ïºï½ DF 0.4691ï½ This distribution factor is applicable to both shear and moment: DFm DFïºï½ DFv DFïºï½ Live Load Moments (HL-93): Maximum Moments Due to Design Truck and Design Lane: Due to the Design Truck: A closed-form solution for the maximum moment at any point along a simply-supported beam due to the LRFD design truck is given below. There are two formulae, one which is valid for the region between the support and the L/3 point of the beam, and the other which is valid between L/3 and midspan. These two formulae correspond to different orientations of the truck (i.e., when it faces one way or the other). L Ldesïºï½ (purely to condense the expression) Mtruckj if xfj L 3 ï£ 8 kipï xfj ï L 9 Lï 9 xfj ïï 84 ftïïï¦ï¨ ï¶ï¸ ïï¬ï 8 kipï L 9ï xfjï¦ï¨ ï¶ï¸ 2 ï 9 xfj ï Lïï« 42 ftï xfj ïï 14 ftï Lïïï© ï« ï¹ ï» ïï¬ï ï©ïª ïªï« ï¹ïº ïºï» ïºï½ Mtruck T 107.5 602( ) kip ftïïï½ B1-7
Due to the Design Lane: Mlanej wlane xfj ï 2 L xfj ïï¦ï¨ ï¶ï¸ ïïºï½ Mlane T 29.2 192.1( ) kip ftïïï½ Maximum Service Live Load Moments (HL-93): The dynamic load allowance (DLA) is applied to the truck portion only: (LRFD 3.6.2.1-1) MLLj DFm Mlanej 1 DLAï«( ) Mtruckj ïï«ï©ï« ï¹ï» ïïºï½ MLL T 80.8 465.7( ) kip ftïïï½ Live Load Shears: Vtruckj 8 kipï L 9 Lï 9 xfj ïï 84 ftïïï¦ï¨ ï¶ï¸ ïïºï½ Vtruck T 55.4 22.3( ) kipïï½ Vlanej wlane L xfj ïï¦ï¨ ï¶ï¸ 2 ï 2 Lï ïºï½ Vlane T 14.5 3.9( ) kipïï½ VLLj DFv Vlanej 1 DLAï«( ) Vtruckj ïï«ï©ï« ï¹ï» ïïºï½ VLL T 41.4 15.7( ) kipïï½ Thermal Gradient: (LRFD 3.12.3) γTG 1.0ïºï½ (no live live) γTG_L 0.5ïºï½ (with live load) Effects due to uniform temperature change: Since superstructure is not restrained axially, uniform temperature change causes no internal stress. Effects due to temperature gradient: Fig. 6: Positive temperature gradient (from LRFD 3.12.3-2) Assume AASHTO temperature Zone 1: T1 54ïºï½ (deg F) T2 14ïºï½ T3 0ïºï½ Atemp if hc 16 inïï³ 12 inïï¬ï hc 4 inïïï¬ï ï¨ ï©ïºï½ Atemp 12.00 inïï½ A1 4 inïïºï½ A2 Atempïºï½ A2 1 ftï½ B1-8
Compute gradient-induced curvature: Ï Î± l Σ Tai yiï Aiï ÎTi di Iiïï« ï¦ ï§ ï¨ ï¶ ï· ï¸ ï= (LRFD C4.6.6) Area1 A1 bfïïºï½ Area1 288 in 2 ïï½ I1 bf A1 3 ï 12 ïºï½ I1 384 in 4 ïï½ Area2 A2 bfïïºï½ Area2 864 in 2 ïï½ I2 bf A2 3 ï 12 ïºï½ I2 10368 in 4 ïï½ Îµgr α A T1 Area1ï T2 Area2ïï«ï¨ ï©ïïºï½ εgr 0.000177ï½ Epr 33000 wc 1.5 ï kcf 1.5ï ï f'cï ksi .5 ïïºï½ Epr 5072 ksiïï½ Fgr Epr Acï εgrïïºï½ Fgr 404.5 kipïï½ y1 ytc A1 2 ïïºï½ y1 10.53 inïï½ y2 ytc A1 A2 2 ï« ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ y2 2.53 inïï½ Ï Î± Ic T1 T2ï 2 ï¦ ï§ ï¨ ï¶ ï· ï¸ y1ï Area1ï T1 T2ïï¨ ï© A1 2 I1ïï« T2 2 ï¦ ï§ ï¨ ï¶ ï· ï¸ y2ï Area2ïï« T2ï¨ ï© A2 2 I2ïï« ï© ïª ïª ï« ï¹ ïº ïº ï» ïïºï½ Ï 0.000108 ft 1ï ï½ Only the internal stress component affects the unrestrained simple span: ÏE E α TGï α TuGïï Ï zïïï¨ ï©ï= (LRFD C4.6.6-6) Evaluate at top and bottom of precast: fTGt Epr α T2ï A1 A2ï« tslabï A2 ï¦ ï§ ï¨ ï¶ ï· ï¸ ï Ï ytcbïï ï© ïª ï« ï¹ ïº ï» ïïºï½ fTGt 0.0564 ksiïï½ fTGb Epr Ïï ytcbïïºï½ fTGb 0.2987 ksiïï½ fTGtt Epr α T1ï Ï ytcïïï¨ ï©ïïºï½ fTGtt 1.0705 ksiïï½ B1-9
1.7 Flexural Stresses At Release: Beam Self-Weight Stresses: fswrtj Mswrj St ïºï½ fswrt 0.291 1.292 ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ fswrbj Mswrj Sb ïïºï½ fswrb 0.256ï 1.135ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ At Final Conditions: Note: Since for a simple-span structural system of this type, it is unlikely that compression at the top of the deck at a given section would exceed its allowable value, calculation of those stresses will be omitted for simplicity. Only the stresses at the bottom and top of the precast beam itself will be computed. The precast weight and CIP deck weight are carried by the precast section only. Additional loads (i.e. barrier, overlay, live load) are carried by the composite section. Self-Weight: fswtj Mswfj St ïºï½ fswt 0.189 1.24 ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ fswbj Mswfj Sb ïïºï½ fswb 0.166ï 1.09ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ Deck Weight: fdecktj Mdeckj St ïºï½ fdeckt 0.16 1.05 ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ fdeckbj Mdeckj Sb ïïºï½ fdeckb 0.14ï 0.922ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ Barriers: fbarriertj Mbarrierj Stcb ïºï½ fbarriert 0.004 0.025 ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ fbarrierbj Mbarrierj Sbc ïïºï½ fbarrierb 0.007ï 0.043ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ fbarrierttj Mbarrierj Stc ïºï½ fbarriertt 0.005 0.036 ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ (top of topping) Future Wearing Surface: ffwstj Mfwsj Stcb ïºï½ ffwst 0.006 0.041 ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ ffwsbj Mfwsj Sbc ïïºï½ ffwsb 0.011ï 0.073ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ ffwsttj Mfwsj Stc ïºï½ ffwstt 0.009 0.06 ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ (top of topping) Live Load: fLLtj MLLj Stcb ïºï½ fLLt 0.088 0.508 ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ fLLbj MLLj Sbc ïïºï½ fLLb 0.155ï 0.892ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ fLLttj MLLj Stc ïºï½ fLLtt 0.128 0.737 ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ (top of topping) B1-10
Prestress Losses At Release: At release, two components of prestress loss are significant: relaxation of the prestressing steel and elastic shortening. Elastic shortening is the loss of prestress that results when the strands are detensioned and the precast beam shortens in length due to the applied prestress. When the strands are tensioned in the prestress bed and anchored at the abutments, the steel gradually begins to relax as a function of time. By the time the strands are detensioned a small, but measurable, loss due to steel relaxation has occurred. Steel Relaxation (short term): fpj Pull fpuïïºï½ fpj 202.5 ksiïï½ fpy 243 ksiïï½ ÎfpR1 log t hr ï¦ ï§ ï¨ ï¶ ï· ï¸ 40.0 fpj fpy 0.55ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ï fpjïïºï½ ÎfpR1 1.801 ksiïï½ (LRFD 5.9.5.4.4b-2) Elastic Shortening: Eci 33000 wc 1.5 ï kcf 1.5ï ï f'ciï ksi .5 ïïºï½ Eci 4496 ksiïï½ (LRFD 5.4.2.4-1) Aps No_Strands Astrandïïºï½ Aps 5.208 in 2 ïï½ (Area of strand at midspan) fpbt fpj ÎfpR1ïïºï½ fpbt 200.7 ksiïï½ ÎfpES Aps fpbtï I ecc 2 Aï«ï¨ ï©ï ecc Mswr2ï Aïï Aps I ecc 2 Aï«ï¨ ï©ï A Iï Eciï Ep ï« ïºï½ ÎfpES 8.986 ksiïï½ Total Prestress Loss at Release: Îfsr ÎfpES ÎfpR1ï«ïºï½ Îfsr 10.786 ksiïï½ %Loss Îfsr Pull fpuï 100ïïºï½ %Loss 5.3264ï½ fper fpj ÎfpESï ÎfpR1ïïºï½ fper 191.7 ksiïï½ Pr fper No_Strandsï Astrandïïºï½ Pr 998.4 kipïï½ At Final Conditions: Total Loss of Prestress: ÎfpT ÎfpES ÎfpLTï«= (LRFD 5.9.5.1-1) where: ïfpES = Sum of all losses due to elastic shortening at time of application of prestress load (ksi). ïfpLT = Total loss due to long-term effects, which include shrinkage and creep of the concrete and relaxation of the prestressing steel (ksi). B1-11
In pretensioned bridge girder design, stresses have traditionally been assessed at two timeframes: at release of prestress (i.e., when the prestress force is applied to the girder) and at final (long-term) conditions. Therefore, loss of prestress has been evaluated at these two periods in the life of the girder. However, with the new prestress loss procedure introduced in the 2005 Interim Revisions, long-term losses are computed in two steps: (a) The time period between prestress transfer and placement of the cast-in-place concrete deck and (b) the time period between deck placement and the end of the service life of the girder. These two periods correspond to the non-composite and composite phases of the structural system. The rate of stress change in the strands can differ significantly in each phase, hence the need to subdivide the long-term losses into two components. Loss at Release: The principal component of prestress loss when the strands are released and the prestress force in the strands is imparted into the girder is elastic shortening. This reduction in prestress (prestress loss) occurs essentially instantaneously. Loss at Final Conditions: The time-dependent loss of prestress consists of three distinct components. Loss due to: 1. Creep of girder concrete, 2. Relaxation of prestressing strands, and 3. Shrinkage of girder concrete. These are computed in two stages: 1. From time prestress force is imparted to the girder to the time the girder is erected and 2. From the time the CIP deck is placed to final time. Mathematically, this is expressed as: ïfpLT = (ïfpSR+ïfpCR+ïfpR1)id + (ïfpSD+ïfpCD+ïfpR2-ïfpSS)df (LRFD 5.9.5.4.1-1) Material Properties: The shrinkage and creep properties of the girder and deck need to be computed in preparation for the prestress loss computations. These are addressed in LRFD Article 5.4.2.3. Creep coefficients are computed in accordance with Article 5.4.2.3.2 and shrinkage strains are computed in accordance with Article 5.4.2.3.3. Creep Coefficients Girder creep coefficient at final time due to loading at transfer: Ïb tf tiï¬ï ï¨ ï© 1.9 kvsï khcï kfï ktdï ti 0.118ïï= (LRFD Eq. 5.4.2.3.2-1) where: ï¹b = Ratio of creep strain to elastic strain. kvs = Factor for the effect of volume to surface ratio. khc = Humidity factor for creep. kf = Factor for strength of concrete. ktd = Factor for time development. B1-12
kvs 1.45 0.13 VSb in ïïºï½ kvs 0.774ï½ Note: kvs must be greater than 1.0. (LRFD 5.4.2.3.2-1) kvs 1.000ïºï½ khc 1.56 0.008Hïïºï½ khc 1.000ï½ (LRFD Eq. 5.4.2.3.2-3) kf 5 1 f'ci ksi ï« ïºï½ kf 0.769ï½ (LRFD 5.4.2.3.2-4) tf tfinalïºï½ ti ttransferïºï½ t tf tiïïºï½ t 19999 dayïï½ ktd t day 61 4 f'ciï ksi ï t day ï« ïºï½ ktd 0.998ï½ (LRFD 5.4.2.3.2-5) Ïbfi 1.9 kvsï khcï kfï ktdï ti day ï¦ ï§ ï¨ ï¶ ï· ï¸ 0.118ï ïïºï½ Ïbfi 1.459ï½ Girder creep coefficient at time of CIP placement due to loading at transfer: ti ttransferïºï½ td tdeckïºï½ t td tiïïºï½ t 89 dayïï½ ktd t day 61 4 f'ciï ksi ï t day ï« ïºï½ ktd 0.695ï½ kvs 1.45 0.13 VSb in ïïºï½ kvs 0.774ï½ Note: kvs must be greater than 1.0. (LRFD 5.4.2.3.2-1) kvs 1.000ïºï½ khc 1.56 0.008Hïïºï½ khc 1.000ï½ (LRFD Eq. 5.4.2.3.2-3) kf 5 1 f'ci ksi ï« ïºï½ kf 0.769ï½ (LRFD 5.4.2.3.2-4) Ïbdi 1.9 kvsï khcï kfï ktdï ti day ï¦ ï§ ï¨ ï¶ ï· ï¸ 0.118ï ïïºï½ Ïbdi 1.016ï½ B1-13
Girder creep coefficient at final time due to loading at CIP placement: ti tdeckïºï½ t tf tiïïºï½ t 19910 dayïï½ ktd t day 61 4 f'ciï ksi ï t day ï« ïºï½ ktd 0.998ï½ kvs 1.45 0.13 VSb in ïïºï½ kvs 0.774ï½ Note: kvs must be greater than 1.0. (LRFD 5.4.2.3.2-1) kvs 1.000ïºï½ khc 1.56 0.008Hïïºï½ khc 1.000ï½ (LRFD Eq. 5.4.2.3.2-3) kf 5 1 f'ci ksi ï« ïºï½ kf 0.769ï½ (LRFD 5.4.2.3.2-4) Ïbfd 1.9 kvsï khcï kfï ktdï ti day ï¦ ï§ ï¨ ï¶ ï· ï¸ 0.118ï ïïºï½ Ïbfd 0.858ï½ CIP concrete creep coefficient from time of casting to final: khc 1.56 0.008 Hïïïºï½ khc 1.000ï½ kf 5 1 0.8 f'ctï ksi ï« ïºï½ kf 1.19ï½ kvs 1.45 0.13 VSd in ïïºï½ kvs 0.670ï½ Note: kvs must be greater than 1.0. kvs 1.000ïºï½ khc 1.56 0.008Hïïºï½ khc 1.000ï½ t tf tdeckïïºï½ t 19910 dayïï½ ktd t day 61 4 f'ciï ksi ï t day ï« ïºï½ ktd 0.998ï½ Ïdfd 1.9 kvsï khcï kfï ktdï tdeck day ï¦ ï§ ï¨ ï¶ ï· ï¸ 0.118ï ïïºï½ Ïbfd 0.858ï½ B1-14
Shrinkage Strains Girder concrete shrinkage strain between transfer and final time: The concrete shrinkage strain, ï¥bid, is computed in accordance with Art. 5.4.2.3.3: εsh kvsï khsï kfï ktdï 0.48ï 10 3ï ï= (LRFD 5.4.2.3.3-1) where: kvs = Factor for the effect of volume to surface ratio. khs = Factor for humidity. kf = Factor for strength of concrete. ktd = Factor for time development. kvs 1.45 0.13 VSb in ïïºï½ kvs 0.774ï½ Note: kvs must be greater than 1.0 (LRFD 5.4.2.3.2-1) kvs 1.000ïºï½ khs 2.00 0.014 Hïïïºï½ khs 1.020ï½ (LRFD 5.4.2.3.3-2) kf 5 1 f'ci ksi ï« ïºï½ kf 0.769ï½ (LRFD 5.4.2.3.2-4) tf tfinalïºï½ ti ttransferïºï½ t tf tiïïºï½ t 19999 dayïï½ ktd t day 61 4 f'ciï ksi ï t day ï« ïºï½ ktd 0.998ï½ (LRFD 5.4.2.3.2-5) εbif kvsï khsï kfï ktdï 0.48ï 10 3ï ïïºï½ εbif 376ï 10 6ï ï´ï½ Girder concrete shrinkage strain between transfer and CIP placement: kvs 1.45 0.13 VSb in ïïºï½ kvs 0.774ï½ Note: kvs must be greater than 1.0 (LRFD 5.4.2.3.2-1) kvs 1.000ïºï½ khs 2.00 0.014 Hïïïºï½ khs 1.020ï½ (LRFD 5.4.2.3.3-2) kf 5 1 f'ci ksi ï« ïºï½ kf 0.769ï½ (LRFD 5.4.2.3.2-4) t td tiïïºï½ t 89 dayïï½ B1-15
ktd t day 61 4 f'ciï ksi ï t day ï« ïºï½ ktd 0.695ï½ (LRFD 5.4.2.3.2-5) εbid kvsï khsï kfï ktdï 0.48ï 10 3ï ïïºï½ εbid 262ï 10 6ï ï´ï½ CIP concrete shrinkage from deck placement to final: kvs 1.45 0.13 VSd in ïïºï½ kvs 0.670ï½ Note: kvs must be greater than 1.0 (LRFD 5.4.2.3.2-1) kvs 1.000ïºï½ khs 2.00 0.014 Hïïïºï½ khs 1.020ï½ (LRFD 5.4.2.3.3-2) kf 5 1 f'ci ksi ï« ïºï½ kf 0.769ï½ (LRFD 5.4.2.3.2-4) tf tfinalïºï½ ti tdeckïºï½ t tf tiïïºï½ t 19910 dayïï½ ktd t day 61 4 f'ciï ksi ï t day ï« ïºï½ ktd 0.998ï½ (LRFD 5.4.2.3.2-5) εddf kvsï khsï kfï ktdï 0.48ï 10 3ï ïïºï½ εddf 376ï 10 6ï ï´ï½ Girder concrete shrinkage strain between CIP placement and final time: The girder concrete shrinkage between deck placement and final time is the difference between the shrinkage at time of deck placement and the total shrinkage at final time. εbdf εbif εbidïïºï½ εbdf 114ï 10 6ï ï´ï½ Loss from Transfer to CIP Placement: The prestress loss from transfer of prestress to placement of CIP consists of three loss components: shrinkage of the girder concrete, creep of the girder concrete, and relaxation of the strands. That is, Time-Dependent Loss from Transfer to CIP Placement = ïfpSR+ïfpCR+ïfpR1 B1-16
Shrinkage of Concrete Girder: ÎfpSR εbid Epï Kidï= (LRFD5.9.5.4.2a-1) where: ï¥bid = Concrete shrinkage strain of girder between transfer and CIP placement. Computed using LRFD Eq. 5.4.2.3.3-1 Ep = Modulus of elasticity of prestressing strand (ksi). Kid = Transformed steel coefficient that accounts for time-dependent interaction between concrete and bonded steel in the section being considered for the time period between transfer and CIP placement. The transformed section coefficient, kid, is computed using: Kid 1 1 Ep Eci Aps A ï 1 A epg 2 ï Ig ï« ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ ï 1 0.7 Ïb tf tiï¬ï ï¨ ï©ïï«ï¨ ï©ïï« = (LRFD Eq. 5.9.5.4.2a-2) where: epg = Eccentricity of strands with respect to centroid of girder (in). ï¹b(tf,ti) = Creep coefficient at final time due to loading introduced at transfer. epg eccïºï½ epg 5.42 inïï½ I 27120 in 4 ïï½ A 936 in 2 ïï½ Kid 1 1 Ep Eci Aps A ï 1 A epg 2 ï I ï« ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ ï 1 0.7 Ïbfiïï«ï¨ ï©ïï« ïºï½ Kid 0.8745ï½ Therefore, the prestress loss due to shrinkage of the girder concrete between time of transfer and CIP placement is: ÎfpSR εbidï Epï Kidïïºï½ ÎfpSR 6.526 ksiïï½ Creep of Concrete Girder: ÎfpCR Ep Eci fcgpï Ïb td tiï¬ï ï¨ ï© Kidï= (LRFD 5.9.5.4.2b-1) where: fcgp = Concrete stress at cg of prestress pattern due to the prestressing force immediately after transfer and the self-weight of the girder at the section of maximum moment (ksi). Section modulus at cg of strand pattern: epti eccïºï½ epti 5.42 inïï½ Scgp I epti ïºï½ Scgp 5004 in 3 ïï½ B1-17
pInitial prestress force: fpj Pull fpuïïºï½ Pinit fpj Apsïïºï½ Pinit 1054.6 kipïï½ fcgp Pinit 1 A epti Scgp ï« ï¦ ï§ ï¨ ï¶ ï· ï¸ ï Mswf2 Scgp ïïºï½ fcgp 1.567 ksiïï½ ÎfpCR Ep Eci fcgpï Ïbdi Kidïïºï½ ÎfpCR 8.829 ksiïï½ For this example, it will be assumed to be equal to 1.2 ksi (Article 5.9.5.4.2b permits this). ÎfpR1 1.2 ksiïïºï½ Total prestress loss at time of CIP placement: ÎfpLTid ÎfpSR ÎfpCRï« ÎfpR1ï«ïºï½ Calculated above: ÎfpSR 6.53 ksiïï½ ÎfpCR 8.83 ksiïï½ ÎfpR1 1.20 ksiïï½ ÎfpLTid 16.555 ksiïï½ Loss from CIP Placement to Final: The prestress loss from placement of CIP to final conditions consists of four loss components: shrinkage of the girder concrete, creep of the girder concrete, and relaxation of the strands. That is, Time-Dependent Loss from CIP Placement to Final = ïfpSD + ïfpCD + ïfpR2 - fss Shrinkage of Concrete Girder: ÎfpSD εbdf Epï Kdfï= (LRFD5.9.5.4.3a-1) where: ï¥bdf = Concrete shrinkage strain of girder between time of CIP placement and final time. Computed using LRFD Eq. 5.4.2.3.3-1 Kdf = Transformed steel coefficient that accounts for time-dependent interaction between concrete and bonded steel in the section being considered for the time period between the time of CIP placement and final time. Compute Kdf: Kdf 1 1 Ep Eci Aps Ac ï 1 Ac epc 2 ï Ic ï« ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ ï 1 0.7Ïb tf tiï¬ï ï¨ ï©ï«ï¨ ï©ïï« = (LRFD 5.9.5.4.3a-2) B1-18
where: epc = Eccentricity of strands with respect to centroid of composite section Ac = For composite sections, the gross area of the composite section should be used. However, since this girder is non-composite, the gross area of the non-composite section is used. Ic = Gross area of composite section for composite systems, gross area of bare beam for non-composite systems. ï¹b(tf,ti) = Girder creep coefficient epc eccïºï½ epc 5.42 inïï½ Ac: A 936 in 2 ïï½ Ic: I 27120 in 4 ïï½ Kdf 1 1 Ep Eci Aps A ï 1 A epc 2 ï I ï« ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ ï 1 0.7Ïbfiï«ï¨ ï©ïï« ïºï½ Kdf 0.874ï½ Therefore, prestress loss due to shrinkage of girder concrete between CIP placement and final is: ÎfpSD εbdfï Epï Kdfïïºï½ ÎfpSD 2.842 ksiïï½ Creep of Concrete Girder: ÎfpCD Ep Eci fcgpï Ïb tf tiï¬ï ï¨ ï© Ïb td tiï¬ï ï¨ ï©ïï¨ ï©ï Kdfï Ep Ec Îfcdï Ïb tf tdï¬ï ï¨ ï©ï Kdfïï« 0.0ï³= (LRFD5.9.5.4.3b-1) where: ïfcd = Change in concrete stress at centroid of prestressing strands due to long-term losses between transfer and CIP placement combined with superimposed loads (ksi). ï¹b(tf,td) = Girder creep coefficient at final time due to loading at CIP placement per Eq. 5.4.2.3.2-1. Let: ÎfpCD ÎfpCD1 ÎfpCD2ï«= compute ïfpCD1: ÎfpCD1 Ep Eci fcgpï Ïbfi Ïbdiïï¨ ï©ï Kdfïïºï½ ÎfpCD1 3.844 ksiïï½ compute ïfpCD2: compute ïfcd: Îfcd ÎP 1 Ag epg 2 Ig ï« ï¦ï§ ï§ ï¨ ï¶ï· ï· ï¸ ï Mfws Mbarrierï« Mdeckï« Scgp ï¦ ï§ ï¨ ï¶ ï· ï¸ ï= ÎP ÎfpLTidï Apsïïºï½ ÎP 86.2ï kipïï½ epg yb ycgïïºï½ epg 5.42 inïï½ B1-19
Îfcd ÎP 1 A epg 2 I ï« ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ ï Mfws2 Mbarrier2 ï« Mdeck2 ï« Scgp ï¦ï§ ï§ ï¨ ï¶ï· ï· ï¸ ïïºï½ Îfcd 0.924ï ksiïï½ Ec 33000 1.0ï 0.14 f'c 1000 ksiï ï« ï¦ ï§ ï¨ ï¶ ï· ï¸ 1.5 ï f'c ksi ï ksiïïºï½ Ec 4921 ksiïï½ ÎfpCD2 Ep Ec Îfcdï Ïbfdï Kdfïïºï½ ÎfpCD2 4.016ï ksiïï½ Therefore, ÎfpCD ÎfpCD1 ÎfpCD2ï«ïºï½ ÎfpCD 0.171ï ksiïï½ Shrinkage of the CIP deck: Ad Aslab n ïºï½ Ad 432 in 2 ïï½ Ecd 33000 wc 1.5 ï kcf 1.5ï ï f'ctï ksi .5 ïïºï½ Ecd 3834 ksiïï½ ed h 2 ïºï½ ed 9 inïï½ Îfcdf εddf Adï Ecdï 1 0.7 Ïdfdïï«ï¨ ï© 1 Ac epc edï Ic ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Îfcdf 0.498ï ksiïï½ ÎfpSS Ep Ec Îfcdfï Kdfï 1 0.7 Ïbfdïï«ï¨ ï©ïïºï½ ÎfpSS 4.0364ï ksiïï½ Relaxation of Prestressing Strands: ÎfpR2 ÎfpR1ïºï½ ÎfpR2 1.2 ksiïï½ (LRFD 5.9.5.4.3c-1) Total prestress loss from CIP placement to final, therefore, is: ÎfpLTdf ÎfpSD ÎfpCDï« ÎfpR2ï« ÎfpSSïïºï½ Calculated above: ÎfpSD 2.84 ksiïï½ ÎfpCD 0.17ï ksiïï½ ÎfpR2 1.2 ksiïï½ ÎfpSS 4.0364ï ksiïï½ ÎfpLTdf 7.907 ksiïï½ Summary of Time-Dependent Losses Losses from Transfer to CIP Placement Girder shrinkage: ÎfpSR 6.53 ksiïï½ Girder creep: ÎfpCR 8.83 ksiïï½ Strand relaxation: ÎfpR1 1.2 ksiïï½_______________ Total = ÎfpLTid 16.555 ksiïï½ B1-20
Losses from CIP Placement to Final Girder shrinkage: ÎfpSD 2.84 ksiïï½ Girder creep: ÎfpCD 0.17ï ksiïï½ Strand relaxation: ÎfpR2 1.2 ksiïï½ Differential Shrinkage:ÎfpSS 4.0364ï ksiïï½ _______________ Total = ÎfpLTdf 7.907 ksiïï½ ÎfpLT ÎfpLTid ÎfpLTdfï«ïºï½ ÎfpLT 24.46 ksiïï½ ÎfPT ÎfpES ÎfpLTï«ïºï½ ÎfPT 33.45 ksiïï½ %Loss ÎfPT Pull fpuï 100ïïºï½ %Loss 16.52ï½ Check effective stress after losses: fpe Pull fpuï ÎfPTïïºï½ fpe 169.1 ksiïï½ fallow 0.80 fpyïïºï½ fallow 194.4 ksiïï½ (LRFD 5.9.3-1) Stresses Due to Prestress at End of Transfer Length and Midspan At Release Conditions: j 1 2ï®ï®ïºï½ fpsrbj Pr 1 A ecc Sb ï«ï¦ï§ ï¨ ï¶ ï· ï¸ ïïºï½ fpsrb T 2.747 2.747( ) ksiïï½ fpsrtj Pr 1 A ecc St ïï¦ï§ ï¨ ï¶ ï· ï¸ ïïºï½ fpsrt T 0.845ï 0.845ï( ) ksiïï½ At Final Conditions: distj xfj Lovr Ldesï 2 ï«ïºï½ dist T 2.44 25( ) ftï½ Lt 60 dbïïºï½ Lt 36 inïï½ dtj if distj Ltï¾ 1.0ï¬ï distj Lt ï¬ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïºï½ dt T 0.8133 1( )ï½ (Fraction strands are transferred.) j 1 2ï®ï®ïºï½ Pfj fpe dtjï No_Strandsï Astrandïïºï½ Pf T 716.1 880.4( ) kipïï½ fpsbj Pfj 1 A ecc Sb ï«ï¦ï§ ï¨ ï¶ ï· ï¸ ïïºï½ fpsb 1.97 2.422 ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ fpstj Pfj 1 A ecc St ïï¦ï§ ï¨ ï¶ ï· ï¸ ïïºï½ fpst 0.606ï 0.745ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ B1-21
Service Stress Check At Release Conditions: Top of precast section (tension): frtj fpsrtj fswrtj ï«ïºï½ frt T 0.554ï 0.447( ) ksiïï½ fallow_rt 0.24ï f'ciï ksiïïºï½ fallow_rt 0.563ï ksiïï½ Status_ServiceLSrtj if frtj fallow_rtï³ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSrt T "OK" "OK"( )ï½ Bottom of precast section (compression): frbj fpsrbj fswrbj ï«ïºï½ frb T 2.491 1.612( ) ksiïï½ fallow_rc 0.6 f'ciïïºï½ fallow_rc 3.3 ksiïï½ Status_ServiceLSrcj if frtj fallow_rcï£ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSrc T "OK" "OK"( )ï½ Compute required amount of top tension steel at transfer point: xtt h frt1 frt1 frb1 ï« ï¦ ï§ ï§ ï¨ ï¶ ï· ï· ï¸ ïïºï½ xtt 5.14ï inïï½ (LRFD C5.9.4.1.2) Ttt frt1 2 bvï xttïïºï½ Ttt 102.49 kipïï½ Att Ttt 30 ksiï ïºï½ Att 3.4162 in 2 ïï½ Assume #8 bars will be used as top tension steel. Required number of bars: Ntt Att 0.79 in 2 ï ïºï½ Ntt 4ï½ At Final Conditions: Check Service Limit States: Service III Limit State (Tensile Stresses in Bottom of Beam): fIIIbj fpsbj fswbj ï« fdeckbj ï« fbarrierbj ï« ffwsbj ï« 0.8 fLLbj ïï« 0.5 fTGbïï«ïºï½ fIIIb T 1.672 0.271ï( ) ksiïï½ fallow_ft 0.19ï f'cï ksiïïºï½ fallow_ft 0.503ï ksiïï½ (LRFD 5.9.4.2.2b) Status_ServiceLSftj if fIIIbj fallow_ftï³ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSft T "OK" "OK"( )ï½ Service I (Compressive Stresses in Top of Beam): Compressive Stress Due to Permanent Loads: fIdtj fpstj fswtj ï« fdecktj ï« fbarriertj ï« ffwstj ï« fTGtï«ïºï½ fIdt T 0.1912ï 1.6673( ) ksiïï½ fallow_fcd 0.45 f'cïïºï½ fallow_fcd 3.15 ksiïï½ (LRFD 5.9.4.2.1) Status_ServiceLSfcdj if fIdtj fallow_fcdï£ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSfcd T "OK" "OK"( )ï½ B1-22
Compressive Stress Due to Full Dead Load + Live Load: fIltj fpstj fswtj ï« fdecktj ï« fbarriertj ï« ffwstj ï« fLLtj ï« 0.5 fTGtïï«ïºï½ fIlt T 0.1312ï 2.1476( ) ksiïï½ fallow_fcl 0.6 f'cïïºï½ fallow_fcl 4.2 ksiïï½ (LRFD 5.9.4.2.1) Status_ServiceLSfclj if fIltj fallow_fclï£ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSfcl T "OK" "OK"( )ï½ Service I (Compressive Stresses in Top of Topping): Only loads acting on composite section cause stresses in the topping. Since flange slenderness ratio is less than 15, set Ïw = 1. Compressive Stress Due to Permanent Loads: fIdttj fbarrierttj ffwsttj ï« fTGttï«ïºï½ fIdtt T 1.085 1.1662( ) ksiïï½ Status_ServiceLSfcdtj if fIdttj fallow_fcdï£ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSfcdt T "OK" "OK"( )ï½ Compressive Stress Due to Full Dead Load + Live Load: fIlttj fbarrierttj ffwsttj ï« fLLttj ï« 0.5 fTGttïï«ïºï½ fIltt T 0.6777 1.3682( ) ksiïï½ Status_ServiceLSfcltj if fIlttj fallow_fclï£ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSfclt T "OK" "OK"( )ï½ 1.8 Flexural Strength Check Muj 1.25 Mswfj Mdeckj ï« Mbarrierj ï«ï¦ï¨ ï¶ï¸ ï 1.5 Mfwsj ïï« 1.75 MLLj ïï«ïºï½ Mu T 257 1575( ) kip ftïïï½ Î²1 if f'ct 4 ksi( )ïï£ 0.85ï¬ï if f'ct 8 ksi( )ïï³ 0.65ï¬ï 0.85 f'ct 4 ksi( )ïï 1 ksi( )ï 0.05ï ï© ïª ï« ï¹ ïº ï» ïï¬ï ï© ïª ï« ï¹ ïº ï» ï¬ï ï© ïª ï« ï¹ ïº ï» ïºï½ β1 0.85ï½ (LRFD 5.7.2.2) Preliminary estimate of Ld: Ld 270.0 ksiï 2 3 fpeïï ï¦ ï§ ï¨ ï¶ ï· ï¸ dbï ksi 1ï ïïºï½ Ld 94.38 inïï½ (LRFD Eq. 5.11.4.2-1) Kld if h 24 inïï£ 1.0ï¬ï 1.6ï¬ï ( )ïºï½ Kld 1ï½ dfj if distj Ltï¼ distj Lt fpe fpu ïï¬ï if distj Kld Ldïï¼ fpe distj Ltï Kld Ldï Ltï ï¦ ï§ ï¨ ï¶ ï· ï¸ fpu fpeïï¨ ï©ïï« fpu ï¬ï 1.0ï¬ï ï© ïª ïª ïª ï« ï¹ ïº ïº ïº ï» ï¬ï ï© ïª ïª ïª ï« ï¹ ïº ïº ïº ï» ïºï½ df T 0.5092 1( )ï½ (fraction strands are developed) Apsj No_Strands dfjï Astrandïïºï½ Aps T 2.6522 5.208( ) in 2 ïï½ b beffïºï½ dp h thï« tslabï« twsï ycgïïºï½ k 2 1.04 fpy fpu ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ k 0.28ï½ (LRFD 5.7.3.1.1-2) hf tslabïºï½ B1-23
cj Apsj fpuï 0.85 f'ctï β1ï bï k Apsj ï fpu dp ïï« ïºï½ c T 3.35 6.42( ) inïï½ (LRFD 5.7.3.1.1-4) bwj if cj hfï£ bï¬ï bvï¬ï ï¨ ï©ïºï½ bwT 72 72( ) inïï½ cj Apsj fpuï 0.85 f'ctï b bwj ïï¦ï¨ ï¶ï¸ ï hfïï 0.85 f'ctï β1ï bwj ï k Apsj ï fpu dp ïï« ïºï½ c T 3.35 6.42( ) inïï½ (LRFD 5.7.3.1.1-3) fpsj fpu 1 k cj dp ïï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ fps T 263 256.5( ) ksiïï½ (LRFD 5.7.3.1.1-1) aj β1 cjïïºï½ a T 2.8489 5.4573( ) inïï½ Ld fps1 2 3 fpeïï ï¦ ï§ ï¨ ï¶ ï· ï¸ dbï ksi 1ï ïïºï½ Ld 90.16 inïï½ (LRFD 5.11.4.1-1) distj xfj Lovr Ldesï 2 ï«ïºï½ dist T 2.44 25( ) ftï½ dfj if distj Ltï¼ distj Lt fpe fpsj ïï¬ï if distj Kld Ldïï¼ fpe distj Ltï Kld Ldï Ltï ï¦ ï§ ï¨ ï¶ ï· ï¸ fpsj fpeïï¦ï¨ ï¶ ï¸ ïï« fpsj ï¬ï 1.0ï¬ï ï© ïª ïª ïª ï« ï¹ ïº ïº ïº ï» ï¬ï ï© ïª ïª ïª ï« ï¹ ïº ïº ïº ï» ïºï½ df T 0.5229 1( )ï½ (fraction strands are developed) Apsj No_Strands dfjï Astrandïïºï½ Aps T 2.7231 5.208( ) in 2 ïï½ Mnj Apsj fpsj ï dp aj 2 ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ï 0.85 f'cï b bwj ïï¦ï¨ ï¶ï¸ ï hfï aj 2 hf 2 ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï«ïºï½ (LRFD 5.7.3.2.2-1) Mn T 2063 3704( ) kip ftïïï½ Compute phi for each section: Ïfj 0.583 0.25 dp cj 1ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï«ïºï½ Ïf T 3.02 1.73( )ï½ (LRFD Eq. 5.5.4.2.1-1) Ïfj if Ïfj 0.75ï£ 0.75ï¬ï if Ïfj 1.0ï¾ 1.0ï¬ï Ïfj ï¬ï ï¦ï¨ ï¶ï¸ ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Ïf T 1.00 1.00( )ï½ ÏMnj Ïfj Mnj ïïºï½ Mrj ÏMnj ïºï½ Mr T 2063 3704( ) kip ftïïï½ Mu T 257 1575( ) kip ftïïï½ Status_StrengthLSj if Muj Mrj ï£ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_StrengthLS T "OK" "OK"( )ï½ B1-24
Maximum Steel Check: Note: The provisions contained in Art. 5.7.3.3.1 to check maximum reinforcement were deleted in 2005. This check is now effectively handled by varying phi, depending upon whether the section is compression or tension controlled. See Art. 5.5.4.2.1. Minimum Steel Check: Compute Cracking Moment at Midspan: fr 0.37 f'cï ksiïïºï½ fr 0.979 ksiïï½ Mcr Sbc fr fpsb2 ï«ï¦ï¨ ï¶ï¸ ï Mswf2 Mdeck2 ï«ï¦ï¨ ï¶ï¸ Sbc Sb 1ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïïºï½ Mcr if Mcr Sbc frïï¼ Sbc frïï¬ï Mcrï¬ï ï¨ ï©ïºï½ Mcr 1265 kip ftïïï½ 1.2 Mcrï 1518 kip ftïïï½ Ref: Mr2 3704.1 kip ftïïï½ 1.33 Mu2 ï 2095.3 kip ftïïï½ Mmin if 1.2 Mcrï 1.33 Mu2 ï¼ 1.2Mcrï¬ï 1.33 Mu4 ïï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Mmin 1518 kip ftïïï½ Status_MinStl if Mmin Mr2 ï¼ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_MinStl "OK"ï½ 1.9 Vertical Shear Design At each section the following must be satisfied for shear: Vu Vrï£ (LRFD 5.8.2.1-2) Vr ÏVn= Vn Vc Vsï« Vpï«= (LRFD 5.8.3.3-1) Critical Section for Shear: (LRFD 5.8.3.2) The critical section for shear near a support in which the reaction force produces compression in the end of the member is, from the face of support (Fig. 2), the greater of: a. 0.5dvcot(ï±), or b. dv where, dv = Effective shear depth = Distance between resultants of tensile and compressive forces = de - a/2 Compute Aps & dp Note that Aps in the equation used to compute ï¥x is the area of the prestressing steel on the flexural tension side only. It is not the total area of strands. The variable Aps_ex is introduced below to handle this. B1-25
NoAps_ft Pat_n Pat_hï¬ï hc_2ï¬ï ( ) j last Pat_n( )ï¬ N 0ï¬ N N Pat_njï«ï¬ j j 1ïï¬ break j 0=if Pat_hj hc_2 2 ï£while N ïºï½ NAps_ft NoAps_ft Pat_n Pat_hï¬ï hcï¬ï ï¨ ï©ïºï½ NAps_ft 24ï½ CGAps_ft Pat_n Pat_hï¬ï hc_2ï¬ï ( ) j last Pat_n( )ï¬ N 0ï¬ N_cg 0ï¬ N N Pat_njï«ï¬ N_cg N_cg Pat_nj Pat_hjïï«ï¬ j j 1ïï¬ break j 0=if Pat_hj hc_2 2 ï£while N_cg N ïºï½ CGAps_ft CGAps_ft Pat_n Pat_hï¬ï hcï¬ï ï¨ ï©ïºï½ CGAps_ft 3 inïï½ dpv h thï« tslabï« twsï CGAps_ftïïºï½ dpv 36 inïï½ Aps_ex dt1 NAps_ftï Astrandïïºï½ Aps_ex 4.236 in 2 ïï½ dt1 0.8133ï½ Compute "a" based on Aps on Flexural-Tension Side: Aps_a df1 NAps_ftï Astrandïïºï½ Aps_a 2.723 in 2 ïï½ df1 0.5229ï½ cv Aps_a fpuï 0.85 f'ctï β1ï bï k Aps_aï fps1 dpv ïï« ïºï½ cv 3.44 inïï½ bwv if cv hfï£ bï¬ï bvï¬ï ï¨ ï©ïºï½ bwv 72 inïï½ cv Aps_a fpuï 0.85 f'ctï b bwvïï¨ ï©ï hfïï 0.85 f'ctï β1ï bwvï k Aps_aï fps1 dpv ïï« ïºï½ cv 3.44 inïï½ av β1 cvïïºï½ av 2.9252 inïï½ Mnv Aps_a fps1 ï dpv av 2 ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ï 0.85 f'cï b bwvïï¨ ï©ï hfï av 2 hf 2 ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï«ïºï½ Mnv 2061 kip ftïïï½ B1-26
Compute dv: dv Mnv Aps_a fps1 ï ïºï½ dv 34.537 inïï½ (LRFD C5.8.2.9-1) But dv need not be taken less than the greater of 0.9de and 0.72h. Thus, 0.9 dpï 32.4 inïï½ 0.72 hcï 17.28 inïï½ Min_dv if 0.9 dpï 0.72 hcïï³ 0.9 dpïï¬ï 0.72 hcïï¬ï ï¨ ï©ïºï½ Min_dv 32.4 inïï½ dv if dv Min_dvï¼ Min_dvï¬ï dvï¬ï ï¨ ï©ïºï½ dv 34.537 inïï½ To compute critical section, assume: θ 20.8 degïïºï½ 0.5 dvï cot θ( )ï 45.4602 inïï½ Crit_sec if dv 0.5 dvï cot θ( )ïï¾ dvï¬ï 0.5 dvï cot θ( )ïï¬ï ï¨ ï©ïºï½ (LRFD 5.8.2.7) Crit_sec 45.46 inïï½ Crit_sec 3.788 ftï½ Assuming that the distance from the face of support to the centerline of bearing is half the bearing pad length, the critical section for shear is: xf1 Crit_sec Lpad 2 ï«ïºï½ xf1 4.288 ftï½ (Note: Compare this to previous assumption) At the critical section, the factored shear is: Vu 1.25 Vswf1 Vdeck1 ï« Vbarrier1 ï«ï¦ï¨ ï¶ï¸ ï 1.5 Vfws1 ïï« 1.75 VLL1 ïï«ïºï½ Vu 129.6 kipïï½ Since the pattern profile for PCSSS beams will always be straight, there will be no vertical component of the prestressing force, Vp: Vp 0.0 kipïïºï½ Compute maximum permissible shear capacity at a section: Vr_max Ïv 0.25 f'cï bvï dvï Vpï«ï¨ ï©ïïºï½ Vr_max 3917 kipïï½ (LRFD 5.8.3.3-2) Status_Vrmax if Vu Vr_maxï£ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_Vrmax "OK"ï½ The shear contribution from the concrete, Vc, is given by: Vc 0.0316 βï fcï bv dvï= (LRFD 5.8.3.3-3) To calculate β, first compute fpo: This can be taken as 0.70fpu per the 2000 Interim Specifications: fpo 0.75 fpuïïºï½ fpo 202.5 ksiïï½ (LRFD 5.8.3.4.2) In the 2008 Interim the procedure for the calculation of θ and β was moved to an appendix. The new procedure for the calculation of these two values involves a new value, εs. Check lower bound for Mu: MuLB if Mu1 dv Vu Vpïï¨ ï©ïï¼ dv Vu Vpïï¨ ï©ïï¬ï Mu1ï¬ï ï©ï« ï¹ï»ïºï½ MuLB 372.9 kip ftïïï½ Îµs MuLB dv Vu Vpïï¨ ï©ï« Aps_ex fpoïï Ep Aps_exï ïºï½ εs 0.00495882ïï½ (LRFD 5.8.3.4.2-4) B1-27
If εs is less than zero, it can be taken equal to zero: εs if εs 0ï¼ 0.0ï¬ï εsï¬ï ï¨ ï©ïºï½ εs 0ï½ Î² 4.8 1 750 εsïï« ïºï½ β 4.8ï½ (LRFD 5.8.3.4.2-1) θ 29 3500 εsïï«ïºï½ θ 29ï½ (LRFD 5.8.3.4.2-3) New value for Vc Vc 0.0316 βï f'cï ksiï bvï dvïïºï½ Vc 997.9 kipïï½ Required Vs is, therefore: Vs Vu Ïv Vcï Vpïïºï½ Vs 854ï kipïï½ Assuming two vertical legs of No. #4 bars: Av Vs fy dvï cot θ( )ï ïºï½ Av 4.387ï in 2 ft ïï½ (LRFD C5.8.3.3-1) Spac 2 0.2ï in 2 ï Av ïºï½ Spac 1.1ï inïï½ (stirrup spacing) Check minimum transverse reinforcement: Av_min 0.0316 f'cï ksiï bv fy ïïºï½ Av_min 1.2 in 2 ft ïï½ (LRFD 5.8.2.5-1) Check maximum stirrup spacing: (LRFD 5.8.2.7-2) Vspc 0.1 f'cï bvï dvïïºï½ Vspc 1740.7 kipïï½ Ref: Vu 129.6 kipïï½ dv 34.54 inïï½ Max_spac if Vu Vspcï¼ if 0.8 dvï 24 inïï¼ 0.8 dvïï¬ï 24 inïï¬ï ï¨ ï©ï¬ï if 0.4 dvï 12 inïï¼ 0.4 dvïï¬ï 12 inïï¬ï ï¨ ï©ï¬ï ï¨ ï©ïºï½ Max_spac 24 inïï½ 1.10 Longitudinal Reinforcement Check LRFD requires that the longitudinal steel be checked at all locations along the beam. This requirement is made to ensure that the longitudinal reinforcement is sufficient to develop the required tension tie, which is required for equilibrium. Equation 5.8.3.5-1 is the general equation, applicable at all sections. However, for the special case of the inside edge of bearing at simple-end supports, the longitudinal reinforcement must be able to resist a tensile force of (Vu/ï¦ - 0.5Vs - Vp)cot(ï±). Note that when pretensioned strands are used to develop this force, only a portion of the full prestress force may be available near the support due to partial transfer. Additionally, only those strands on the flexural tension side of the member contribute to the tension tie force. B1-28
Required Tension Tie Force: If only the minimum amount of transverse reinforcement that is required by design is provided, the required tension tie force is: FL_reqd Vu Ïv 0.5 Vsïï Vpï ï¦ ï§ ï¨ ï¶ ï· ï¸ cot θ( )ïïºï½ FL_reqd 643.6 kipïï½ Eq. 5.8.3.5-2 However, a greater amount of stirrup reinforcement is typically provided than is required, which increases the actual Vs. Note that by Eq. 5.8.3.5-2, increasing Vs decreases the required tension tie force. Hence, it is helpful to use the computed value of Vs that results from the transverse reinforcement detailed in the design. In this case, the required tension tie force is: Assume 2 legs of No. 4 bars at 12" on center (amount of steel at the critical section for shear): Av_actual 0.4 in 2 ïïºï½ Vs_actual Av_actual fyï dvï cot θ( )ï 12 inï ïºï½ Vs_actual 77.9 kipïï½ Check the upper limit of Vs: Vs_actual_max Vu Ïv ïºï½ Vs_actual_max 144 kipïï½ LRFD 5.8.3.5 Adopt the lesser of provided Vs and the upper limit of Vs: Vs_actual if Vs_actual Vs_actual_maxï¼ Vs_actualï¬ï Vs_actual_maxï¬ï ï¨ ï©ïºï½ Vs_actual 77.9 kipïï½ The revised value of the required tension tie force is: FL_reqd Vu Ïv ï¦ ï§ ï¨ ï¶ ï· ï¸ 0.5 Vs_actualïï Vpï ï© ïª ï« ï¹ ïº ï» cot θ( )ïïºï½ FL_reqd 118.4 kipïï½ Provided Tension Tie Force: The longitudinal reinforcement that contributes to the tension tie are strands that are on the flexural tension side of the precast section. Near the ends of the precast section, the strands are typically only partially effective. C5.8.3.5 of the 2006 Interim Revisions permits the strand stress in regions of partial development to be estimated using a bilinear variation, as shown in Fig. 4. Figure 6: Variation in strand stress in relation to distance from beam end. B1-29
The stress in the strands at a given section depends on the location of the section with respect to the end of the precast section. If the section is between the end of the beam and L t (see Fig. 5), a linear interpolation is performed using a stress variation of 0.0 at the end of the beam to f pe at a distance of Lt from the end of the precast section. If the section is to the right of Lt but to the left of Ld, then the stress is interpolated between fpe and fps. If the section is to the right of Ld, then the stress is assumed to be a constant value of f ps. At the face of bearing, the stress in the effective strands is: xFB Lovr Ldesï 2 Lpad 2 ï«ïºï½ xFB 1.00 ftï½ (Distance from physical end of beam to face of bearing) Astr Astrandïºï½ FL_prov if xFB Ltï¼ NAps_ft Astrï fpeï xFB Lt ïï¬ï if xFB Kld Ldïï¼ NAps_ft Astrï fpe xFB Kld Ldïï Ltï« Kld Ldï Ltï ï¦ ï§ ï¨ ï¶ ï· ï¸ fps fpeïï¨ ï©ïï« ï© ïª ï« ï¹ ïº ï» ïï¬ï NAps_ft Astrï fpeïï¬ï ï© ïª ï« ï¹ ïº ï» ï¬ï ï© ïª ï« ï¹ ïº ï» ïºï½ FL_prov 293.5 kipïï½ Status_Vl if FL_prov FL_reqdï³ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_Vl "OK"ï½ Refined Estimate of Provided Tension Tie Force: If it is assumed that the point of intersection of the bearing crack (at angle theta) and c.g. of the strands is where the force in the strands is computed, then additional tensile capacity from the strands can be utilized. Figure 7: Elevation view of end of beam showing location where assumed failure crack crosses the c.g. of that portion of the strand pattern that is effective for resisting tensile forces caused by moment and shear. Distance from end of beam to point of intersection of assumed crack and center of gravity of effective strands: xc Lpad 2 ï¦ ï§ ï¨ ï¶ ï· ï¸ CGAps_ft cot θ( )ïï«ïºï½ xc 0.8 ftïï½ (Measured from L face of bearing) xc Lovr Ldesï 2 ï¦ ï§ ï¨ ï¶ ï· ï¸ Lpad 2 ï¦ ï§ ï¨ ï¶ ï· ï¸ ï« CGAps_ft cot θ( )ïï«ïºï½ xc 1.3 ftïï½ (Measured from L end of beam) FL_prov if xc Ltï¼ NAps_ft Astrï fpeï xc Lt ïï¬ï if xc Kld Ldïï¼ NAps_ft Astrï fpe xc Kld Ldïï Ltï« Kld Ldï Ltï ï¦ ï§ ï¨ ï¶ ï· ï¸ fps fpeïï¨ ï©ïï« ï© ïª ï« ï¹ ïº ï» ïï¬ï NAps_ft Astrï fpeïï¬ï ï© ïª ï« ï¹ ïº ï» ï¬ï ï© ïª ï« ï¹ ïº ï» ïºï½ FL_prov 376.2 kipïï½ Status_Vl "OK"ï½Status_Vl if FL_prov FL_reqdï³ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ B1-30
1.11 Interface Shear Design The ability to transfer shear across the interface between the top of the precast beam and the cast-in-place deck must be checked. This check falls under the interface shear or shear friction section of LRFD (5.8.4). Recall that under the Standard Specs, this check falls under the horizontal shear section. Little guidance is offered by the LRFD Specs on how to compute the applied shear stress at the strength limit state. The procedure presented here uses the approach recommended by the PCI Bridge Design Manual, which is a strength limit state approach. Applied Factored Shear: Vu 129.6 kipïï½ vuh_s Vu dv bvï ïºï½ vuh_s 0.052 ksiïï½ vnh_reqd vuh_s Ïv ïºï½ vnh_reqd 0.0579 ksiïï½ Acv bv 1.0ï ftïïºï½ Acv 864 in 2 ïï½ Vnhr vnh_reqd Acvïïºï½ Vnhr 50 kipïï½ Nominal Shear Resistance of the Interface (Capacity): Vn cAcv μ Avf fyï Pcï«ï¨ ï©ï«= (LRFD 5.8.4.1-2) Interface is CIP concrete slab on clean, roughened beam surface, no reinforcement crossing shear plane: (LRFD 5.8.4.3) c 0.135 ksiïïºï½ (cohesion factor) μ 1.000ïºï½ (friction factor) K1 0.2ïºï½ (fraction of concrete strength available to resist interface shear) K2 0.8 ksiïïºï½ (limiting interface shear resistance) Since there is no permanent net compressive stress normal to shear plane, Pc = 0. (LRFD 5.8.4.2) Check Maximum Allowable Shear: Vni_max1 K1 f'ctï Acvïïºï½ Vni_max1 691 kipïï½ (LRFD 5.8.4.1-4) Vni_max2 K2 Acvïïºï½ Vni_max2 691 kipïï½ (LRFD 5.8.4.1-5) Vnh_max if Vni_max1 Vni_max2ï£ Vni_max1ï¬ï Vni_max2ï¬ï ï¨ ï©ïºï½ (LRFD 5.8.4.1-2,3) Vnh_max 691 kipïï½ Vnh_reqd vnh_reqd Acvïïºï½ Vnh_reqd 50 kipïï½ Status_Vuh_max if Vnh_reqd Vnh_maxï¼ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_Vuh_max "OK"ï½ Assuming no horizontal shear reinforcement crossing the shear plane, provided horizontal shear resistance is: Vnh_prov c Acvïïºï½ Vnh_prov 116.6 kipïï½ Status_Vnh_prov if Vnhr Vnh_provï¼ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_Vnh_prov "OK"ï½ B1-31
1.12 Spalling Forces If the maximum spalling stress on the end face of the girder is less than the direct tensile strength of the concrete, then spalling reinforcement is not required when the member depth is less than 22 in. The maximum spalling stress is estimated as: Ïs P A 0.1206 e 2 h dbï ï 0.0256ï ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ 0ï³= And the direct tensile strength is computed as: fr_dts 0.23ï f'cï ksiïïºï½ fr_dts 0.609ï ksiïï½ (LRFD C5.4.2,7) Check reinforcement requirement: Ref: A 936 in2ïï½ h 18 inïï½ ecc 5.42 inïï½ db 0.6 inïï½ Pjack Aps2 fpjïïºï½ Pjack 1 10 3 ï´ kipïï½ Ïs Pjackï A 0.1206 ecc 2 h dbï ï 0.0256ï ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ ïºï½ Ïs 0.341ï ksiïï½ Check whether spalling stress is below threshold and thus is spalling/busting reinforcement is needed: Status_Spalling if Ïs fr_dtsï¾ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_Spalling "OK"ï½ 1.13 Transverse Load Distribution The transverse load distribution reinforcement is computed by: Atld kmild Al_mildï α kpsï Al_psïï«= where: α dcgs dtrans = kps 100 L fpe 60 ï 50%ï£= kmild 100 L 50%ï£= dcgs hc ycgïïºï½ dcgs 21.0 inïï½ Compute dtrans: dtrans hc 4inï db 2 ï 0.75 inï 2 ïïºï½ dtrans 19.3 inïï½ Î± dcgs dtrans ïºï½ α 1.0867ï½ Assume there is no mild longitudinal reinforcement A l_mild in tension at the strength limit state. Al_mild 0.0 in 2 ïïºï½ kmild 100 ftï Ldes 100 ïºï½ kmild 14.29 %ïï½ B1-32
kps 100 ftï Ldes fpe 60 ksiï ï 100 ïºï½ kps 40.25 %ïï½ Al_ps Aps2 ïºï½ Al_ps 5.208 in 2 ïï½ Total amount of transverse load distribution is: Atld kmild Al_mildï α kpsï Al_psïï«ïºï½ Atld 2.28 in 2 ïï½ Since the longitudinal reinforcement is per beam width, the area of distribution reinforcement per foot is: Atld_per_ft Atld S ïºï½ Atld_per_ft 0.38 in 2 ft ïï½ Set transverse load distribution reinforcement spacing at 12 in.:Assuming transverse bars are #6, maximum spacing is: Sld_spac_max 0.44 in 2 ï Atld_per_ft ftï ftïïºï½ Sld_spac_max 13.9 inïï½ Sld_spac 12inïºï½ 1.14 Reflective Crack Control Reinforcement Reflective crack control reinforcement is provided from both the transverse load distribution reinforcement as well a drop in cage consisting of vertical stirrups. The total amount of reflective crack control reinforcement required is given as follows: Ïcr_req 6 f'ct psiï fy ïºï½ Ïcr_req 0.00632ï½ (LRFD 5.14.4.3.3f-1) The crack control reinforcement ratio is defined, per unit length of span, as follows: Ïcr Ascr h tflgïï¨ ï© 1ï ft = (LRFD 5.14.4.3.3f-2) The required area of reinforcement of reflective crack control is therefore calculated, per unit length of span, as: Ascr_req Ïcr_req h tflgïï¨ ï©ï 1ï ftïºï½ Ascr_req 1.1384 in2ïï½ The required area of cage reinforcement is subsequently calculated, per unit length of span, as the difference between the total required area of crack control reinforcement and that provided by the reinforcement for transverse load distribution; both transverse bars are effective in providing crack control, however only the lower horizontal legs of the stirrups are considered in the calculation. All calculations are per unit length of span: Ald 2Sld_spac .44ï in 2 1ft ïºï½ Ald 0.88 in 2 ïï½ Acr_cage_req Ascr_req Aldïïºï½ Acr_cage_req 0.2584 in 2 ïï½ B1-33
Provide No. 5 stirrups at 12 in. on center: Scage_spac 12inïºï½ Ascage 0.31in 2 ïºï½ Acr_cage_prov Ascage 1ft Scage_spac ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Acr_cage_prov 0.31 in 2 ïï½ Ascr_prov Ald Acr_cage_provï«ïºï½ Status_Ascrack if Ascr_req Ascr_provï¼ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_Ascrack "OK"ï½ Figure 8: Cross section of bridge showing CIP regions. Figure 9: Detail of drop-in cage. B1-34
Figure 10: Plan view of drop-in cage. 1.14 Bottom Flange Reinforcement Determine steel required to resist construction loads on bottom flange: Assume a 1' wide strip: Loads: Self-weight of flange: wflng_sw tflg 12ï inï wctïïºï½ wflng_sw 0.0375 klfïï½ CIP weight: wflng_cip h tflgïï¨ ï© 12ï inï wctïïºï½ wflng_cip 0.1875 klfïï½ Construction live load (assume 10 psf): wflng_LL wconst 12ï inïïºï½ wflng_LL 0.0100 klfïï½ Moments: bcant bh 2 ïºï½ bcant 1.00 ftï½ (Length of cantilever) Mflng_sw wflng_sw bcant 2 ï 2 ïºï½ Mflng_sw 0.0187 kip ftïïï½ Mflng_cip wflng_cip bcant 2 ï 2 ïºï½ Mflng_cip 0.0937 kip ftïïï½ Mflng_LL wflng_LL bcant 2 ï 2 ïºï½ Mflng_LL 0.005 kip ftïïï½ Strength Limit State I: Mu_flng 1.25 Mflng_sw Mflng_cipï«ï¨ ï©ï 1.75 Mflng_LLïï«ïºï½ Mu_flng 0.15 kip ftïïï½ B1-35
Try #3 bars at 12" o.c: As_flng 0.11 in 2 ïïºï½ As_flng 0.11 in 2 ïï½ cflng As_flng fyï 0.85 f'cï β1ï 12ï inï ïºï½ cflng 0.11 inïï½ Î²1p if f'c 4 ksi( )ïï£ 0.85ï¬ï if f'c 8 ksi( )ïï³ 0.65ï¬ï 0.85 f'c 4 ksi( )ïï 1 ksi( )ï 0.05ï ï© ïª ï« ï¹ ïº ï» ïï¬ï ï© ïª ï« ï¹ ïº ï» ï¬ï ï© ïª ï« ï¹ ïº ï» ïºï½ β1p 0.70ï½ aflng β1p cflngïïºï½ aflng 0.0761 inïï½ ds tflg 1 inïï 0.5 inïï 0.5 inï 2 ïïºï½ ds 1.25 inïï½ Mn_flng As_flng fyï ds aflng 2 ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Mn_flng 0.67 kip ftïïï½ Ïf_flng 0.65 0.15 ds cflng 1ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï«ïºï½ Ïf_flng 2.22ï½ Ïf_flng if Ïf_flng 0.75ï£ 0.75ï¬ï if Ïf_flng 0.9ï¾ 0.9ï¬ï Ïf_flngï¬ï ï¨ ï©ï¬ï ï¨ ï©ïºï½ Ïf_flng 0.9ï½ Mr_flng Ïf_flng Mn_flngïïºï½ Mr_flng 0.60 kip ftïïï½ Status_StrengthLSflng if Mu_flng Mr_flngï£ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_StrengthLSflng "OK"ï½ Use: Minimum #3 bars @ 12" o.c. in bottom flange. B1-36
Example Problem 2 2.1 Introduction This example covers the design of the multi-span continuous bridge superstructure consisting of precast composite slab span system (PCSSS) elements. The structural system is a three-span, continuous structure with a 40'-50'-40' span layout. The steps required to design representative composite slab of the center span are illustrated. The design is carried out in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Edition (2010). 2.2 Materials, Geometry, Loads and Load Factors Units: kcf kip ft 3ïïïºï½ Defined unit: kips per cubic foot Materials: Concrete: f'c 7.0 ksiïïºï½ Strength of beam concrete at 28 days f'ci 5.0 ksiïïºï½ Strength of beam concrete at transfer of prestressing force wc 0.150 kcfïïºï½ Density of beam concrete f'ct 4.0 ksiïïºï½ Strength of CIP concrete at 28 days wct 0.15 kcfïïºï½ Density of CIP concrete H 70ïºï½ Average ambient relative humidity Ïu 2.1ïºï½ Ultimate creep coefficient εshp_u 0.00056ïºï½ Ultimate shrinkage strain in precast concrete εshc_u 0.00069ïºï½ Ultimate shrinkage strain in CIP concrete α 0.000006ïºï½ /oF Coefficient of thermal expansion Strand: Astrand 0.217 in 2 ïïºï½ Area of one prestressing strand. db 0.6 inïïºï½ Nominal diameter of prestressed strand. fpu 270 ksiïïºï½ Tensile strength of prestressing steel Ep 28500 ksiïïºï½ Modulus of elasticity of prestressing steel fpy 0.9 fpuïïºï½ Yield strength of prestressing steel Pull 0.75ïºï½ Pull of strands expressed as a fraction of fpu t 18 hrïïºï½ Time from tensioning to detensioning of strands Rebar: fy 60 ksiïïºï½ Yield stress of ordinary rebar Es 29000 ksiïïºï½ Modulus of elasticity of non-prestressed reinforcement Geometry: Beam: Section "IT"ïºï½ Precast section name h 18.0 inïïºï½ Height of precast A 936.0 in 2 ïïºï½ Gross area of precast section I 27120 in 4 ïïºï½ Gross moment of inertia of precast cross section about cenroidal x-x axis B2-1
yb 8.42 inïïºï½ Center of gravity of gross precast cross section bf 72.0 inïïºï½ Width of bottom flange of precast section tflg 3.00 inïïºï½ Effective thickness of bottom flange bv 72.00 inïïºï½ Shear width of precast section (web and longitudinal trough width) Ac 450 in 2 ïïºï½ Area of concrete on flexural tension side of member (see LRFD B5.2-3) VSb 5.2 inïïºï½ Volume to surface ratio of precast section VSd 6.0 inïïºï½ Volume to surface ratio of CIP slab Slab: tslab 6.00 inïïºï½ Thickness of CIP slab above precast beam th 15.00 inïïºï½ Thickness of CIP region between precast beams bh 24.00 inïïºï½ Width of CIP region between precast units.beams tws 0.0 inïïºï½ Thickness of portion of CIP slab assumed to be wear Span: Lp2p 50.0 ftïïºï½ Centerline of pier to centerline of pier dimension Lovr 49.0 ftïïºï½ Overal length of precast section Ldes 48.0 ftïïºï½ Design span of precast section Lpad 12 inïïºï½ Length of bearing pad Pieroffset 0.5 ftïïºï½ Distance from centerline of pier to end of beam Brngoffset 0.5 ftïïºï½ Distance from end of beam to centeriline of bearing Bridge: S 6.00 ftïïºï½ Beam spacing Ng 8ïºï½ Number of precast sections in bridge cross section Widthoverall 47.5 ftïïºï½ Overall width of bridge Widthctc 44.0 ftïïºï½ Curb to curb width of bridge Nl 2ïºï½ Number of lanes Loads: Dead: Nbarriers 2ïºï½ Number of barriers wbarrier 0.300 klfïïºï½ Weight of single barrier wfws 0.023 ksfïïºï½ Weight of future wearing surface allowance Live: HL-93 Notional live load per LRFD Specs wlane 0.64 klfïïºï½ Design lane load Construction Timing: ttransfer 1.00 dayïïºï½ Time from release tensioning of strands to release of prestress tdeck 7 dayïïºï½ Time when continuity is established tfinal 20000 dayïïºï½ Assumed end of service life of bridge (time final) Load & Resistance Factors: ï¦f (variable) Resistance factor for flexure Ïv 0.90ïºï½ Resistance factor for shear DLA 0.33ïºï½ Dynamic load allowance (LRFD 3.6.2.1-1) B2-2
Figure 1: Plan view of bridge. Figure 2: ELevation view of bridge. Figure 3: Cross section of bridge. B2-3
Loads: Composite Dead Load: Future Wearing Surface: wfws 0.025 ksfïïºï½ wfws wfws Widthctc Ng ïïºï½ wfws 0.1375 klfïï½ (per beam) The moments and shears shown below were manually entered into this template. They represent 10th-point values of Span 2 that were generated by a 2-D continuous beam program using the model given in Fig. 5 along with the uniform load given above applied to all spans. All similarly highlighted regions represent manually entered values that were generated in a similar fashion. Span 2: Mfws_c 30.4ï 13.8ï 0.8ï 8.5 14.0 15.9 14.0 8.5 0.8ï 13.9ï 30.4ï ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipï ftïïºï½ Vfws_c 3.7 3.0 2.2 1.5 0.7 0 0.7ï 1.5ï 2.2ï 3.0ï 3.7ï ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipïïºï½ Barrier Loads: wbarrier 0.300 klfïïºï½ wbarrier Nbarriers wbarrierï Ng ïºï½ wbarrier 0.075 klfïï½ (per beam) Span 2: Mbarrier_c 15.4ï 7.0ï 0.4ï 4.3 7.1 8.0 7.1 4.3 0.4ï 7.0ï 15.4ï ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipï ftïïºï½ Vbarrier_c 1.9 1.5 1.1 0.8 0.4 0 0.4ï 0.8ï 1.1ï 1.5ï 1.9ï ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipïïºï½ B2-4
Live Load: HL-93 As with the composite dead load moments and shears, the moments and shears for each component of the HL-93 live load were manually entered below. Design Truck, Span 2, +M: Design Truck, Span 2, -M: Mtruck_pc 57.9 79.3 189.1 299.1 365.7 377.9 365.7 299.9 189.1 79.7 57.6 ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipï ftïïºï½ Vtruck_pc 59.6 52.7 45.2 37.2 29.3 21.0 15.1 9.0 5.3 5.3 5.3 ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipïïºï½ Mtruck_nc 277.4ï 181.9ï 155.3ï 128.6ï 121.3ï 121.3ï 124.7ï 128.6ï 155.3ï 181.9ï 277.4ï ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipï ftïïºï½ Vtruck_nc 5.3ï 5.3ï 5.3ï 9.0ï 15.1ï 21.9ï 29.3ï 37.2ï 45.2ï 52.7ï 59.6ï ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipïïºï½ Design Tandem, Span 2, +M: Design Tandem, Span 2, -M: Mtandem_pc 50.8 86.1 206.0 299.9 357.6 373.8 357.6 299.9 206.0 86.1 50.8 ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipï ftïïºï½ Vtandem_pc 48.6 44.6 39.8 34.4 28.6 22.6 16.8 11.3 6.3 4.7 4.7 ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipïïºï½ Mtandem_nc 216.9ï 159.4ï 136.1ï 112.7ï 89.4ï 66.0ï 89.4ï 112.7ï 136.1ï 159.4ï 216.9ï ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipï ftïïºï½ Vtandem_nc 4.7ï 4.7ï 5.4ï 10.2ï 15.6ï 21.4ï 27.4ï 33.2ï 38.7ï 43.7ï 47.9ï ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipïïºï½ Design Lane, Span 2, +M Design Lane, Span 2, -M Mlane_pc 17.1 17.9 42.7 81.0 105.0 113.0 105.0 81.0 42.7 17.9 17.1 ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipï ftïïºï½ Vlane_pc 17.6 14.5 11.7 9.1 7.0 5.2 3.8 2.7 2.1 1.7 1.6 ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipïïºï½ Mlane_nc 148.6ï 77.3ï 46.2ï 44.5ï 40.1ï 40.1ï 40.1ï 44.5ï 46.2ï 77.3ï 148.6ï ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipï ftïïºï½ Vlane_nc 1.7ï 1.6ï 2.1ï 2.7ï 3.8ï 5.2ï 7.0ï 9.1ï 11.7ï 14.5ï 17.6ï ï¦ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï· ï¸ kipïïºï½ B2-5
Load & Resistance Factors: Load Factors: γpDC 1.25ïºï½ γpDW 1.5ïºï½ γLL 1.75ïºï½ Resistance Factors: Flexure: (variable) Ïfn 1.00ïºï½ Shear: Ïv 0.90ïºï½ Strand Pattern: Pat_n 0 0 12 14 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ ïºï½ Pat_h 16 6 4 2 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ inïïºï½ As 8 0.79ï in 2 ïïºï½ As_top 12 0.44ï in 2 ïïºï½ (longitudinal rebar in slab) No, Strands Elevation (in) 2.3 Section Properties Figure 4: Section dimensions. Non-Composite Section Properties: Sb I yb ïºï½ Sb 3220.9 in 3 ïï½ yt h ybïïºï½ St I yt ïºï½ St 2830.9 in 3 ïï½ Effective Width: (LRFD 4.6.2.6.1) The effective width of the composite section may be taken as 1/2 the distance to the adjacent beam beff S 2 S 2 ï«ïºï½ beff 72 inïï½ n f'ct f'c ïºï½ n 0.7559ï½ btran n beffïïºï½ btran 54.43 inïï½ B2-6
Composite Section Properties: Aslab btran tslab twsïï¨ ï©ïïºï½ Aslab 326.6 in2ïï½ Ah n thï bhïïºï½ Ah 272.1 in2ïï½ Acomp A Ahï« Aslabï«ïºï½ Acomp 1534.7 in 2 ïï½ ybc A ybï Ah tflg th 2 ï« ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï« Aslab h tslab twsï 2 ï« ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï« Acomp ïºï½ ybc 11.466 inïï½ hc h tslabï« twsïïºï½ hc 24 inïï½ ytc hc ybcïïºï½ ytc 12.53 inïï½ Islab btran tslab twsïï¨ ï©3ï 12 ïºï½ Islab 979.7 in 4 ïï½ Ih n bhï th 3 ï 12 ïºï½ Ih 5102.5 in 4 ïï½ Ic I A yb ybcïï¨ ï©2ïï« Ihï« Ah tflg th 2 ï« ybcï ï¦ ï§ ï¨ ï¶ ï· ï¸ 2 ïï« Islabï« Aslab h tslab twsï 2 ï« ybcï ï¦ ï§ ï¨ ï¶ ï· ï¸ 2 ïï«ïºï½ Ic 71824 in 4 ïï½ Sbc Ic ybc ïºï½ Sbc 6264.3 in 3 ïï½ Stc Ic ytc nï ïºï½ Stc 7580.3 in 3 ïï½ Composite section modulus at the top of the prestressed beam: ytcb h ybcïïºï½ Stcb Ic ytcb ïºï½ Stcb 10991.8 in 3 ïï½ 2.4 Strand Pattern Properties Figure 5: Strand pattern. No_Strands Pat_nï¥ïºï½ No_Strands 26ï½ i 1 last Pat_n( )ï®ï®ïºï½ ycg i Pat_ni Pat_hiïï¨ ï©ï¥ No_Strands ïºï½ ycg 2.9231 inïï½ ecc yb ycgïïºï½ ecc 5.50 inïï½ B2-7
2.5 Moments and Shears At Release: At release, when the prestress force is transferred to the beam, the structural model is a simple-span beam. The assumed length of the beam can be the overall length of the beam, or it can be somewhat less than the overall length to model supports that are located some distance in from the ends of the beam. For this example, the effective beam length at release will be assumed to be the overall length of the precast beam. While the beam is in the prestress yard, there are two locations along the beam that are potentially of interest: the transfer point of the strands and the midspan of the beam. For beams with no debonding, the net stress due to prestress and beam self-weight will achieve maximum and minimum values at one or more of these locations . 1. Transfer point of strands: Lt 60 dbïïºï½ Lt 36 inïï½ xr1 Ltïºï½ (LRFD 5.8.2.3) 2. Midspan of beam: xr2 Lovr 2 ïºï½ xr T 3 24.5( ) ftïï½ beam self-weight at release: wsw wc Aïïºï½ wsw 0.975 klfïï½ i 1 2ï®ï®ïºï½ Mswri wsw xri ï 2 Lovr xri ïï¦ï¨ ï¶ï¸ ïïºï½ Mswr T 67.3 292.6( ) kip ftïïï½ At Final Conditions: Check Points: At final conditions, there are two structural models that are required to perform the analysis. For a composite system, such as this one, some of the loads act on the bare precast beam and some of the loads act on the continuous, multi-span system. Using the principle of superposition, the effects of the loads that act on the simple-span model can be added to the moments, shears, and stresses caused by loads that act on the continuous system. Two frames of reference are convenient for locating checkpoints at final conditions on a continuous structure. For checking stresses in the beam, for checking the positive flexural capacity, and for computing the required transverse reinforcement (i.e., stirrups), the centerline of the left bearing of the beam will be the reference point and will be designated xf. For computing gross moments and shears acting on the continuous system and for assessing the negative flexural capacity of the system, the centerline of the left pier of the span will be used as the point of reference and will be designated xfc. For this particular structure, for the first frame of reference, there are four points of interest in Span 2 at final conditions: 1. Centerline of left bearing xf1 0.0 ftïïºï½ (Note: All final checkpoints are referenced to L. bearing) 2. Left transfer point of strands: xf2 Lt Lovr Ldesï 2 ïïºï½ 3. Left critical section for shear. The critical section for shear is dv from the face of the support. This can be conservatively assumed to be 0.72h. xf3 0.72 hcï Lpad 2 ï«ïºï½ B2-8
4. Midspan of beam: xf4 Ldes 2 ïºï½ xf T 0 2.5 1.94 24( ) ftïï½ For the second frame of reference there are eleven points of interest in Span 2 at final conditions, which correspond to tenth points of Span 2, measured from centerline of the left pier (Pier 2) to the centerline of the right pier (Pier 3) : k 1 11ï®ï®ïºï½ Lp2p 50 ftï½ xfck k 1ï 10 Lp2pïïºï½ xfc T 1 2 3 4 5 6 7 8 9 10 11 1 0 5 10 15 20 25 30 35 40 45 50 ftï½ Loads Acting on Simple-Span Model beam self-weight at final: j 1 4ï®ï®ïºï½ Mswfj wsw xfj ï 2 Ldes xfj ïï¦ï¨ ï¶ï¸ ïïºï½ Mswf 0 55.5 43.6 280.8 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ kip ftïïï½ Vswfj wsw Ldes 2 xfj ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Vswf 23.4 21 21.5 0 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ kipïï½ CIP Weight: wd tslab twsïï¨ ï© Sï th bhïï«ï©ï« ï¹ï» wctïïºï½ wd 0.825 klfïï½ Mdeckj wd xfj ï 2 Ldes xfj ïï¦ï¨ ï¶ï¸ ïïºï½ Mdeck 0 46.9 36.9 237.6 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ kip ftïïï½ Vdeckj wd Ldes 2 xfj ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Vdeck 19.8 17.7 18.2 0 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ kipïï½ Loads Acting on Continuous Model For beam design itself, the results of the continuous structure (10th points, measured from centerline of pier to centerline of pier) must be mapped onto the checkpoints of the beam. The following function maps the results from the continuous beam analysis to the beam check points at final using linear iterpolation. Map PO BOï¬ï xfï¬ï xfcï¬ï MVcï¬ï ï¨ ï© jmax last xfcï¨ ï©ï¬ j 1ï¬ j j 1ï«ï¬ break j jmaxï¾if PO BOï« xfi ï«ï¦ï¨ ï¶ï¸ xfcj ï¾while C PO BOï« xfi ï« xfcj 1ï ï xfcj xfcj 1ï ï ï¬ MVi MVcj 1ï C MVcj MVcj 1ïïï¨ ï©ïï«ï¬ i 1 last xfï¨ ï©ï®ï®ïfor MV ïºï½ B2-9
Barrier Weight (composite, continuous structure): Mbarrier Map Pieroffset Brngoffsetï¬ï xfï¬ï xfcï¬ï Mbarrier_cï¬ï ï¨ ï©ïºï½ MbarrierT 13.72ï 9.52ï 10.4608ï 8( ) kip ftïïï½ Vbarrier Map Pieroffset Brngoffsetï¬ï xfï¬ï xfcï¬ï Vbarrier_cï¬ï ï¨ ï©ïºï½ VbarrierT 1.82 1.62 1.6648 0( ) kipïï½ Future Wearing Surface (composite, continuous structure): Mfws Map Pieroffset Brngoffsetï¬ï xfï¬ï xfcï¬ï Mfws_cï¬ï ï¨ ï©ïºï½ MfwsT 27.1ï 18.8ï 20.6ï 15.9( ) kip ftïïï½ Vfws Map Pieroffset Brngoffsetï¬ï xfï¬ï xfcï¬ï Vfws_cï¬ï ï¨ ï©ïºï½ VfwsT 3.6 3.2 3.3 0( ) kipïï½ Live Load: Dynamic Load Allowance (impact): DLA 0.33ïºï½ DLAf 0.15ïºï½ (LRFD 3.6.2.1-1) Distribution Factors: Assume superstructure acts like a slab-type bridge. Utilize provisions of LRFD Art. 4.6.2.3 to compute width of equivalent strip to resist lane load. Single-Lane Loading: L1 if Ldes 60 ftïï¾ 60 ftïï¬ï Ldesï¬ï ï¨ ï©ïºï½ L1 48.00 ftï½ W1_1 if Widthoverall 30 ftïï¾ 30 ftïï¬ï Widthoverallï¬ï ï¨ ï©ïºï½ W1_1 30.00 ftï½ Estrip1 10 inï 5.0 inï L1 ft W1_1 ft ïïï«ïºï½ Estrip1 200 inïï½ Estrip1 16.6 ftï½ Put in terms of fraction of one lane to be distributed to one precast unit: DF1lane bf Estrip1 ïºï½ DF1lane 0.3605ï½ Double-Lane Loading: W1_2 if Widthoverall 60 ftïï¾ 60 ftïï¬ï Widthoverallï¬ï ï¨ ï©ïºï½ W1_2 47.50 ftï½ Estrip2 84 inï 1.44 inï L1 ft W1_2 ft ïïï«ïºï½ Estrip2 153 inïï½ Estrip2 12.7 ftï½ DF2lane bf Estrip2 ïºï½ DF2lane 0.4713ï½ Governing Case: DF if DF1lane DF2laneï¾ DF1laneï¬ï DF2laneï¬ï ï¨ ï©ïºï½ DF 0.4713ï½ This distribution factor is applicable to both shear and moment: DFm DFïºï½ DFv DFïºï½ B2-10
Live Load (HL-93) Moments & Shears: Positive Moment Envelope: Max_Vehicle Vehicle1 Vehicle2ï¬ï ï¨ ï© Vehiclei Vehicle1i ï¬ Vehicle1i Vehicle2i ï¾if Vehiclei Vehicle2i ï¬ otherwise i 1 last Vehicle1ï¨ ï©ï®ï®ïfor Vehicle ïºï½ MVehicle_pc Max_Vehicle Mtruck_pc Mtandem_pcï¬ï ï¨ ï©ïºï½ MVehicle_pc T 1 2 3 4 5 6 7 8 9 10 11 1 58 86 206 300 366 378 366 300 206 86 58 kip ftïïï½ Mvehicle_p Map Pieroffset Brngoffsetï¬ï xfï¬ï xfcï¬ï MVehicle_pcï¬ï ï¨ ï©ïºï½ Mvehicle_pT 64 78 74 378( ) kip ftïïï½ Mlane_p Map Pieroffset Brngoffsetï¬ï xfï¬ï xfcï¬ï Mlane_pcï¬ï ï¨ ï©ïºï½ Mlane_pT 17 18 18 113( ) kip ftïïï½ MLL_pj DFm Mlane_pj 1.0 DLAï«( ) Mvehicle_pj ïï«ï©ï« ï¹ï» ïïºï½ MLL_p T 48 57 55 290( ) kip ftïïï½ VVehicle_pc Max_Vehicle Vtruck_pc Vtandem_pcï¬ï ï¨ ï©ïºï½ VVehicle_pc T 1 2 3 4 5 6 7 8 9 10 11 1 60 53 45 37 29 23 17 11 6 5 5 kipïï½ Vvehicle_p Map Pieroffset Brngoffsetï¬ï xfï¬ï xfcï¬ï VVehicle_pcï¬ï ï¨ ï©ïºï½ Vvehicle_pT 58.2 54.8 55.5 22.6( ) kipïï½ Vlane_p Map Pieroffset Brngoffsetï¬ï xfï¬ï xfcï¬ï Vlane_pcï¬ï ï¨ ï©ïºï½ Vlane_pT 17 15.4 15.8 5.2( ) kipïï½ VLL_pj DFv Vlane_pj 1.0 DLAï«( ) Vvehicle_pj ïï«ï©ï« ï¹ï» ïïºï½ VLL_p T 44.5 41.6 42.3 16.6( ) kipïï½ Negative Moment Envelope: Min_Vehicle Vehicle1 Vehicle2ï¬ï ï¨ ï© Vehiclei Vehicle1i ï¬ Vehicle1i Vehicle2i ï¼if Vehiclei Vehicle2i ï¬ otherwise i 1 last Vehicle1ï¨ ï©ï®ï®ïfor Vehicle ïºï½ MVehicle_nc Min_Vehicle Mtruck_nc Mtandem_ncï¬ï ï¨ ï©ïºï½ MVehicle_nc T 1 2 3 4 5 6 7 8 9 10 11 1 -277 -182 -155 -129 -121 -121 -125 -129 -155 -182 -277 kip ftïïï½ Mvehicle_n Map Pieroffset Brngoffsetï¬ï xfï¬ï xfcï¬ï MVehicle_ncï¬ï ï¨ ï©ïºï½ Mvehicle_nT 258ï 211ï 221ï 121ï( ) kip ftïïï½ Mlane_n Map Pieroffset Brngoffsetï¬ï xfï¬ï xfcï¬ï Mlane_ncï¬ï ï¨ ï©ïºï½ Mlane_nT 134ï 99ï 107ï 40ï( ) kip ftïïï½ B2-11
MLL_nj DFm Mlane_nj 1.0 DLAï«( ) Mvehicle_nj ïï«ï©ï« ï¹ï» ïïºï½ MLL_n T 225ï 179ï 189ï 95ï( ) kip ftïïï½ VVehicle_nc Min_Vehicle Vtruck_nc Vtandem_ncï¬ï ï¨ ï©ïºï½ VVehicle_nc T 1 2 3 4 5 6 7 8 9 10 11 1 -5 -5 -5 -10 -16 -22 -29 -37 -45 -53 -60 kipïï½ Vvehicle_n Map Pieroffset Brngoffsetï¬ï xfï¬ï xfcï¬ï VVehicle_ncï¬ï ï¨ ï©ïºï½ Vvehicle_nT 5ï 5ï 5ï 22ï( ) kipïï½ Vlane_n Map Pieroffset Brngoffsetï¬ï xfï¬ï xfcï¬ï Vlane_ncï¬ï ï¨ ï©ïºï½ Vlane_nT 2ï 2ï 2ï 5ï( ) kipïï½ VLL_nj DFv Vlane_nj 1.0 DLAï«( ) Vvehicle_nj ïï«ï©ï« ï¹ï» ïïºï½ VLL_n T 4ï 4ï 4ï 16ï( ) kipïï½ Positive Restraint Moment: (Peterman, 1998) Restraint moments are calculated using the Peterman Method (P-Method) Compute restraint moments at the piers due to shrinkage and creep effects at the end of the service life of the bridge, assumed to be time t final. Continuity is established at time tdeck. Calculate the moment due to eccentric prestressing: Estimate stress in prestressing strands at time of continuity as: fpe 185 ksiïïºï½ Pps No_Strands fpeï Astrandïïºï½ Pps 1.0 10 3 ï´ kipïï½ Mp Pps ecc( )ïïºï½ Mp 478.1 kip ftïïï½ Dead load moments for Span 2: Mdp2 Mswf4 ïºï½ Mdp2 280.8 kip ftïïï½ Mdd2 Mdeck4 ïºï½ Mdd2 237.6 kip ftïïï½ Dead load moments for Span 1 are assumed to be 70% of those of Span 2: Mdp1 0.70 Mdp2ïïºï½ Mdp1 196.6 kip ftïïï½ Mdd1 0.70 Mdd2ïïºï½ Mdd1 166.32 kip ftïïï½ Estimate differential shrinkage at end of service life of bridge: εsh kvsï khsï kfï ktdï 0.48ï 10 3ï ï= (LRFD 5.4.2.3.3-1) where: kvs = Factor for the effect of volume to surface ratio. khs = Factor for humidity. kf = Factor for strength of concrete. ktd = Factor for time development. Shrinkage strain in precast at time continuity is established: kvs 1.45 0.13 VSb in ïïºï½ kvs 0.774ï½ Note: kvs must be greater than 1.0. (LRFD 5.4.2.3.2-1) kvs 1.000ïºï½ B2-12
khs 2.00 0.014 Hïïïºï½ khs 1.020ï½ (LRFD 5.4.2.3.3-2) kf 5 1 f'ci ksi ï« ïºï½ kf 0.833ï½ (LRFD 5.4.2.3.2-4) td tdeckïºï½ td 7 dayïï½ ti ttransferïºï½ ti 1 dayïï½ t td tiïïºï½ t 6 dayïï½ ktd t day 61 4 f'ciï ksi ï t day ï« ïºï½ ktd 0.128ï½ (LRFD 5.4.2.3.2-5) εbid kvsï khsï kfï ktdï 0.48ï 10 3ï ïïºï½ εbid 52ï 10 6ï ï´ï½ Shrinkage strain in precast at time final: kvs 1.45 0.13 VSb in ïïºï½ kvs 0.774ï½ Note: kvs must be greater than 1.0. (LRFD 5.4.2.3.2-1) kvs 1.000ïºï½ khs 2.00 0.014 Hïïïºï½ khs 1.020ï½ (LRFD 5.4.2.3.3-2) kf 5 1 f'ci ksi ï« ïºï½ kf 0.833ï½ (LRFD 5.4.2.3.2-4) tf tfinalïºï½ ti ttransferïºï½ t tf tiïïºï½ t 19999 dayïï½ ktd t day 61 4 f'ciï ksi ï t day ï« ïºï½ ktd 0.998ï½ (LRFD 5.4.2.3.2-5) εbif kvsï khsï kfï ktdï 0.48ï 10 3ï ïïºï½ εbif 407ï 10 6ï ï´ï½ Net precast shrinkage strain: εshp εbif εbidïïºï½ εshp 0.000355ïï½ Shrinkage strain in CIP at time final: εsh kvsï khsï kfï ktdï 0.48ï 10 3ï ï= (LRFD 5.4.2.3.3-1) where: kvs = Factor for the effect of volume to surface ratio. khs = Factor for humidity. kf = Factor for strength of concrete. ktd = Factor for time development. B2-13
kvs 1.45 0.13 VSd in ïïºï½ kvs 0.670ï½ Note: kvs must be greater than 1.0. (LRFD 5.4.2.3.2-1) kvs 1.000ïºï½ khs 2.00 0.014 Hïïïºï½ khs 1.020ï½ (LRFD 5.4.2.3.3-2) kf 5 1 0.8 f'ctï ksi ï« ïºï½ kf 1.190ï½ (LRFD 5.4.2.3.2-4) tf tfinalïºï½ ti tdeckïºï½ t tf tiïïºï½ t 19993 dayïï½ ktd t day 61 4 0.8ï f'ctï ksi ï t day ï« ïºï½ ktd 0.998ï½ (LRFD 5.4.2.3.2-5) εddf kvsï khsï kfï ktdï 0.48ï 10 3ï ïïºï½ εddf 581ï 10 6ï ï´ï½ Differential shrinkage: εsh εddf εshpïïºï½ εsh 0.000226ïï½ Calculate the uniform shrinkage moment: Ed 33000 wc 1.5 ï kcf 1.5ï ï f'ctï ksi .5 ïïºï½ Ed 3834 ksiïï½ ee ytcbïºï½ ee 6.5343 inïï½ Epr 33000 wc 1.5 ï kcf 1.5ï ï f'cï ksi .5 ïïºï½ Epr 5072 ksiïï½ Ad Aslab n ïºï½ Ad 432 in 2 ïï½ Î· 1 1 Epr Aï Ed Adï ï« ï¦ï§ ï§ ï§ï¨ ï¶ï· ï· ï·ï¸ 1 1 Es As_topï Ed Adï ï« ï¦ ï§ ï¨ ï¶ ï· ï¸ ï©ïª ïª ïªï« ï¹ïº ïº ïºï» ïïºï½ η 0.2368ï½ Ms εsh Edï Adï ee tslab 2 ï« ï¦ ï§ ï¨ ï¶ ï· ï¸ ï ηïïºï½ Ms 70.5ï kip ftïïï½ Creep effects on precast Mp and Md: Creep in precast at continuity: ti ttransferïºï½ td tdeckïºï½ t td tiïïºï½ t 6 dayïï½ ktd t day 61 4 f'ciï ksi ï t day ï« ïºï½ ktd 0.128ï½ B2-14
kvs 1.45 0.13 VSb in ïïºï½ kvs 0.774ï½ Note: kvs must be greater than 1.0. (LRFD 5.4.2.3.2-1) kv 1.000ïºï½ khc 1.56 0.008Hïïºï½ khc 1.000ï½ (LRFD Eq. 5.4.2.3.2-3) kf 5 1 f'ci ksi ï« ïºï½ kf 0.833ï½ (LRFD 5.4.2.3.2-4) Ïbdi 1.9 kvsï khcï kfï ktdï ti day ï¦ ï§ ï¨ ï¶ ï· ï¸ 0.118ï ïïºï½ Ïbdi 0.156ï½ Creep in precast at time final: kvs 1.45 0.13 VSb in ïïºï½ kvs 0.774ï½ Note: kvs must be greater than 1.0. (LRFD 5.4.2.3.2-1) kvs 1.000ïºï½ khc 1.56 0.008Hïïºï½ khc 1.000ï½ (LRFD Eq. 5.4.2.3.2-3) kf 5 1 f'ci ksi ï« ïºï½ kf 0.833ï½ (LRFD 5.4.2.3.2-4) tf tfinalïºï½ ti ttransferïºï½ t tf tiïïºï½ t 19999 dayïï½ ktd t day 61 4 f'ciï ksi ï t day ï« ïºï½ ktd 0.998ï½ (LRFD 5.4.2.3.2-5) Ïbfi 1.9 kvsï khcï kfï ktdï ti day ï¦ ï§ ï¨ ï¶ ï· ï¸ 0.118ï ïïºï½ Ïbfi 1.580ï½ Creep effects on CIP Md and Ms: ti tdeckïºï½ t tf tiïïºï½ t 19993 dayïï½ ktd t day 61 4 f'ciï ksi ï t day ï« ïºï½ ktd 0.998ï½ kvs 1.45 0.13 VSb in ïïºï½ kvs 0.774ï½ Note: kvs must be greater than 1.0. (LRFD 5.4.2.3.2-1) kvs 1.000ïºï½ khc 1.56 0.008Hïïºï½ khc 1.000ï½ (LRFD Eq. 5.4.2.3.2-3) kf 5 1 f'ci ksi ï« ïºï½ kf 0.833ï½ (LRFD 5.4.2.3.2-4) B2-15
Ïbfd 1.9 kvsï khcï kfï ktdï ti day ï¦ ï§ ï¨ ï¶ ï· ï¸ 0.118ï ïïºï½ Ïbfd 1.256ï½ Compute Mr at interior face of Pier 1: Factors: F1 1 e Ïbfiï ïï¨ ï© 1 e Ïbdiïïï¨ ï©ïïºï½ F1 0.6492ï½ F2 1 e Ïbfdï ïïºï½ F2 0.7152ï½ Using moment distribution, the following values were obtained: Moment at inside face of Pier 1 due to prestress: Mrp 462 kipï ftïïºï½ Moment at inside face of Pier 1 due to differential shrinkage: Mrs 68ï kipï ftïïºï½ Moments due to superimposed dead load: Mrdp 182ï kipï ftïïºï½ Mrdd 153ï kip ftïïºï½ Calculated restraint moment: Mrm Mrp Mrdpï«ï¨ ï© F1ï Mrdd F2ïï« Mrs F2 Ïbfd ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï«ïºï½ Mrm 34 kip ftïïï½ Thermal Gradient: (LRFD 3.12.3) γTG 1.0ïºï½ (no live live) γTG_L 0.5ïºï½ (with live load) Effects due to uniform temperature change: Since superstructure is not restrained axially, uniform temperature change causes no internal stress. Effects due to temperature gradient: Fig. 6: Positive temperature gradient (from LRFD 3.12.3-2) Assume AASHTO temperature Zone 1: T1 54ïºï½ (deg F) T2 14ïºï½ T3 0ïºï½ Atemp if hc 16 inïï³ 12 inïï¬ï hc 4 inïïï¬ï ï¨ ï©ïºï½ Atemp 12.00 inïï½ A1 4 inïïºï½ B2-16
A2 Atempïºï½ A2 1 ftï½ Compute graident-induced curvature: Ï Î± l Σ Tai yiï Aiï ÎTi di Iiïï« ï¦ ï§ ï¨ ï¶ ï· ï¸ ï= (LRFD C4.6.6-3) Area1 A1 bfïïºï½ Area1 288 in 2 ïï½ I1 bf A1 3 ï 12 ïºï½ I1 384 in 4 ïï½ Area2 A2 bfïïºï½ Area2 864 in 2 ïï½ I2 bf A2 3 ï 12 ïºï½ I2 10368 in 4 ïï½ Îµgr α A T1 Area1ï T2 Area2ïï«ï¨ ï©ïïºï½ εgr 0.000177ï½ Fgr Epr Acï εgrïïºï½ Fgr 404.5 kipïï½ y1 ytc A1 2 ïïºï½ y1 10.53 inïï½ y2 ytc A1 A2 2 ï« ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ y2 2.53 inïï½ Ï Î± Ic T1 T2ï 2 ï¦ ï§ ï¨ ï¶ ï· ï¸ y1ï Area1ï T1 T2ïï¨ ï© A1 2 I1ïï« T2 2 ï¦ ï§ ï¨ ï¶ ï· ï¸ y2ï Area2ïï« T2ï¨ ï© A2 2 I2ïï« ï© ïª ïª ï« ï¹ ïº ïº ï» ïïºï½ Ï 0.000108 ft 1ï ï½ Compute graident-induced fixed-end moment: FEMgr Epr Icï Ïïïºï½ FEMgr 274 kip ftïïï½ From moment distribution, the moment in Span 2 was calculated: Mgr 265kip ftïïºï½ Compute gradient-induced internal stresses: ÏE E α TGï α TuGïï Ï zïïï¨ ï©ï= (LRFD C4.6.6-6) Evaluate at top and bottom of precast: fist Epr α T2ï A1 A2ï« tslabï A2 ï¦ ï§ ï¨ ï¶ ï· ï¸ ï Ï ytcbïï ï© ïª ï« ï¹ ïº ï» ïïºï½ fist 0.0564 ksiïï½ fisb Epr Ïï ytcbïïºï½ fisb 0.2987 ksiïï½ fistt Epr α T1ï Ï ytcïïï¨ ï©ïïºï½ fistt 1.0705 ksiïï½ B2-17
2.6 Flexural Stresses Note: Since for a structural system of this type, it is unlikely that compression at the top of the deck at a given section would exceed its allowable value, calculation of those stresses will be omitted for simplicity. Only the stresses at the bottom and top of the precast beam itself will be computed. The precast weight and CIP deck weight are carried by the precast section only. Additional loads (i.e. barrier, overlay, live load) are carried by the composite section. At Release j 1 2ï®ï®ïºï½ fswrtj Mswrj St ïºï½ fswrt 0.285 1.24 ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ fswrbj Mswrj Sb ïïºï½ fswrb 0.251ï 1.09ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ksiïï½ At Final Conditions Self-Weight: j 1 4ï®ï®ïºï½ fswtj Mswfj St ïºï½ fswt 0 0.235 0.185 1.19 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ ksiïï½ fswbj Mswfj Sb ïïºï½ fswb 0 0.207ï 0.162ï 1.046ï ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ ksiïï½ Deck Weight: fdecktj Mdeckj St ïºï½ fdeckt 0 0.199 0.156 1.007 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ ksiïï½ fdeckbj Mdeckj Sb ïïºï½ fdeckb 0 0.175ï 0.137ï 0.885ï ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ ksiïï½ Barriers: fbarriertj Mbarrierj Stcb ïºï½ fbarriert 0.015ï 0.01ï 0.011ï 0.009 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ ksiïï½ fbarrierbj Mbarrierj Sbc ïïºï½ fbarrierb 0.026 0.018 0.02 0.015ï ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ ksiïï½ fbarrierttj Mbarrierj Stc ïºï½ fbarriertt 0.022ï 0.015ï 0.017ï 0.013 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ ksiïï½ (top of topping) Future Wearing Surface: ffwstj Mfwsj Stcb ïºï½ ffwst 0.03ï 0.021ï 0.023ï 0.017 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ ksiïï½ ffwsbj Mfwsj Sbc ïïºï½ ffwsb 0.052 0.036 0.04 0.03ï ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ ksiïï½ ffwsttj Mfwsj Stc ïºï½ ffwstt 0.043ï 0.03ï 0.033ï 0.025 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ ksiïï½ (top of topping) B2-18
Live Load: Positive Moment Envelope: fpLLtj MLL_pj Stcb ïºï½ fpLLt T 0.052 0.062 0.06 0.317( ) ksiïï½ fpLLbj MLL_pj Sbc ïïºï½ fpLLb T 0.092ï 0.109ï 0.105ï 0.556ï( ) ksiïï½ fpLLttj MLL_pj Stc ïºï½ fpLLtt T 0.076 0.09 0.087 0.459( ) ksiïï½ (top of topping) Negative Moment Envelope: fnLLtj MLL_nj Stcb ïºï½ fnLLt T 0.246ï 0.195ï 0.206ï 0.104ï( ) ksiïï½ fnLLbj MLL_nj Sbc ïïºï½ fnLLb T 0.431 0.342 0.362 0.182( ) ksiïï½ fnLLttj MLL_nj Stc ïºï½ fnLLtt T 0.357ï 0.283ï 0.299ï 0.15ï( ) ksiïï½ (top of topping) Restraint Moment: Note: For the center span, restraint moments are constant across the span. For the end spans, restraint moment will vary linearly to zero at the abutments. Also, using the P-method, the restraint moment at the pier on the end span will be larger than the restraint moment at the same pier on the center span. frmt Mrm Stcb ïºï½ frmt 0.0367 ksiïï½ frmb Mrm Sbc ïïºï½ frmb 0.0644ï ksiïï½ frmtt Mrm Stc ïºï½ frmtt 0.0532 ksiïï½ Thermal Gradient: fgrt Mgr Stcb fistï«ïºï½ fgrt 0.3457 ksiïï½ fgrb Mgr Sbc ï fisbï«ïºï½ fgrb 0.209ï ksiïï½ fgrtt Mgr Stc fisttï«ïºï½ fgrtt 1.49 ksiïï½ B2-19
Continuity Check: The continuity check from LRFD 5.14.1.4.5 is required for all simply-supported beams made continuous. The sum of stresses due to post-continuity dead load, restraint moment, 50% live load, and 50% thermal gradient at the bottom of the diaphragm must have no net tension: fbarrier frmï« 0.5 fLLïï« 0.5 fTGïï« 0ï³ (LRFD 5.14.1.4.5) The live load stress used in the continuity check can be taken as that which exists when the effect of continuity is most needed (i.e.- when the maximum positive moment in the continuous live load envelope occurs). Using the vehicle position that creates the maximum positive live load moment at midspan, the negative moment at the pier is evaluated and the corresponding stress at the bottom of the section is determined: fbarrierc fbarrierb1 ïºï½ fbarrierc 0.0263 ksiïï½ fpLLc 0.247ksiïºï½ Generated by the 2D live load model and entered manually frmc frmbïºï½ frmc 0.0644ï ksiïï½ fgrc fgrbïºï½ fgrc 0.209ï ksiïï½ fc fbarrierc frmcï« 0.5 fpLLcïï« 0.5fgrcï«ïºï½ fc 0.0191ï ksiïï½ There is net tension at the bottom of the diaphragm, and the continuity check fails. The stresses at the diaphragm from Span 1 would also need to be checked for continuity. However, the continuity check fails for Span 2 and will be used to evaluate partial continuity. The continuous live load positive moment envelop cannot be used in design and a partial continuity envelope must be calculated. Partial continuity is a nonlinear load redistribution through an inhomogeneous cross section that requires FE modeling for an exact analysis. An approximate method can be used for a rational design approach. The following is a simplified, linear-elastic method that is reasonable, though there are other ways to model partial continuity: A portion of the live load is required to satisfy the continuity check (i.e.- close the assumed cracks from the bottom tension). This portion is calculated below: LLreq fbarrierc frmcï« 0.5 fgrcïï«ï¨ ï©ï fpLLc ïºï½ LLreq 0.5774ï½ Therefore, 57.7% of the live load is used to obtain a continuous system, applied on a simple span. The remaining 42.3% is applied on a continuous span. The two live load envelopes are proportioned as such, and a new partial continuity live load envelope is formed: Continuous system live load positive moment envelope: Simple span live load moment envelope: MLLs 0 90 76 355 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ kipï ftïïºï½ MLL_p 48 57 55 290 ï¦ ï§ ï§ ï§ ï§ ï¨ ï¶ ï· ï· ï· ï· ï¸ kip ftïïï½ MLLpar LLreq MLLsï 1 LLreqïï¨ ï© MLL_pïï«ïºï½ MLLparT 20 76 67 328( ) kip ftïïï½ MLL_p if LLreq 0.5ï¼ MLL_pï¬ï MLLparï¬ï ï¨ ï©ïºï½ MLL_pT 20 76 67 328( ) kip ftïïï½ B2-20
Computing partial continuity live load stresses: fpLLtj MLL_pj Stcb ïºï½ fpLLt T 0.022 0.083 0.073 0.358( ) ksiïï½ fpLLbj MLL_pj Sbc ïïºï½ fpLLb T 0.039ï 0.146ï 0.129ï 0.628ï( ) ksiïï½ fpLLttj MLL_pj Stc ïºï½ fpLLtt T 0.032 0.12 0.106 0.519( ) ksiïï½ (top of topping) 2.7 Prestress Losses At Release: At release, two components of prestress loss are significant: relaxation of the prestressing steel and elastic shortening. Elastic shortening is the loss of prestress that results when the strands are detensioned and the precast beam shortens in length due to the applied prestress. When the strands are tensioned in the prestress bed and anchored at the abutments, the steel gradually begins to relax as a function of time. By the time the strands are detensioned a small, but measurable, loss due to steel relaxation has occurred. Steel Relaxation (short term): fpj Pull fpuïïºï½ fpj 202.5 ksiïï½ fpy 243 ksiïï½ ÎfpR1 log t hr ï¦ ï§ ï¨ ï¶ ï· ï¸ 40.0 fpj fpy 0.55ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ï fpjïïºï½ ÎfpR1 8.149 ksiïï½ (LRFD 5.9.5.4.4b-2) Elastic Shortening: Eci 33000 wc 1.5 ï kcf 1.5ï ï f'ciï ksi .5 ïïºï½ Eci 4287 ksiïï½ (LRFD 5.4.2.4-1) Aps No_Strands Astrandïïºï½ Aps 5.642 in 2 ïï½ (Area of strand at midspan) fpbt fpj ÎfpR1ïïºï½ fpbt 194.4 ksiïï½ ÎfpES Aps fpbtï I ecc 2 Aï«ï¨ ï©ï ecc Mswr2ï Aïï Aps I ecc 2 Aï«ï¨ ï©ï A Iï Eciï Ep ï« ïºï½ ÎfpES 10.333 ksiïï½ Total Prestress Loss at Release: Îfsr ÎfpES ÎfpR1ï«ïºï½ Îfsr 18.482 ksiïï½ %Loss Îfsr Pull fpuï 100ïïºï½ %Loss 9.1268ï½ fper fpj ÎfpESï ÎfpR1ïïºï½ fper 184 ksiïï½ Pr fper No_Strandsï Astrandïïºï½ Pr 1038.2 kipïï½ B2-21
At Final Conditions: Total Loss of Prestress: ÎfpT ÎfpES ÎfpLTï«= (LRFD 5.9.5.1-1) where: ïfpES = Sum of all losses due to elastic shortening at time of application of prestress load (ksi). ïfpLT = Total loss due to long-term effects, which include shrinkage and creep of the concrete and relaxation of the prestressing steel (ksi). The shrinkage and creep properties of the girder need to be computed in preparation for the prestress loss computations. These are addressed in LRFD Article 5.4.2.3. Creep coefficients are computed in accordance with Article 5.4.2.3.2 and shrinkage strains are computed in accordance with Article 5.4.2.3.3. Creep Coefficients Girder creep coefficients were calculated previously for restraint moments Girder creep coefficient at final time due to loading at transfer: Ïbfi 1.580ï½ Girder creep coefficient at time of CIP placement due to loading at transfer: Ïbdi 0.156ï½ Girder creep coefficient at final time due to loading at CIP placement: Ïbfd 1.256ï½ CIP deck creep coefficient at final time due to loading at CIP placement: tf tfinalïºï½ ti tdeckïºï½ t tf tiïïºï½ t 19993 dayïï½ ktd t day 61 4 0.8 f'ctïï¨ ï©ï ksi ï t day ï« ïºï½ ktd 0.998ï½ kvs 1.45 0.13 VSd in ïïºï½ kvs 0.670ï½ Note: kvs must be greater than 1.0. kvs 1.000ïºï½ khc 1.56 0.008Hïïºï½ khc 1.000ï½ kf 5 1 0.8 f'ctïï¨ ï© ksi ï« ïºï½ kf 1.19ï½ Ïdfd 1.9 kvsï khcï kfï ktdï ti day ï¦ ï§ ï¨ ï¶ ï· ï¸ 0.118ï ïïºï½ Ïdfd 1.794ï½ B2-22
Shrinkage Strains Shrinkage strains were calculated previously for restraint moment. Girder concrete shrinkage strain between transfer and final time: εbif 407ï 10 6ï ï´ï½ Girder concrete shrinkage strain between transfer and CIP placement: εbid 52ï 10 6ï ï´ï½ Girder concrete shrinkage strain between CIP placement and final time: The girder concrete shrinkage between deck placement and final time is the difference between the shrinkage at time of deck placement and the total shrinkage at final time. εbdf εbif εbidïïºï½ εbdf 355ï 10 6ï ï´ï½ CIP concrete shrinkage strain between CIP placement and final time: εddf 581ï 10 6ï ï´ï½ Loss from Transfer to CIP Placement: The prestress loss from transfer of prestress to placement of CIP consists of three loss components: shrinkage of the girder concrete, creep of the girder concrete, and relaxation of the strands. That is, Time-Dependent Loss from Transfer to CIP Placement = ïfpSR+ïfpCR+ïfpR1 Shrinkage of Concrete Girder: ÎfpSR εbid Epï Kidï= (LRFD5.9.5.4.2a-1) where: ï¥bid = Concrete shrinkage strain of girder between transfer and CIP placement. Computed using LRFD Eq. 5.4.2.3.3-1 Ep = Modulus of elasticity of prestressing strand (ksi). Kid = Transformed steel coefficient that accounts for time-dependent interaction between concrete and bonded steel in the section being considered for the time period between transfer and CIP placement. The transformed section coefficient, kid, is computed using: Kid 1 1 Ep Eci Aps A ï 1 A epg 2 ï Ig ï« ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ ï 1 0.7 Ïb tf tiï¬ï ï¨ ï©ïï«ï¨ ï©ïï« = (LRFD Eq. 5.9.5.4.2a-2) where: epg = Eccentricity of strands with respect to centroid of girder (in). ï¹b(tf,ti) = Creep coefficient at final time due to loading introduced at transfer. Note: The eccentricity of the strand pattern is stored in the vectors ecc_r and ecc_f. Vector B2-23
ecc_r contains values at check points relative to release (i.e., the end of the girder), and vector ecc_r is relative to final check points (i.e., relative to the left bearing of the girder). The eccentricity at the midspan of the girder is the value of interest. epg eccïºï½ epg 5.5 inïï½ I 27120 in 4 ïï½ A 936 in 2 ïï½ Kid 1 1 Ep Eci Aps A ï 1 A epg 2 ï I ï« ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ ï 1 0.7 Ïbfiïï«ï¨ ï©ïï« ïºï½ Kid 0.8529ï½ Therefore, the prestress loss due to shrinkage of the girder concrete between time of transfer and CIP placement is: ÎfpSR εbidï Epï Kidïïºï½ ÎfpSR 1.266 ksiïï½ Creep of Concrete Girder: ÎfpCR Ep Eci fcgpï Ïb td tiï¬ï ï¨ ï© Kidï= (LRFD 5.9.5.4.2b-1) where: fcgp = Concrete stress at cg of prestress pattern due to the prestressing force immediately after transfer and the self-weight of the girder at the section of maximum moment (ksi). Section modulus at cg of strand pattern: epti yb ycgïïºï½ epti 5.5 inïï½ Scgp I epti ïºï½ Scgp 4934 in 3 ïï½ Initial prestress force: fpj Pull fpuïïºï½ Pinit fpj Apsïïºï½ Pinit 1142.5 kipïï½ fcgp Pinit 1 A epti Scgp ï« ï¦ ï§ ï¨ ï¶ ï· ï¸ ï Mswf2 Scgp ïïºï½ fcgp 2.359 ksiïï½ ÎfpCR Ep Eci fcgpï Ïbdi Kidïïºï½ ÎfpCR 2.092 ksiïï½ Relaxation of Prestressing Strands: Since, according to LRFD C5.9.5.4.2c, the second equation is the more accurate equation, ïfpR1 should be computed using the second. However, for this example, it will be assumed to be equal to 1.2 ksi (Article 5.9.5.4.2b permits this). ÎfpR1 1.2 ksiïïºï½ Total prestress loss at time of CIP placement: ÎfpLTid ÎfpSR ÎfpCRï« ÎfpR1ï«ïºï½ Calculated above: ÎfpSR 1.27 ksiïï½ ÎfpCR 2.09 ksiïï½ ÎfpR1 1.20 ksiïï½ ÎfpLTid 4.559 ksiïï½ B2-24
Loss from CIP Placement to Final: The prestress loss from placement of CIP to final conditions consists of four loss components: shrinkage of the girder concrete, creep of the girder concrete, and relaxation of the strands. That is, Time-Dependent Loss from CIP Placement to Final = ïfpSD+ïfpCD+ïfpR2 Shrinkage of Concrete Girder: ÎfpSD εbdf Epï Kdfï= (LRFD5.9.5.4.3a-1) where: ï¥bdf = Concrete shrinkage strain of girder between time of CIP placement and final time. Computed using LRFD Eq. 5.4.2.3.3-1 Kdf = Transformed steel coefficient that accounts for time-dependent interaction between concrete and bonded steel in the section being considered for the time period between the time of CIP placement and final time. Compute Kdf: Kdf 1 1 Ep Eci Aps Ac ï 1 Ac epc 2 ï Ic ï« ï¦ï§ ï§ ï¨ ï¶ï· ï· ï¸ ï 1 0.7Ïb tf tiï¬ï ï¨ ï©ï«ï¨ ï©ïï« = (LRFD 5.9.5.4.3a-2) where: epc = Eccentricity of strands with respect to centroid of composite section Ac = For composite sections, the gross area of the composite section should be used. However, since this girder is non-composite, the gross area of the non-composite section is used. Ic = Gross area of composite section for composite systems, gross area of bare beam for non-composite systems. ï¹b(tf,ti) = Girder creep coefficient epc yb ycgïïºï½ epc 5.4969 inïï½ Ac: A 936 in 2 ïï½ Ic: I 27120 in 4 ïï½ Kdf 1 1 Ep Eci Aps A ï 1 A epc 2 ï I ï« ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ ï 1 0.7Ïbfiï«ï¨ ï©ïï« ïºï½ Kdf 0.853ï½ Therefore, prestress loss due to shrinkage of girder concrete between CIP placement and final is: ÎfpSD εbdfï Epï Kdfïïºï½ ÎfpSD 8.632 ksiïï½ B2-25
Creep of Concrete Girder: ÎfpCD Ep Eci fcgpï Ïb tf tiï¬ï ï¨ ï© Ïb td tiï¬ï ï¨ ï©ïï¨ ï©ï Kdfï Ep Ec Îfcdï Ïb tf tdï¬ï ï¨ ï©ï Kdfïï« 0.0ï³= (LRFD5.9.5.4.3b-1) where: ïfcd = Change in concrete stress at centroid of prestressing strands due to long-term losses between transfer and CIP placement combined with superimposed loads (ksi). ï¹b(tf,td) = Girder creep coefficient at final time due to loading at CIP placement per Eq. 5.4.2.3.2-1. Let: ÎfpCD ÎfpCD1 ÎfpCD2ï«= compute ïfpCD1: ÎfpCD1 Ep Eci fcgpï Ïbfi Ïbdiïï¨ ï©ï Kdfïïºï½ ÎfpCD1 19.041 ksiïï½ compute ïfpCD2: compute ïfcd: Îfcd ÎP 1 Ag epg 2 Ig ï« ï¦ï§ ï§ ï¨ ï¶ï· ï· ï¸ ï Mfws7 Mbarrier7 ï« Scgp ï¦ï§ ï§ ï¨ ï¶ï· ï· ï¸ ï= ÎP ÎfpLTidï Apsïïºï½ ÎP 25.7ï kipïï½ epg yb ycgïïºï½ epg 5.497 inïï½ Îfcd ÎP 1 A epg 2 I ï« ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ ï Mfws2 Mbarrier2 ï« Scgp ï¦ï§ ï§ ï¨ ï¶ï· ï· ï¸ ïïºï½ Îfcd 0.013 ksiïï½ Ec 33000 1.0ï 0.14 f'c 1000 ksiï ï« ï¦ ï§ ï¨ ï¶ ï· ï¸ 1.5 ï f'c ksi ï ksiïïºï½ Ec 4921 ksiïï½ ÎfpCD2 Ep Ec Îfcdï Ïbfdï Kdfïïºï½ ÎfpCD2 0.079 ksiïï½ Therefore, ÎfpCD ÎfpCD1 ÎfpCD2ï«ïºï½ ÎfpCD 19.12 ksiïï½ Relaxation of Prestressing Strands: ÎfpR2 ÎfpR1ïºï½ ÎfpR2 1.2 ksiïï½ (LRFD 5.9.5.4.3c-1) Shrinkage of the CIP deck: Ad Aslab n ïºï½ Ad 432 in 2 ïï½ Ecd 33000 wc 1.5 ï kcf 1.5ï ï f'ctï ksi .5 ïïºï½ Ecd 3834 ksiïï½ ed h 2 ïºï½ ed 9 inïï½ B2-26
Îfcdf εddf Adï Ecdï 1 0.7 Ïdfdïï«ï¨ ï© 1 Ac epc edï Ic ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Îfcdf 0.6548ï ksiïï½ ÎfpSS Ep Ec Îfcdfï Kdfï 1 0.7 Ïbfdïï«ï¨ ï©ïïºï½ ÎfpSS 6.0784ï ksiïï½ Total prestress loss from CIP placement to final, therefore, is: ÎfpLTdf ÎfpSD ÎfpCDï« ÎfpR2ï« ÎfpSSï«ïºï½ Calculated above: ÎfpSD 8.63 ksiïï½ ÎfpCD 19.12 ksiïï½ ÎfpR2 1.2 ksiïï½ ÎfpSS 6.0784ï ksiïï½ ÎfpLTdf 22.873 ksiïï½ Summary of Time-Dependent Losses Losses from Transfer to CIP Placement Girder shrinkage: ÎfpSR 1.27 ksiïï½ Girder creep: ÎfpCR 2.09 ksiïï½ Strand relaxation: ÎfpR1 1.2 ksiïï½_______________ Total = ÎfpLTid 4.559 ksiïï½ Losses from CIP Placement to Final ÎfpSD 8.63 ksiïï½Girder shrinkage: ÎfpCD 19.12 ksiïï½Girder creep: ÎfpR2 1.2 ksiïï½Strand relaxation: ÎfpSS 6.0784ï ksiïï½Differential Shrinkage: _______________ Total = ÎfpLTdf 22.873 ksiïï½ ÎfpLT 10.0 fpj Apsmï A ï γhï γstï 12.0 ksiï γhï γstïï« ÎfpRï«= (LRFD 5.9.5.3-1) γh 1.7 0.01 Hïïïºï½ γh 1.00ï½ (LRFD 5.9.5.3-2) γst 5 ksiï 1 ksiï f'ciï« ïºï½ γst 0.833ï½ (LRFD 5.9.5.3-3) ÎfpR 2.4 ksiïïºï½ ÎfpLT ÎfpLTid ÎfpLTdfï«ïºï½ ÎfpLT 27.43 ksiïï½ ÎfPT ÎfpES ÎfpLTï«ïºï½ ÎfPT 37.77 ksiïï½ %Loss ÎfPT Pull fpuï 100ïïºï½ %Loss 18.65ï½ Check effective stress after losses: fpe Pull fpuï ÎfPTïïºï½ fpe 164.7 ksiïï½ fallow 0.80 fpyïïºï½ fallow 194.4 ksiïï½ (LRFD 5.9.3-1) B2-27
2.8 Stresses Due to Prestress at End of Trnasfer Length and Midspan At Release: Pr fper No_Strandsï Astrandïïºï½ Pr 1038.2 kipïï½ j 1 2ï®ï®ïºï½ fpsrbj Pr 1 A ecc Sb ï«ï¦ï§ ï¨ ï¶ ï· ï¸ ïïºï½ fpsrb T 2.881 2.881( ) ksiïï½ fpsrtj Pr 1 A ecc St ïï¦ï§ ï¨ ï¶ ï· ï¸ ïïºï½ fpsrt T 0.907ï 0.907ï( ) ksiïï½ At Final Conditions: j 1 4ï®ï®ïºï½ distj xfj Lovr Ldesï 2 ï«ïºï½ dist T 0.5 3 2.44 24.5( ) ftï½ dtj if distj Ltï¾ 1.0ï¬ï distj Lt ï¬ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïºï½ dt T 0.1667 1 0.8133 1( )ï½ (Fraction strands are transferred.) Pfj fpe dtjï No_Strandsï Astrandïïºï½ Pf T 154.9 929.4 755.9 929.4( ) kipïï½ ecc 0.4581 ftï½ fpsbj Pfj 1 A ecc Sb ï«ï¦ï§ ï¨ ï¶ ï· ï¸ ïïºï½ fpsb T 0.43 2.579 2.098 2.579( ) ksiïï½ Sb 1.8639 ft 3 ï½ A 6.5 ft 2 ï½ fpstj Pfj 1 A ecc St ïï¦ï§ ï¨ ï¶ ï· ï¸ ïïºï½ fpst T 0.135ï 0.812ï 0.66ï 0.812ï( ) ksiïï½ 2.9 Service Stress Check At Release: j 1 2ï®ï®ïºï½ Bottom of beam (compression): frbj fpsrbj fswrbj ï«ïºï½ frb T 2.63 1.791( ) ksiïï½ fallow_rc 0.6 f'ciïïºï½ fallow_rc 3 ksiïï½ Status_ServiceLSrcj if frbj fallow_rcï£ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSrc T "OK" "OK"( )ï½ Top of beam (tension): frtj fpsrtj fswrtj ï«ïºï½ frt T 0.622ï 0.334( ) ksiïï½ fallow_rt 0.0948ï f'ciï ksiïïºï½ fallow_rt 0.212ï ksiïï½ Status_ServiceLSrtj if frtj fallow_rtï³ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSrt T "NG" "OK"( )ï½ Since top tension exceeds limit, compute required amount of top tension steel at transfer point: xtt h frt1 frt1 frb1 ï« ï¦ ï§ ï§ ï¨ ï¶ ï· ï· ï¸ ïïºï½ xtt 5.57ï inïï½ (LRFD C5.9.4.1.2) B2-28
Ttt frt1 2 bvï xttïïºï½ Ttt 124.64 kipïï½ Att Ttt 30 ksiï ïºï½ Att 4.1545 in 2 ïï½ Assume #8 bars will be used as top tension steel: Ntt Att 0.79 in 2 ï ïºï½ Ntt 5ï½ #8 bars At Final Conditions: Positive Moment Envelope Service III Limit State (Tensile Stresses in Bottom of Beam): j 1 4ï®ï®ïºï½ fpAllbj fpsbj fswbj ï« fdeckbj ï« fbarrierbj ï« ffwsbj ï« 0.8 fpLLbïï¨ ï© jï« frmbï« 0.5 fgrbïï«ïºï½ fpAllb T 0.308 1.967 1.586 0.069ï( ) ksiïï½ fallow_ft 0.19ï f'cï ksiïïºï½ fallow_ft 0.503ï ksiïï½ (LRFD 5.9.4.2.2b) Status_ServiceLSftj if fpAllbj fallow_ftï³ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSft T "OK" "OK" "OK" "OK"( )ï½ Service I (Compressive Stresses in Top of Beam): Compressive Stress Due to Permanent Loads: fpPermtj fpstj fswtj ï« fdecktj ï« fbarriertj ï« ffwstj ï« frmtï« fgrtï«ïºï½ fpPermt T 0.203 0.026ï 0.029 1.794( ) ksiïï½ fallow_fcd 0.45 f'cïïºï½ fallow_fcd 3.15 ksiïï½ (LRFD 5.9.4.2.1) Status_ServiceLSfcdj if fpPermtj fallow_fcdï£ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSfcd T "OK" "OK" "OK" "OK"( )ï½ Compressive Stress Due to Full Dead Load + Live Load: fallow_fcl 0.6 f'cïïºï½ fallow_fcl 4.2 ksiïï½ (LRFD 5.9.4.2.1) fpAlltj fpstj fswtj ï« fdecktj ï« fbarriertj ï« ffwstj ï« fpLLtj ï« frmtï« 0.5 fgrtïï«ïºï½ fpAllt T 0.052 0.116ï 0.07ï 1.979( ) ksiïï½ Status_ServiceLSfclj if fpAlltj fallow_fclï£ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSfcl T "OK" "OK" "OK" "OK"( )ï½ Negative Moment Envelope Compressive Stress Due to Full Dead Load + Live Load: fnAllbj fpsbj fswbj ï« fdeckbj ï« fbarrierbj ï« ffwsbj ï« fnLLbj ï« frmbï« 0.5 fgrbïï«ïºï½ fnAllb T 0.771 2.425 2.051 0.615( ) ksiïï½ fallow_fcn 0.6 f'cïïºï½ fallow_fcn 4.2 ksiïï½ (LRFD 5.9.4.2.1) Status_ServiceLSfncj if fnAllbj fallow_fcnï¼ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_ServiceLSfnc T "OK" "OK" "OK" "OK"( )ï½ B2-29
2.10 Flexural Strength Check Positive Moment Envelope Muj 1.25 Mswfj Mdeckj ï« Mbarrierj ï«ï¦ï¨ ï¶ï¸ ï 1.5 Mfwsj ïï« 1.75 MLL_pj ïï« Mrmï«ïºï½ Mu T 11 255 208 1289( ) kip ftïïï½ Î²1 if f'ct 4 ksi( )ïï£ 0.85ï¬ï if f'ct 8 ksi( )ïï³ 0.65ï¬ï 0.85 f'ct 4 ksi( )ïï 1 ksi( )ï 0.05ï ï© ïª ï« ï¹ ïº ï» ïï¬ï ï© ïª ï« ï¹ ïº ï» ï¬ï ï© ïª ï« ï¹ ïº ï» ïºï½ β1 0.85ï½ (LRFD 5.7.2.2) Ld 270.0 ksiï 2 3 fpeïï ï¦ ï§ ï¨ ï¶ ï· ï¸ dbï ksi 1ï ïïºï½ Ld 96.11 inïï½ (Preliminary estimate of Ld) Kld if h 24 inïï£ 1.0ï¬ï 1.6ï¬ï ( )ïºï½ Kld 1ï½ (LRFD Eq. 5.11.4.2-1) df j if distj Ltï¼ distj Lt fpe fpu ïï¬ï if distj Kld Ldïï¼ fpe distj Ltï Kld Ldï Ltï ï¦ ï§ ï¨ ï¶ ï· ï¸ fpu fpeïï¨ ï©ïï« fpu ï¬ï 1.0ï¬ï ï© ïª ïª ïª ï« ï¹ ïº ïº ïº ï» ï¬ï ï© ïª ïª ïª ï« ï¹ ïº ïº ïº ï» ïºï½ df T 0.1017 0.6101 0.4962 1( )ï½ (Preliminary estimate of fraction strands are developed) Apsj No_Strands dfjï Astrandïïºï½ Aps T 0.5737 3.4423 2.7998 5.642( ) in 2 ïï½ b beffïºï½ b 72 inïï½ dp h tslabï« twsï ycgï¨ ï©ïïºï½ dp 21.08 inïï½ k 2 1.04 fpy fpu ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ k 0.28ï½ (LRFD 5.7.3.1.1-2) cj Apsj fpuï 0.85 f'ctï β1ï bï k Apsj ï fpu dp ïï« ïºï½ c T 0.74 4.22 3.47 6.67( ) inïï½ (LRFD 5.7.3.1.1-4) hf tslabïºï½ (Height of flange is slab thickness since this is a composite section) bwj if cj hfï£ bï¬ï bvï¬ï ï¨ ï©ïºï½ bwT 72 72 72 72( ) inïï½ cj Apsj fpuï 0.85 f'ctï b bwj ïï¦ï¨ ï¶ï¸ ï hfïï 0.85 f'ctï β1ï bwj ï k Apsj ï fpu dp ïï« ïºï½ c T 0.74 4.22 3.47 6.67( ) inïï½ (LRFD 5.7.3.1.1-3) aj β1 cjïïºï½ a T 0.627 3.584 2.946 5.671( ) inïï½ fpsj fpu 1 k cj dp ïï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ fps T 267.4 254.9 257.6 246.1( ) ksiïï½ (LRFD 5.7.3.1.1-1) Ld fps1 2 3 fpeïï ï¦ ï§ ï¨ ï¶ ï· ï¸ dbï ksi 1ï ïïºï½ Ld 94.52 inïï½ (LRFD 5.11.4.1-1) B2-30
dfj if distj Ltï¼ distj Lt fpe fpsj ïï¬ï if distj Kld Ldïï¼ fpe distj Ltï Kld Ldï Ltï ï¦ ï§ ï¨ ï¶ ï· ï¸ fpsj fpeïï¦ï¨ ï¶ ï¸ ïï« fpsj ï¬ï 1.0ï¬ï ï© ïª ïª ïª ï« ï¹ ïº ïº ïº ï» ï¬ï ï© ïª ïª ïª ï« ï¹ ïº ïº ïº ï» ïºï½ df T 0.1027 0.6463 0.5202 1( )ï½ (fraction strands are developed) Apsj No_Strands dfjï Astrandïïºï½ Aps T 0.5794 3.6466 2.9349 5.642( ) in 2 ïï½ cj Apsj fpuï 0.85 f'ctï β1ï bï k Apsj ï fpu dp ïï« ïºï½ bwj if cj hfï£ bï¬ï bvï¬ï ï¨ ï©ïºï½ bwT 72 72 72 72( ) inïï½ cj Apsj fpuï 0.85 f'ctï b bwj ïï¦ï¨ ï¶ï¸ ï hfïï 0.85 f'ctï β1ï bwj ï k Apsj ï fpu dp ïï« ïºï½ c T 0.74 4.45 3.62 6.67( ) inïï½ Mnj dfj Apsj ï fpsj ï dp aj 2 ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ï 0.85 f'ctï b bwj ïï¦ï¨ ï¶ï¸ ï hfï aj 2 hf 2 ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï«ïºï½ (LRFD 5.7.3.2.2-1) Mn T 28 965 642 2110( ) kip ftïïï½ Compute phi for each section: Ïfj 0.583 0.25 dp cj 1ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï«ïºï½ Ïf T 7.41 1.52 1.79 1.12( )ï½ (LRFD Eq. 5.5.4.2.1-1) Ïfj if Ïfj 0.75ï£ 0.75ï¬ï if Ïfj 1.0ï¾ 1.0ï¬ï Ïfj ï¬ï ï¦ï¨ ï¶ï¸ ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Ïf T 1.00 1.00 1.00 1.00( )ï½ Mrj Ïfj Mnj ïïºï½ Mr T 28 965 642 2110( ) kip ftïïï½ Mu T 11 255 208 1289( ) kip ftïïï½ Status_StrengthLSj if Muj Mrj ï£ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_StrengthLS T "OK" "OK" "OK" "OK"( )ï½ Maximum Steel Check: Note: The provisions contained in Art. 5.7.3.3.1 to check maximum reinforcement were deleted in 2005. This check is now effectively handled by varying phi, depending upon whether the section is compression or tension controlled. See Art. 5.5.4.2.1. B2-31
Minimum Steel Check: (LRFD 5.7.3.3.2) Compute Cracking Moment at Midspan: fr 0.37 f'cï ksiïïºï½ fr 0.979 ksiïï½ Mcr Sbc fr fpsb4 ï«ï¦ï¨ ï¶ï¸ ï Mswf4 Mdeck4 ï«ï¦ï¨ ï¶ï¸ Sbc Sb 1ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïïºï½ Mcr if Mcr Sbc frïï¼ Sbc frïï¬ï Mcrï¬ï ï¨ ï©ïºï½ Mcr 1367.6 kip ftïïï½ 1.2 Mcrï 1641.1 kip ftïïï½ Ref: Mr4 2110.4 kip ftïïï½ 1.33 Mu4 ï 1714.1 kip ftïïï½ Mmin if 1.2 Mcrï 1.33 Mu4 ï¼ 1.2Mcrï¬ï 1.33 Mu4 ïï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Mmin 1641.1 kip ftïïï½ Status_MinStl if Mmin Mr4 ï¼ "OK"ï¬ï "NG"ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Status_MinStl "OK"ï½ Negative Moment Envelope MLL_nc DFm Mlane_nc1 1.0 DLAï«( ) MVehicle_nc1 ïï«ï©ï« ï¹ï» ïïºï½ MLL_nc 244ï kip ftïïï½ Mun 1.25 Mbarrier_c1ï¦ï¨ ï¶ï¸ ï 1.5 Mfws_c1 ïï« 1.75 MLL_ncïï«ïºï½ Mun 492ï kip ftïïï½ Î²1n if f'c 4 ksi( )ïï£ 0.85ï¬ï if f'c 8 ksi( )ïï³ 0.65ï¬ï 0.85 f'c 4 ksi( )ïï 1 ksi( )ï 0.05ï ï© ïª ï« ï¹ ïº ï» ïï¬ï ï© ïª ï« ï¹ ïº ï» ï¬ï ï© ïª ï« ï¹ ïº ï» ïºï½ β1n 0.7ï½ (LRFD 5.7.2.2) cn As fyï 0.85 f'cï β1nï bfï ïºï½ cn 1.26 inïï½ As 6.32 in 2 ïï½ (Reinforcement at the top of the precast) (LRFD 5.7.3.1.1-4) bwn if cn tflgï£ bfï¬ï bvï¬ï ï¨ ï© 6 ftï½ïºï½ bwn 72 inïï½ cn As fyï 0.85 f'ctï bf bwnïï¨ ï©ï hfïï 0.85 f'cï β1nï bwnï ïºï½ cn 1.26 inïï½ an β1n cnïïºï½ an 0.885 inïï½ (LRFD 5.7.3.1.1-3) Compute phi for each section: Ïfj 0.583 0.25 dp cj 1ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï«ïºï½ Ïf T 7.41 1.52 1.79 1.12( )ï½ (LRFD Eq. 5.5.4.2.1-1) Ïfj if Ïfj 0.75ï£ 0.75ï¬ï if Ïfj 1.0ï¾ 1.0ï¬ï Ïfj ï¬ï ï¦ï¨ ï¶ï¸ ï¬ï ï¦ï¨ ï¶ï¸ ïºï½ Ïf T 1.00 1.00 1.00 1.00( )ï½ ds hc tslab 2 ïïºï½ Mrn Ïf4 Asï fyï ds an 2 ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ï 0.85 f'cï bf bwnïï¨ ï©ï bfï an 2 tflg 2 ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï«ïºï½ (LRFD 5.7.3.2.2-1) Mrn 650 kip ftïïï½ Status_StrengthLSn if Munï Mrnï£ "OK"ï¬ï "NG""ï¬ï ï¨ ï©ïºï½ Status_StrengthLSn "OK"ï½ B2-32
2.11 Vertical Shear Design At each section the following must be satisfied for shear: Vu Vrï£ (LRFD 5.8.2.1-2)Note: Evaluation has been disabled for these three equations (as indicated by the small boxes) to enable them to be shown without first evaluating their parameters. Vr ÏVn= Vn Vc Vsï« Vpï«= (LRFD 5.8.3.3-1) Critical Section for Shear: (LRFD 5.8.3.2) The critical section for shear near a support in which the reaction force produces compression in the end of the member is, from the face of support (Fig. 2), the greater of: a. 0.5dvcot(ï±), or b. dv where, dv = Effective shear depth = Distance between resultants of tensile and compressive forces = d e - a/2 dv ds an 2 ïïºï½ dv 20.557 inïï½ an 0.885 inïï½ But dv need not be taken less than the greater of 0.9de and 0.72h. Thus, de dsïºï½ 0.9 deï 18.9 inïï½ 0.72 hcï 17.28 inïï½ Min_dv if 0.9 deï 0.72 hcïï³ 0.9 deïï¬ï 0.72 hcïï¬ï ï¨ ï©ïºï½ Min_dv 18.9 inïï½ dv if dv Min_dvï¼ Min_dvï¬ï dvï¬ï ï¨ ï©ïºï½ dv 20.557 inïï½ To compute critical section, assume: θ 32.3 degïïºï½ 0.5 dvï cot θ( )ï 16.2593 inïï½ Crit_sec if dv 0.5 dvï cot θ( )ïï¾ dvï¬ï 0.5 dvï cot θ( )ïï¬ï ï¨ ï©ïºï½ Crit_sec 20.56 inïï½ (LRFD 5.8.2.7) Assuming that the distance from the face of support to the centerline of bearing is half the bearing pad length, the critical section for shear is: Crit_sec Crit_sec Lpad 2 ï«ïºï½ Crit_sec 2.213 ftï½ The above calculations for determining the location of the critical section for shear per LRFD are for illustrative purposes. PSBeam uses a conservative approach to estimating the location of the critical section that is consistent with the LRFD provisions, but which requires no assumptions and no iteration. PSBeam assumes the critical section to be located at 0.72h from the face of bearing. The logic of this is as follows: since dv need not be lower than the greater of 0.9de and 0.72h, either of these two values is permissible. And since the greater of the two values may be used, either value may be used since adopting the lesser value is conservative since the design shear is higher closer to the support. Recall that 0.72h from the face of the support was computed earlier as: xf3 1.94 ftï½ At the critical section, the factored shear is: Vu 1.25 Vswf3 Vdeck3 ï« Vbarrier3 ï«ï¦ï¨ ï¶ï¸ ï 1.5 Vfws3 ïï« 1.75 VLL_p3 ïï«ïºï½ Vu 130.6 kipïï½ Compute maximum permissible shear capacity at a section: Vr_max Ïv 0.25 f'cï bvï dvï 0.0 kipïï«ï¨ ï©ïïºï½ Vr_max 2331.2 kipïï½ (LRFD 5.8.3.3-2) Status_Vrmax if Vu Vr_maxï£ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_Vrmax "OK"ï½ B2-33
The shear contribution from the concrete, Vc, is given by: Muv 1.25 Mswf3 Mdeck3 ï« Mbarrier3 ï«ï¦ï¨ ï¶ï¸ ï 1.5 Mfws3 ïï« 1.75 MLL_n3 ïï«ïºï½ Muv 274ï kip ftïïï½ In the 2008 Interim the procedure for the calculation of θ and β was moved to an appendix. The new procedure for the calculation of these two values involves a new value, εs. Check lower bound for Mu: MuLB if Muv dv Vuï¨ ï©ïï¼ dv Vuï¨ ï©ïï¬ï Muvï¬ï ï©ï« ï¹ï»ïºï½ MuLB 274.2 kip ftïïï½ Îµs MuLB dv Vuï¨ ï©ï« Es Asï ïºï½ εs 0.00158587ï½ (LRFD 5.8.3.4.2-4) If εs is less than zero, it can be taken equal to zero: εs if εs 0ï¼ 0.0ï¬ï εsï¬ï ï¨ ï©ïºï½ εs 0.00158587ï½ Î² 4.8 1 750 εsïï« ïºï½ β 2.1924ï½ (LRFD 5.8.3.4.2-1) θ 29 3500 εsïï«ïºï½ θ 34.5505ï½ (LRFD 5.8.3.4.2-3) New value for Vc Vc 0.0316 βï f'cï ksiï bvï dvïïºï½ Vc 271.3 kipïï½ Required Vs is, therefore: Vs Vu Ïv Vcïïºï½ Vs 126.2ï kipïï½ Assuming two vertical legs of No. #4 bars: Av Vs fy dvï cot θ degï( )ï ïºï½ Av 0.845ï in 2 ft ïï½ (LRFD C5.8.3.3-1) Spac 2 0.2ï in 2 ï Av ïºï½ Spac 5.7ï inïï½ (stirrup spacing) Check minimum transverse reinforcement: Av_min 0.0316 f'cï ksiï bv fy ïïºï½ Av_min 1.204 in 2 ft ïï½ (LRFD 5.8.2.5-1) Check maximum stirrup spacing: (LRFD 5.8.2.7-2) Vspc 0.1 f'cï bvï dvïïºï½ Vspc 1036.1 kipïï½ Ref: Vu 130.6 kipïï½ dv 20.56 inïï½ Max_spac if Vu Vspcï¼ if 0.8 dvï 24 inïï¼ 0.8 dvïï¬ï 24 inïï¬ï ï¨ ï©ï¬ï if 0.4 dvï 12 inïï¼ 0.4 dvïï¬ï 12 inïï¬ï ï¨ ï©ï¬ï ï¨ ï©ïºï½ Max_spac 16.4 inïï½ B2-34
2.12 Longitudinal Reinforcement Check LRFD requires that the longitudinal steel be checked at all locations along the beam. This requirement is made to ensure that the longitudinal reinforcement is sufficient to develop the required tension tie, which is required for equilibrium. Equation 5.8.3.5-1 is the general equation, applicable at all sections. However, for the special case of the inside edge of bearing at simple-end supports, the longitudinal reinforcement must be able to resist a tensile force of (Vu/ï¦ - 0.5Vs - Vp)cot(ï±). Note that when pretensioned strands are used to develop this force, only a portion of the full prestress force may be available near the support due to partial transfer. Additionally, only those strands on the flexural tension side of the member contribute to the tension tie force. Required Tension Tie Force: If only the minimum amount of transverse reinforcement that is required by design is provided, the required tension tie force is: Vp 0 kipïïºï½ FL_reqd Vu Ïv 0.5 Vsïï Vpï ï¦ ï§ ï¨ ï¶ ï· ï¸ cot θ degï( )ïïºï½ FL_reqd 302.4 kipïï½ Eq. 5.8.3.5-2 However, a greater amount of stirrup reinforcement is typically provided than is required, which increases the actual Vs. Note that by Eq. 5.8.3.5-2, increasing Vs decreases the required tension tie force. Hence, it is helpful to use the computed value of Vs that results from the transverse reinforcement detailed in the design. In this case, the required tension tie force is: Assume 2 legs of No. 4 bars at 12" on center (amount of steel at the critical section for shear): Av_actual 0.4 in 2 ïïºï½ Vs_actual Av_actual fyï dvï cot θ degï( )ï 12 inï ïºï½ Vs_actual 59.7 kipïï½ Check the upper limit of Vs: Vs_actual_max Vu Ïv ïºï½ Vs_actual_max 145.1 kipïï½ LRFD 5.8.3.5 Adopt the lesser of provided Vs and the upper limit of Vs: Vs_actual if Vs_actual Vs_actual_maxï¼ Vs_actualï¬ï Vs_actual_maxï¬ï ï¨ ï©ïºï½ Vs_actual 59.7 kipïï½ The revised value of the required tension tie force is: FL_reqd Vu Ïv ï¦ ï§ ï¨ ï¶ ï· ï¸ 0.5 Vs_actualïï Vpï ï© ïª ï« ï¹ ïº ï» cot θ( )ïïºï½ FL_reqd 1.7ï 10 4 ï´ kipïï½ Provided Tension Tie Force: The longitudinal reinforcement that contributes to the tension tie are strands that are on the flexural tension side of the precast section. Near the ends of the precast section, the strands are typically only partially effective. C5.8.3.5 of the 2006 Interim Revisions permits the strand stress in regions of partial development to be estimated using a bilinear variation, as shown in Fig. 4. B2-35
Figure 7: Variation in strand stress in relation to distance from beam end. The stress in the strands at a given section depends on the location of the section with respect to the end of the precast section. If the section is between the end of the beam and L t (see Fig. 5), a linear interpolation is performed using a stress variation of 0.0 at the end of the beam to f pe at a distance of Lt from the end of the precast section. If the section is to the right of Lt but to the left of Ld, then the stress is interpolated between fpe and fps. If the section is to the right of Ld, then the stress is assumed to be a constant value of f ps. At the face of bearing, the stress in the effective strands is: xFB Lovr Ldesï 2 Lpad 2 ï«ïºï½ xFB 1.00 ftï½ (Distance from physical end of beam to face of bearing) Astr No_Strands Astrandïïºï½ Astr 5.642 in 2 ïï½ FL_prov if xFB Ltï¼ Astr fpeï xFB Lt ïï¬ï if xFB Kld Ldïï¼ Astr fpe xFB Kld Ldïï Ltï« Kld Ldï Ltï ï¦ ï§ ï¨ ï¶ ï· ï¸ fps fpeïï¨ ï©ïï« ï© ïª ï« ï¹ ïº ï» ïï¬ï Astr fpeïï¬ï ï© ïª ï« ï¹ ïº ï» ï¬ï ï© ïª ï« ï¹ ïº ï» ïºï½ FL_prov 309.8 kipïï½ Status_Vl if FL_prov FL_reqdï³ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_Vl "OK"ï½ Refined Estimate of Provided Tension Tie Force: If it is assumed that the point of intersection of the bearing crack (at angle theta) and c.g. of the strands is where the force in the strands is computed, then additional tensile capacity from the strands can be utilized. Figure 8: Elevation view of end of beam showing location where assumed failure crack crosses the c.g. of that portion of the strand pattern that is effective for resisting tensile forces caused by moment and shear. B2-36
Distance from end of beam to point of intersection of assumed crack and center of gravity of effective strands: xc Lpad 2 ï¦ ï§ ï¨ ï¶ ï· ï¸ ecc cot θ degï( )ïï«ïºï½ xc 1.2 ftïï½ (Measured from L face of bearing) xc Lovr Ldesï 2 ï¦ ï§ ï¨ ï¶ ï· ï¸ Lpad 2 ï¦ ï§ ï¨ ï¶ ï· ï¸ ï« ecc cot θ degï( )ïï«ïºï½ xc 1.7 ftïï½ (Measured from L end of beam) FL_prov if xc Ltï¼ Astr fpeï xc Lt ïï¬ï if xc Kld Ldïï¼ Astr fpe xc Kld Ldïï Ltï« Kld Ldï Ltï ï¦ ï§ ï¨ ï¶ ï· ï¸ fps fpeïï¨ ï©ïï« ï© ïª ï« ï¹ ïº ï» ïï¬ï Astr fpeïï¬ï ï© ïª ï« ï¹ ïº ï» ï¬ï ï© ïª ï« ï¹ ïº ï» ïºï½ FL_prov 515.9 kipïï½ Status_Vl "OK"ï½Status_Vl if FL_prov FL_reqdï³ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ 2.13 Interface Shear Design The ability to transfer shear across the interface between the top of the precast beam and the cast-in-place deck must be checked. This check falls under the interface shear or shear friction section of LRFD (5.8.4). Recall that under the Standard Specs, this check falls under the horizontal shear section. Little guidance is offered by the LRFD Specs on how to compute the applied shear stress at the strength limit state. The procedure presented here uses the approach recommended by the PCI Bridge Design Manual, which is a strength limit state approach. Applied Factored Shear: Vu 130.6 kipïï½ vuh_s Vu dv bvï ïºï½ vuh_s 0.088 ksiïï½ dv 20.56 inïï½ xFB 1.00 ftï½ (Distance from physical end of beam to face of bearing) vnh_reqd vuh_s Ïv ïºï½ vnh_reqd 0.098 ksiïï½ Acv bv 1.0ï ftïïºï½ Acv 864 in 2 ïï½ Vnhr vnh_reqd Acvïïºï½ Vnhr 84.7 kipïï½ Nominal Shear Resistance of the Interface (Capacity): Status_Vl if FL_prov FL_reqdï³ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½Vn cAc μ Avf fyï Pcï«ï¨ ï©ï«= (LRFD 5.8.4.1-2) Interface is CIP concrete slab on clean, roughened beam surface, no reinforcement crossing shear plane: (LRFD 5.8.4.3) c 0.135 ksiïïºï½ (cohesion factor) μ 1.000ïºï½ (friction factor) K1 0.2ïºï½ (fraction of concrete strength available to resist interface shear) K2 0.8 ksiïïºï½ (limiting interface shear resistance) B2-37
Since there is no permanent net compressive stress normal to shear plane, Pc = 0. (LRFD 5.8.4.2) Check Maximum Allowable Shear: Vni_max1 K1 f'ctï Acvïïºï½ Vni_max1 691 kipïï½ (LRFD 5.8.4.1-4) Vni_max2 K2 Acvïïºï½ Vni_max2 691 kipïï½ (LRFD 5.8.4.1-5) Vnh_max if Vni_max1 Vni_max2ï£ Vni_max1ï¬ï Vni_max2ï¬ï ï¨ ï©ïºï½ (LRFD 5.8.4.1-2,3) Vnh_max 691 kipïï½ Vnh_reqd vnh_reqd Acvïïºï½ Vnh_reqd 84.7 kipïï½ Status_Vuh_max if Vnh_reqd Vnh_maxï¼ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Assuming no horizontal shear reinforcement crossing the shear plane, provided horizontal shear resistance is: Vnh_prov c Acvïïºï½ Vnh_prov 116.6 kipïï½ Status_Vnh_prov if Vnhr Vnh_provï¼ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_Vnh_prov "OK"ï½ 2.14 Spalling Forces If the maximum spalling stress on the end face of the girder is less than the direct tensile strength of the concrete, then spalling reinforcement is not required when the member depth is less than 22 in. The maximum spalling stress is estimated as: Ïs P A 0.1206 e 2 h dbï ï 0.0256ï ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ 0ï³= And the direct tensile strength is computed as: fr_dts 0.23ï f'cï ksiïïºï½ fr_dts 0.609ï ksiïï½ (LRFD C5.4.2,7) Check reinforcement requirement: Ref: A 936 in2ïï½ h 18 inïï½ ecc 5.4969 inïï½ db 0.6 inïï½ Pjack Aps4 fpjïïºï½ Pjack 1142.5 kipïï½ Ïs Pjackï A 0.1206 ecc 2 h dbï ï 0.0256ï ï¦ï§ ï§ï¨ ï¶ï· ï·ï¸ ïºï½ Ïs 0.381ï ksiïï½ Check whether spalling stress is below threshhold and thus is spalling/busting reinforcement is needed: Status_Spalling if Ïs fr_dtsï¾ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_Spalling "OK"ï½ B2-38
2.15 Transverse Load Distribution The transverse load distribution reinforcement is computed by: Atld kmild Al_mildï α kpsï Al_psïï«= where: α dcgs dtrans = kps 100 L fpe 60 ï 50%ï£= kmild 100 L 50%ï£= dcgs hc ycgïïºï½ dcgs 21.1 inïï½ Compute dtrans: dtrans hc 4inï db 2 ï 0.75 inï 2 ïïºï½ dtrans 19.3 inïï½ Î± dcgs dtrans ïºï½ α 1.0907ï½ Assume there is no mild longitudinal reinfocement Al_mild in tension at the strength limit state. Al_mild 0.0 in 2 ïïºï½ kmild 100 ftï Ldes 100 ïºï½ kmild 14.43 %ïï½ kps 100 ftï Ldes fpe 60 ksiï ï 100 ïºï½ kps 39.63 %ïï½ Al_ps Aps2 ïºï½ Al_ps 3.6466 in 2 ïï½ Total amount of transverse load distribution is: Atld kmild Al_mildï α kpsï Al_psïï«ïºï½ Atld 1.58 in 2 ïï½ Since the longitudinal reinforcement is per beam width, the area of distribution reinforcement per foot is: Atld_per_ft Atld S ïºï½ Atld_per_ft 0.26 in 2 ft ïï½ Set transverse load distribution reinforcement spacing at 12 in.:Assuming transverse bars are #6, maximum spacing is: Sld_spac_max 0.44 in 2 ï Atld_per_ft ftï ftïïºï½ Sld_spac_max 20.1 inïï½ Sld_spac 12inïºï½ B2-39
2.16 Reflective Crack Control Reinforcement Reflective crack control reinforcement is provided from both the transverse load distribution reinforcment as well as drop in cage consisting of vertical stirrups. The total amount of reflective crack control reinforcement required is given as follows: Ïcr_req 6 f'ct psiï fy ïºï½ Ïcr_req 0.00632ï½ (LRFD 5.14.4.3.3f-1) The crack control reinforcement ratio is defined, per unit length of span, as follows: Ïcr Ascr h tflgïï¨ ï© 1ï ft = (LRFD 5.14.4.3.3f-2) The required area of reinforcement of reflective crack control is therefore calculated, per unit length of span, as: Ascr_req Ïcr_req h tflgïï¨ ï©ï 1ï ftïºï½ Ascr_req 1.1384 in2ïï½ The required area of cage reinforcement is subsequently calculated, per unit length of span, as the difference between the total required area of crack control reinforcement and that provided by the reinforcement for transverse load distribution; both transverse bars are effective in providing crack control, however only the lower horizontal legs of the stirrups are considered in the calculation. All calculations are per unit length of span: Ald 2Sld_spac .44ï in 2 1ft ïºï½ Ald 0.88 in 2 ïï½ Acr_cage_req Ascr_req Aldïïºï½ Acr_cage_req 0.2584 in 2 ïï½ Provide No. 5 stirrups at 12 in. on center: Scage_spac 12inïºï½ Ascage 0.31in 2 ïºï½ Acr_cage_prov Ascage 1ft Scage_spac ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Acr_cage_prov 0.31 in 2 ïï½ Ascr_prov Ald Acr_cage_provï«ïºï½ Status_Ascrack if Ascr_req Ascr_provï¼ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_Ascrack "OK"ï½ Figure 9: Cross section of bridge showing CIP regions. B2-40
Figure 10: Detail of drop-in cage. Figure 11: Plan view of drop-in cage. 2.17 Bottom Flange Reinforcement Determine steel required to resist construction loads on bottom flange: Assume a 1' wide strip: Loads: Self-weight of flange: wflng_sw tflg 12ï inï wctïïºï½ wflng_sw 0.0375 klfïï½ CIP weight: wflng_cip h tflgïï¨ ï© 12ï inï wctïïºï½ wflng_cip 0.1875 klfïï½ Construction live load (assume 10 psf): wconst 10psfïºï½ wflng_LL wconst 12ï inïïºï½ wflng_LL 0.0100 klfïï½ Moments: B2-41
bcant bh 2 ïºï½ bcant 1.00 ftï½ (Length of cantilever) Mflng_sw wflng_sw bcant 2 ï 2 ïºï½ Mflng_sw 0.0187 kip ftïïï½ Mflng_cip wflng_cip bcant 2 ï 2 ïºï½ Mflng_cip 0.0937 kip ftïïï½ Mflng_LL wflng_LL bcant 2 ï 2 ïºï½ Mflng_LL 0.005 kip ftïïï½ Strength Limit State I: Mu_flng 1.25 Mflng_sw Mflng_cipï«ï¨ ï©ï 1.75 Mflng_LLïï«ïºï½ Mu_flng 0.15 kip ftïïï½ Try #3 bars at 12" o.c: As_flng 0.11 in 2 ïïºï½ As_flng 0.11 in 2 ïï½ cflng As_flng fyï 0.85 f'cï β1ï 12ï inï ïºï½ cflng 0.11 inïï½ Î²1p if f'c 4 ksi( )ïï£ 0.85ï¬ï if f'c 8 ksi( )ïï³ 0.65ï¬ï 0.85 f'c 4 ksi( )ïï 1 ksi( )ï 0.05ï ï© ïª ï« ï¹ ïº ï» ïï¬ï ï© ïª ï« ï¹ ïº ï» ï¬ï ï© ïª ï« ï¹ ïº ï» ïºï½ β1p 0.70ï½ aflng β1p cflngïïºï½ aflng 0.0761 inïï½ ds tflg 1 inïï 0.5 inïï 0.5 inï 2 ïïºï½ ds 1.25 inïï½ Mn_flng As_flng fyï ds aflng 2 ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Mn_flng 0.67 kip ftïïï½ Ïf_flng 0.65 0.15 ds cflng 1ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï«ïºï½ Ïf_flng 2.22ï½ Ïf_flng if Ïf_flng 0.75ï£ 0.75ï¬ï if Ïf_flng 0.9ï¾ 0.9ï¬ï Ïf_flngï¬ï ï¨ ï©ï¬ï ï¨ ï©ïºï½ Ïf_flng 0.9ï½ Mr_flng Ïf_flng Mn_flngïïºï½ Mr_flng 0.60 kip ftïïï½ Status_StrengthLSflng if Mu_flng Mr_flngï£ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_StrengthLSflng "OK"ï½ Use: Minimum #3 bars @ 12" o.c. in bottom flange. B2-42
2.18 Reinforcement for Positive Restraint Moment at Pier Load factors for each load component are derived from AASHTO (2009) Table 3.4.1-2. Because dead loads induce negative moments at the piers, they were underestimated by 10 percent (i.e.: γp = 0.9). The moments due to creep, shrinkage, and prestress force were designed with a load factor ( γRM) of 1.0, as given by AASHTO (2009) Table 3.4.1-3. γp 0.9ïºï½ γRM 1.0ïºï½ From Section 2.5: The design restraint moment due to the time depenent effects of prestress, creep, and shrinkage have been included. Postive restraint moments due to the design thermal gradient have been calculated (Section 2.5) based on AASHTO (2009) Temperature Zone 1, though will not be specifically designed for in this example because of the difference in the relative magnitude of the restraint moment due to thermal gradients and the remaining time dependent effects. Mrm 34 kip ftïïï½ Mgr 265 ft kipïïï½ Muprm γp Mbarrier_c1 ï γp Mfws_c1 ïï« Mrmï«ïºï½ Muprm 8ï ft kipïïï½ All reinforcement provided to resistive positive restraint moments is located in the 24 in. wide trough region between precast panels. The reinforcement is located immediately above the precast flange. Assume No. 4 bars are used for positive continuity reinforcement, and (4) bars are used in each 24 in. trough region: dNo4 0.5inïºï½ As 0.2in 2 ïºï½ AsRM_prov 4 Asïïºï½ AsRM_prov 0.8 in 2 ïï½ ds_RM h 6inï« 3.25inï 1inï dNo4 2 ïïºï½ ds_RM 19.5 inïï½ The reinforcement required is calculated at the ultimate limit state (i.e.: assuming Whitney's stress block) a AsRM_prov fyï 0.8 f'ctï 72ï in ïºï½ a 0.21 inïï½ AsRM_req Muprm fy ds_RM a 2 ïï¦ï§ ï¨ ï¶ ï· ï¸ ï ïºï½ AsRM_req 0.08ï in 2 ïï½ Status_AsRM if AsRM_req AsRM_provï¼ "OK"ï¬ï "NG"ï¬ï ï¨ ï©ïºï½ Status_AsRM "OK"ï½ B2-43
Figure 12: Detail of the positive restraint moment reinforcement Figure 13: Cross section of the positive restraint moment reinforcement References Peterman, R. and Ramirez, J., "Restraint Moments in Bridges with Full-Span Prestressed Concrete Form Panels", PCI Journal, V. 43, No. 2, Jan.-Feb. 1998, pp. 54-73. B2-44
Example Problem 3 3.1 Introduction The design of the longitudinal joint between decked bulb tee members is illustrated in this example. 3.2 Materials, Geometry, Loads and Load Factors Units: kcf kip ft 3ï ïïºï½ Defined unit: kips per cubic foot ksf kip ft 2ï ïïºï½ Defined unt: kips per square foot Materials: f'c 7.0 ksiïïºï½ Strength of beam concrete at 28 days f'ci 6.0 ksiïïºï½ Strength of beam concrete at transfer of prestressing force wc 0.150 kcfïïºï½ Density of beam concrete Es 29000 ksiïïºï½ Modulus of elasticity of non-prestressed reinforcement fy 60.0 ksiïïºï½ Yield stress of stainless steel rebar Geometry: Lovr 141.0 ftïïºï½ Overal length of girder Ldes 140.0 ftïïºï½ Design span of girder S 7.00 ftïïºï½ Girder spacing Ng 4ïºï½ Number of girders in bridge cross section Widthoverall 28.00 ftïïºï½ Overall width of bridge Curb to curb width of bridge Widthctc 25.5 ftïïºï½ Nl 2ïºï½ Number of lanes tflng 6.25 inïïºï½ Thickness of girder flange Widthbarrier 1.25 ftïïºï½ Assumed width of a typical barrier Loads: Nbarriers 2ïºï½ Number of barriers (assumed typical weight) wbarrier 0.300 klfïïºï½ Weight of single barrier wfws 0.025 ksfïïºï½ Weight of future wearing surface allowance HL-93 Notional live load per LRFD Specs wlane 0.64 klfïïºï½ Design lane load Factors: ï¦f (variable) Resistance factor for flexure Ïv 0.90ïºï½ Resistance factor for shear DLA 0.33ïºï½ Dynamic load allowance (LRFD 3.6.2.1-1) B3-1
3.3 Plan, Elevation, and Typical Section Fig. 1: Framing plan of bridge. Fig. 2: Elevation view of girder layout. Fig. 3: Typical section. B3-2
Fig. 4: Girder dimensions. 3.4 Strip Widths Fig. 5: Geometry of exterior girder and wheel load. (LRFD 4.6.2.1)Overhang: Xoverhang Widthoverall Ng 1ïï¨ ï© Sïïï©ï« ï¹ï» 2 Widthbarrierï 1.00 ftïï 1.25 ftï½ïºï½ Eoverhang 45.0 inï 10.0 Xoverhang 12 ïï«ïºï½ Eoverhang 57.5 inïï½ B3-3
+Moment: XpM 7.0 ftïïºï½ EpM 26.0 inï 6.6 XpM 12 ïï«ïºï½ EpM 72.2 inïï½ -Moment: XnM 7.0 ftïïºï½ EnM 48.0 inï 3.0 XnM 12 ïï«ïºï½ EnM 69.0 inïï½ 3.4 Analysis Dead Load: Self-weight: Assume dead load acts on simple span, Use 1-ft strip: wsw tflng 12ï inï wcïïºï½ wsw 0.0781 klfïï½ Msw wsw 7 ftï( ) 2 ï 8 ïºï½ Msw 0.4785 kip ftïïï½ Barriers: Use continuous beam model with barriers modeled as point loads at each cantilever. Mbarrier 1.0 kipï ftïïºï½ Future wearing surface: Use continuous beam model with FWS modeled as uniform load: MFWS 0.020 kipï ftïïºï½ Live Load: Use mulit-span continous model to assess live load moments: Fig. 6: Conitnuous beam model of live load analysis of panel strip. Maximum live load moment: MpLL 21.2 kipï ftïïºï½ MLL_perfoot MpLL EpM ft ïºï½ MLL_perfoot 3.52 kip ftïïï½ B3-4
3.5 Load Combintations Use Strength Limit State I: Mu 1.25 Msw Mbarrierï«ï¨ ï©ï 1.5 MFWSïï« 1.75 MLL_perfootïï«ïºï½ Mu 8.04 kip ftïïï½ 3.6 Flexural Analysis Fig. 7: Girder reinforcement layout. Fig. 8: Joint reinforcement and geometry. Closure pour material should be based on recommended performance criteria from NCHRP 10-71 design recommendations. Fig. 9: Bend diameter of U bars. Note: This is a different than the 6db requirement in AASHTO, but acceptable because of the additional ductility of stainless steel. B3-5
Mn Ï Asï fyï ds a 2 ïï¦ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Ï 0.90ïºï½ Check #5 bars at 9" o.c. Areabar 0.31 in 2 ïïºï½ Spacingbar 9 inïïºï½ As Areabar 12 inï Spacingbar ïïºï½ As 0.41 in 2 ïï½ a As fyï 0.85 f'cï 12ï inï ïºï½ a 0.35 inïï½ ds tflng 1 inïï 0.625 inï 2 ïïºï½ ds 4.9375 inïï½ Mn Ï Asï fyï ds a 2 ïï¦ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Mn 8.9 kip ftïïï½ Distribution reinforcement: As_dist_pct 100 S ft ïºï½ (LRFD 5.14.4.1-1) (< 50%) As_dist_pct 37.8ï½ (percent of primary reinforcement) As_dist As_dist_pct 100 Asïïºï½ As_dist 0.16 in 2 ïï½ B3-6
Example Problem 4 4.1 Introduction The design of the transverse joint over the piers of a girder bridge that incorporates full-depth deck panels is presented. 4.2 Materials, Geometry, Loads and Load Factors Units: kcf kip ft 3ïïïºï½ Materials: Concrete: f'c 7.0 ksiïïºï½ Strength of beam concrete at 28 days wc 0.150 kcfïïºï½ Density of beam concrete fy 60 ksiïïºï½ Yield stress of stainless steel rebar Geometry: Beam: h 72.0 inïïºï½ Height of girder bf 26.0 inïïºï½ Width of bottom flange of precast section tf 10.50 inïïºï½ Thickness of bottom flange of girder Sbeam 12.00 ftïïºï½ Beam spacing Deck: tslab 6.00 inïïºï½ Thickness of precast deck panel 4.3 Plan, Elevation, and Typical Section Fig. 1: Plan view of bridge. Fig. 2: Elevation view of bridge. B4-1
Fig. 3: Typical section of bridge. Fig. 4: Girder dimensions. B4-2
Fig. 5: Panel layout. Fig. 6: Panel dimensions. Fig. 7: Transverse panel section. Fig. 8: Detail of panel-to-panel connection. B4-3
Fig. 9: Detail panel-to-panel connection over piers (see Fig. 5). Fig. 10: Section through girders at pier. B4-4
4.3 Analysis Only loads that act on the composite section cause negative moment over the piers. Barrier Weight: Mbarrier 213.1ï kipï ftïïºï½ Future Wearing Surface: MFWS 248.6ï kipï ftïïºï½ Live Load: MDesign_Truck 1265ï kipï ftïïºï½ MDesign_Lane 843ï kipï ftïïºï½ Fraction of live load moment for one design lane distributed to girder: DFm 0.7404ïºï½ Dynamic load allowance (applied to truck only): DLA 0.33ïºï½ Effective Negative Live Load Moment: MLL DFm MDesign_Lane 1 DLAï«( ) MDesign_Truckïï«ï©ï« ï¹ï»ïïºï½ MLL 1869.8ï kip ftïïï½ 4.4 Load Combinations Use Strength Limit State I Mu 1.25 Mbarrier MFWSï«ï¨ ï©ï 1.75 MLLï¨ ï©ïï«ïºï½ Mu 3849.4ï kip ftïïï½ Mu_per_ft Mu Sbeam ft ïºï½ Mu_per_ft 320.8ï kip ftïïï½ (per foot) 4.5 Reinforcement Mn Ï Asï fyï ds a 2 ïï¦ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Try #5 bars at 6" o.c (2 legs of u-bar): Areabar 2 0.31ï in 2 ïïºï½ Spacingbar 6 inïïºï½ As Areabar 12 inï Spacingbar ïïºï½ As 1.24 in 2 ïï½ c As fyï 0.85 f'cï 12ï inï ïºï½ c 1.04 inïï½ (< 10.5 in OK) β1 if f'c 4 ksi( )ïï£ 0.85ï¬ï if f'c 8 ksi( )ïï³ 0.65ï¬ï 0.85 f'c 4 ksi( )ïï 1 ksi( )ï 0.05ï ï© ïª ï« ï¹ ïº ï» ïï¬ï ï© ïª ï« ï¹ ïº ï» ï¬ï ï© ïª ï« ï¹ ïº ï» ïºï½ β1 0.7ï½ a β1 cïïºï½ a 0.729 inïï½ B4-5
Center of gravity of deck reinforcement lies at mid-height of deck. ds h tslab 2 ï«ïºï½ ds 75 inïï½ Ïf 0.65 0.15 ds c 1ï ï¦ ï§ ï¨ ï¶ ï· ï¸ ïï«ïºï½ Ïf if Ïf 0.75ï£ 0.75ï¬ï if Ïf 0.9ï¾ 0.9ï¬ï Ïfï¬ï ï¨ ï©ï¬ï ï¨ ï©ïºï½ Ïf 0.9ï½ Mn Ïfï Asï fyï ds a 2 ïï¦ï§ ï¨ ï¶ ï· ï¸ ïïºï½ Mn 416.5ï kip ftïïï½ OK B4-6
Example Problem 5 5.1 Introduction The required width of a bridge can exceed the practical length of a full-depth deck panel. To accommodate this, a longitudinal joint must be introduced into the cross section of the bridge. The joint can occur between girders or, preferably, over the centerline of a girder. This example provides typical details for making such connections. Previously presented methods for designing the joints apply. 5.2 Materials, Geometry, and Loads Units: kcf kip ft 3ïïïºï½ Materials: Concrete: f'c 7.0 ksiïïºï½ Strength of beam concrete at 28 days wc 0.150 kcfïïºï½ Density of beam concrete fy 60.0 ksiïïºï½ Yield stress of stainless steel rebar Geometry: Beam: h 72.0 inïïºï½ Height of girder bf 26.0 inïïºï½ Width of bottom flange of precast section tf 10.50 inïïºï½ Thickness of bottom flange of girder Sbeam 10.30 ftïïºï½ Beam spacing Deck: tslab 6.00 inïïºï½ Thickness of precast deck panel 5.3 Plan, Elevation, and Typical Section Fig. 1: Plan view of bridge. Fig. 2: Elevation view of bridge. B5-1
Fig. 3: Bridge cross section. Fig. 4: Panel layout with joint between girders. Fig. 5: Girder cross section. B5-2
Fig. 6: Type "A" panel (see Fig. 4). Connection bars in the longitudinal direction should be outside the connection bars in the transverse direction through the section depth. Fig. 7: Section A-A through Type "A" panel. Fig. 8: Type "B" panel (see Fig. 4). Fig. 9: Typical transverse joint between panels. B5-3
Fig. 10: Typical longitudinal joint between panels.This joint is used for cases where the length of a panel exceeds the the limit for shipping or hauling of a panel, which requires that the panel be subdivided into two or more panels of shorter length. Fig. 11: Section through longitudinal joint. B5-4