National Academies Press: OpenBook
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×

EBABLING TECHNOLOGIES FOR UNIFIED LIFE-CYCLE ENGINEERING OF STRUCTURAL COMPONENTS

Committee on Enabling Technologies for Unified Life-Cycle Engineering of Structural Components

National Materials Advisory Board

Commission on Engineering and Technical Systems

National Research Council

Publication NMAB-455

National Academy Press
Washington, D.C.
1991

Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×

NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.

This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee consisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Frank Press is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsiblity for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Robert M. White is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Samuel O. Thier is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Frank Press and Dr. Robert M. White are chairman and vice chairman, respectively, of the National Research Council.

This study by the National Materials Advisory Board was conducted under Contract No. MDA903-89-K-0078 with the U.S. Department of Defense and the National Aeronautics and Space Administration.

Library of Congress Card Number 91-60825.

International Standard Book Number 0-309-04492-8.

This report is available from the
National Academy Press,
2101 Constitution Avenue, NW, Washington, DC 20418. Also, available from the Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-6145.

S347.

Printed in the United States of America.

Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×

ABSTRACT

This report addresses the application of unified life-cycle engineering approaches to the design, manufacture and application of structural components, especially structural components for advanced military weapons systems. Unified life-cycle engineering (ULCE), or concurrent engineering, is a design engineering environment in which computer-aided design technology is used to assess and improve the quality of a product not only during the active design phases but throughout its entire life cycle by integrating and optimizing design attributes for producibility and supportability as well as for performance, operability, cost, and schedule. The study identifies and evaluates priorities for research and development in life-cycle engineering with the goal of identifying the enabling technologies that underpin ULCE, their readiness for application, and the research and development required to make them commercially available in a 10-year period. The committee examined the current and desired future environments for five factors in a product's life cycle: design, manufacture, product support, materials, and information systems. Four critical issues are identified and conclusions and recommendations to support the development of an effective ULCE design engineering environment are defined.

Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×
This page in the original is blank.
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×

COMMITTEE ON ENABLING TECHNOLOGIES FOR UNIFIED LIFE-CYCLE ENGINEERING OF STRUCTURAL COMPONENTS

Chairman

Michael J. Buckley,

Rockwell International Science Center, Palo Alto Laboratory, California

Members

J. Kenneth Blundell,

University of Missouri-Columbia

Ronald C. Fix,

McAir CAD/CAM, St. Louis, Missouri

Siegfried Goldstein,

Siegfried Enterprises, Inc., North Babylon, New York

Charles F. Herndon,

General Dynamics Corporation, Fort Worth, Texas

Richard Lopatka,

Pratt & Whitney Manufacturing Division, East Hartford, Connecticut

Yoh-Han Pao,

Case Western Reserve University, Cleveland, Ohio

Ralph E. Patsfall,

General Electric Company, Cincinnati, Ohio

Robin Stevenson,

General Motors Technical Center, Warren, Michigan

Edison T. S. Tse,

Stanford University, Stanford, California

Dick Wilkins,

University of Delaware, Newark

David H. Withers,

IBM Industrial Sector Division, Atlanta, Georgia

H. Thomas Yolken,

National Institute of Standards and Technology, Gaithersburg, Maryland

Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×

Liaison Representatives

Walter H. Reimann,

WRCD/ML, Wright Patterson Air Force Base, Ohio

Melvin C. Ohmer,

WRDC/ML, Wright Patterson Air Force Base, Ohio

Dan E. Good, Aviation Applied Technology Directorate,

Ft. Eustis, Virginia

John Mayer,

National Science Foundation, Washington, DC

Charles A. Zanis,

Naval Sea Systems Command, Washington, DC

Lewis Sloter,

Naval Air Systems Command, Washington, DC

Richard Weinstein,

National Aeronautics and Space Administration, Washington, DC

NMAB Staff

Klaus M. Zwilsky, Director

Stanley M. Wolf, Project Officer (1987–1988)

Cathryn Summers, Senior Secretary

Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×

PREFACE

The development of complex military weapons systems has always required that the design team make numerous decisions regarding the use of advanced, unproved technology to achieve improved performance and enhanced cost-effectiveness. The continuing need for better performance has generally led to the technological approach that offers the highest performance consistent with program cost and schedule constraints. Systems are often developed that require considerable modification before they can be efficiently manufactured and considerable support in the field once they are deployed.

Unified life-cycle engineering (ULCE) is a concept aimed at providing designers with integrated knowledge and information needed throughout a weapon system's life cycle--from design through product support. This enlarged information set could significantly upgrade weapons systems design and performance as well as shorten development and prototype demonstration times. ULCE has the goal of providing the designer or engineer with information and tools that will permit the consideration of more issues and perform more trade-off studies within the time constraints. Just as the widespread use of word processing programs (a tool) at individual workstations has increased the quality of letters and reports by making it far easier to edit and format documents, so in principle will ULCE design stations improve the quality of design by making it far easier to consider explicitly issues that previously were addressed only with great difficulty, if at all.

The Department of Defense and National Aeronautics and Space Administration requested the National Research Council, through the National Materials Advisory Board, to examine ULCE for structural components. The study was charged with identifying and evaluating priorities in R&D opportunities in the area of ULCE of structural components and with assessing the enabling technologies for ULCE (including the needs and relationships among several technologies--materials, structural design, component manufacture, product support, and information systems).

This report documents the findings of the study. It emphasizes technical issues associated with ULCE and institutional issues are also considered. Its intended audiences are government and industry executives who set policy for their organizations as well as program managers in funding agencies responsible for identifying and responding to opportunities for improved system reliability.

Page viii Cite
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×

The committee appreciates contributions from several individuals who made presentations at committee meetings and thus assisted in the completion of this study; Appendix C lists these individuals as well as summaries of the key issues they discussed.

MICHAEL J. BUCKLEY

CHAIRMAN

Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×
Page R1
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×
Page R2
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×
Page R3
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×
Page R4
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×
Page R5
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×
Page R6
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×
Page R7
Page viii Cite
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×
Page R8
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×
Page R9
Suggested Citation:"FRONT MATTER." National Research Council. 1991. Enabling Technologies for Unified Life-Cycle Engineering of Structural Components. Washington, DC: The National Academies Press. doi: 10.17226/1776.
×
Page R10
Next: EXECUTIVE SUMMARY »
Enabling Technologies for Unified Life-Cycle Engineering of Structural Components Get This Book
×
Buy Paperback | $45.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Unified life-cycle engineering (ULCE), or concurrent engineering, is a design engineering environment in which computer-aided design technology is used to assess and improve the quality of a product—not only during the active design phases but throughout its entire life cycle. This is achieved by integrating and optimizing the design attributes for producibility and supportability as well as for performance, operability, cost, and schedule.

This book addresses ULCE approaches to design, manufacture, and application of structural components—especially for advanced military systems. Conclusions and recommendations to support the development of an effective ULCE design engineering environment are presented.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!