National Academies Press: OpenBook

Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014 (2014)

Chapter:2 The Restoration Plan in Context

« Previous: 1 Introduction
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

2

The Restoration Plan in Context

This chapter sets the stage for the fifth of this committee’s biennial assessments of restoration progress in the South Florida ecosystem. Background for understanding the project is provided through descriptions of the ecosystem decline, restoration goals, the needs of a restored ecosystem, and the specific activities of the restoration project.

BACKGROUND

The Everglades once encompassed about 3 million acres of slow-moving water and associated biota that stretched from Lake Okeechobee in the north to Florida Bay in the south (Figures 1-1a and 2-1a). The conversion of the Everglades wilderness into an area of high agricultural productivity and cities was a dream of 19th-century investors, and projects begun between 1881 and 1894 affected the flow of water in the watershed north of Lake Okeechobee. These early projects included dredging canals in the Kissimmee River Basin and constructing a channel connecting Lake Okeechobee to the Caloosahatchee River and, ultimately, the Gulf of Mexico. By the late 1800s, more than 50,000 acres north and west of the lake had been drained and cleared for agriculture (Grunwald, 2006). In 1907, Governor Napoleon Bonaparte Broward created the Everglades Drainage District to construct a vast array of ditches, canals, dikes, and “improved” channels. By the 1930s, Lake Okeechobee had a second outlet, through the St. Lucie Canal, leading to the Atlantic Ocean, and 440 miles of other canals altered the hydrology of the Everglades (Blake, 1980). After hurricanes in 1926 and 1928 resulted in disastrous flooding from Lake Okeechobee, the U.S. Army Corps of Engineers (USACE) replaced the small berm that bordered the southern edge of the lake with the massive Herbert Hoover Dike, which was eventually expanded in the 1960s to encircle the lake. The hydrologic end product of these drainage activities was the drastic reduction of water storage within the system and an increased susceptibility to drought and desiccation in the southern reaches of the Everglades (NRC, 2005).

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

image

FIGURE 2-1 Water flow in the Everglades under (a) historical conditions, (b) current conditions, and (c) conditions envisioned upon completion of the Comprehensive Everglades Restoration Plan (CERP).

SOURCE: Graphics provided by USACE, Jacksonville District.

After further flooding in 1947 and increasing demands for improved agricultural production and flood control for the expanding population centers on the southeast Florida coast, the U.S. Congress authorized the Central and Southern Florida (C&SF) Project. This project provided flood control and urban and agricultural water supply by straightening 103 miles of the meandering Kissimmee River, expanding the Herbert Hoover Dike, constructing a levee along the eastern boundary of the Everglades to prevent flows into the southeastern urban areas, establishing the 700,000-acre Everglades Agricultural Area (EAA) south of Lake Okeechobee, and creating a series of Water Conservation Areas (WCAs) in the remaining space between the lake and Everglades National Park (Light and Dineen, 1994). The eastern levee isolated about 100,000 acres of the Everglades ecosystem, making it available for development (Lord, 1993). In total, urban and agricultural development have reduced the Everglades to about one-half its pre-drainage size (see Figure 1-1b; Davis and Ogden, 1994) and have contaminated its waters with chemicals such as phosphorus, nitrogen, sulfur, mercury, and pesticides. Associated drainage and flood control structures, including the C&SF Project, have diverted large quantities of water to the coastal

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

areas, thereby reducing the freshwater inflows and natural water storage that defined the ecosystem (see Figure 2-1b).

The profound hydrologic alterations were accompanied by many changes in the biotic communities in the ecosystem, including reductions and changes in the composition, distribution, and abundance of the populations of wading birds. Today, the federal government has listed 67 plant and animal species in South Florida as threatened or endangered, with many more included on state lists. Some distinctive Everglades habitats, such as custard apple forests and peripheral wet prairie, have disappeared altogether, while other habitats are severely reduced in area (Davis and Ogden, 1994; Marshall et al., 2004). Approximately 1 million acres are contaminated with mercury (McPherson and Halley, 1996). Phosphorus from agricultural runoff has impacted water quality in large portions of the Everglades and has been particularly problematic in Lake Okeechobee (Flaig and Reddy, 1995) (see Chapter 4 for a more detailed discussion of phosphorus enrichment in the Everglades). The Caloosahatchee and St. Lucie estuaries, including parts of the Indian River Lagoon, have been greatly altered by high and extremely variable freshwater discharges that bring nutrients and contaminants and disrupt salinity regimes (Doering, 1996; Doering and Chamberlain, 1999).

At least as early as the 1920s, private citizens were calling attention to the degradation of the Florida Everglades (Blake, 1980). However, by the time Marjory Stoneman Douglas’s classic book The Everglades: River of Grass was published in 1947 (the same year that Everglades National Park was dedicated), the South Florida ecosystem had already been altered extensively. Beginning in the 1970s, prompted by concerns about deteriorating conditions in Everglades National Park and other parts of the South Florida ecosystem, the public, as well as the federal and state governments, directed increased attention to the adverse ecological effects of the flood control and irrigation projects (Kiker et al., 2001; Perry, 2004). By the late 1980s it was clear that various minor corrective measures undertaken to remedy the situation were insufficient. As a result, a powerful political consensus developed among federal agencies, state agencies and commissions, Native American tribes, county governments, and conservation organizations that a large restoration effort was needed in the Everglades (Kiker et al., 2001). This recognition culminated in the Comprehensive Everglades Restoration Plan (CERP), which builds on other ongoing restoration activities of the state and federal governments to create one of the most ambitious and extensive restoration efforts in the nation’s history.

RESTORATION GOALS FOR THE EVERGLADES

Several goals have been articulated for the restoration of the South Florida ecosystem, reflecting the various restoration programs. The South Florida Ecosystem

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

Restoration Task Force (hereafter, simply the Task Force), an intergovernmental body established to facilitate coordination in the restoration effort, has three broad strategic goals: (1) “get the water right,” (2) “restore, preserve, and protect natural habitats and species,” and (3) “foster compatibility of the built and natural systems” (SFERTF, 2000). These goals encompass, but are not limited to, the CERP. The Task Force works to coordinate and build consensus among the many non-CERP restoration initiatives that support these broad goals.

The goal of the CERP, as stated in the Water Resources Development Act of 2000 (WRDA 2000), is “restoration, preservation, and protection of the South Florida Ecosystem while providing for other water-related needs of the region, including water supply and flood protection.” The Programmatic Regulations (33 CFR § 385.3) that guide implementation of the CERP further clarify this goal by defining restoration as “the recovery and protection of the South Florida ecosystem so that it once again achieves and sustains the essential hydrological and biological characteristics that defined the undisturbed South Florida ecosystem.” These defining characteristics include a large areal extent of interconnected wetlands, extremely low concentrations of nutrients in freshwater wetlands, sheet flow, healthy and productive estuaries, resilient plant communities, and an abundance of native wetland animals (DOI and USACE, 2005). Although development has permanently reduced the areal extent of the Everglades ecosystem, the CERP hopes to recover many of the Everglades’ original characteristics and natural ecosystem processes. At the same time, the CERP is charged to maintain levels of flood protection (as of 2000) and provide for other water-related needs, including water supply, for a rapidly growing human population in South Florida (DOI and USACE, 2005).

Although the CERP contributes to each of the Task Force’s three goals, it focuses primarily on restoring the hydrologic features of the undeveloped wetlands remaining in the South Florida ecosystem, on the assumption that improvements in ecological conditions will follow. Originally, “getting the water right” had four components—quality, quantity, timing, and distribution. However, the hydrologic properties of flow, encompassing the concepts of direction, velocity, and discharge, have been recognized as an important component of getting the water right that had previously been overlooked (NRC, 2003c; SCT, 2003). Numerous studies have supported the general approach to getting the water right (Davis and Ogden, 1994; NRC, 2005; SSG, 1993), although it is widely recognized that recovery of the native habitats and species in South Florida may require restoration efforts in addition to getting the water right, such as controlling exotic species and reversing the decline in the spatial extent and compartmentalization of the natural landscape (SFERTF, 2000; SSG, 1993).

The goal of ecosystem restoration can seldom be the exact re-creation of some historical or preexisting state because physical conditions, driving forces,

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

and boundary conditions usually have changed and are not fully recoverable. Rather, restoration is better viewed as the process of assisting the recovery of a degraded ecosystem to the point where it contains sufficient biotic and abiotic resources to continue its functions without further assistance in the form of energy or other resources from humans (NRC, 1996; Society for Ecological Restoration International Science & Policy Working Group, 2004). The term ecosystem rehabilitation may be more appropriate when the objective is to improve conditions in a part of the South Florida ecosystem to at least some minimally acceptable level to allow the restoration of the larger ecosystem to advance. However, flood control remains a critical aspect of the CERP design, and artificial storage will be required to replace the lost natural storage in the system (NRC, 2005). For these and other reasons, even when the CERP is complete, it will require large inputs of energy and human effort to operate and maintain pumps, stormwater treatment areas, canals and levees, and reservoirs, and to continue to manage exotic species. Thus, for the foreseeable future, the CERP does not envision ecosystem restoration or rehabilitation that returns the ecosystem to a state where it can “manage itself.”

Implicit in the understanding of ecosystem restoration is the recognition that natural systems are self-designing and dynamic, and therefore, it is not possible to know in advance exactly what can or will be achieved. Thus, ecosystem restoration is an enterprise with some scientific uncertainty in methods or outcomes that requires continual testing of assumptions and monitoring and assessment of progress. This report discusses the challenges posed by two major contributors to the dynamic circumstances in which restoration is taking place, climate change (Chapter 5) and nonnative invasive species (Chapter 6). Additional challenges in defining and implementing restoration goals are discussed in the initial National Research Council (NRC) biennial review (NRC, 2007).

What Natural System Restoration Requires

Restoring the South Florida ecosystem to a desired ecological landscape requires reestablishment of the critical processes that sustained its historical functions. Although getting the water right is the oft-stated and immediate goal, the restoration will be considered successful if it restores the distinctive characteristics of the historical ecosystem to the remnant Everglades (DOI and USACE, 2005). Getting the water right is a means to an end, not the end in itself. The hydrologic and ecologic characteristics of the historical Everglades serve as restoration goals for a functional (albeit reduced in size) Everglades ecosystem. The first Committee on Independent Scientific Review of Everglades Restoration Progress review identified five critical components of Everglades restoration (NRC, 2007):

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

1. Enough water storage capacity combined with operations that allow for appropriate volumes of water to support healthy estuaries and the return of sheet flow through the Everglades ecosystem while meeting other demands for water;

2. Mechanisms for delivering and distributing the water to the natural system in a way that resembles historical flow patterns, affecting volume, depth, velocity, direction, distribution, and timing of flows;

3. Barriers to eastward seepage of water so that higher water levels can be maintained in parts of the Everglades ecosystem without compromising the current levels of flood protection of developed areas as required by the CERP;

4. Methods for securing water quality conditions compatible with restoration goals for a natural system that was inherently extremely nutrient poor, particularly with respect to phosphorus; and

5. Retention, improvement, and expansion of the full range of habitats by preventing further losses of critical wetland and estuarine habitats and by protecting lands that could usefully be part of the restored ecosystem.

If these five critical components of restoration are achieved and the difficult problem of invasive species can be managed (see Chapter 6), then the basic physical, chemical, and biological processes that created the historical Everglades can once again work to create a functional mosaic of biotic communities that resemble what was distinctive about the historical Everglades.

The history of the Everglades likely will make replication of the historical system impossible. Because of the historical changes that have occurred through engineered structures, urban development, introduced species, and other factors, the paths taken by the ecosystem and its components in response to restoration efforts will not retrace the paths taken to reach current conditions. This means that the paths toward restoration will pass through different intermediate conditions from the ones they passed through on their way to the current status. This phenomenon often is referred to as hysteresis (e.g., NRC, 2012c; Scheffer et al., 2001; Tett et al., 2007) and is a complicating factor in any estimates of how long restoration efforts are likely to take to achieve their goals (Chapter 4).

Even if the restored system does not exactly replicate the historical system, or reach all of the biological, chemical, and physical targets, the reestablishment of natural processes and dynamics should result in a viable and valuable Everglades ecosystem. The central principle of ecosystem management is to provide for the natural processes that historically shaped an ecosystem, because ecosystems are characterized by the processes that regulate them. If the conditions necessary for those processes to operate are met, then recovery of species and communities is far more likely than if humans attempt to specify and manage every individual constituent and element of the ecological system (NRC, 2007).

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

RESTORATION ACTIVITIES

Several restoration programs, including the largest of the initiatives, the CERP, are now under way. The CERP often builds upon non-CERP activities (also called “foundation projects”), many of which are essential to the effectiveness of the CERP. The following section provides a brief overview of the CERP and some of the major non-CERP activities.

Comprehensive Everglades Restoration Plan

WRDA 2000 authorized the CERP as the framework for modifying the C&SF Project. Considered a blueprint for the restoration of the South Florida ecosystem, the CERP is led by two organizations with considerable expertise managing the water resources of South Florida—the USACE, which built most of the canals and levees throughout the region, and the South Florida Water Management District (SFWMD), the state agency with primary responsibility for operating and maintaining this complicated water collection and distribution system.

The CERP conceptual plan (USACE and SFWMD, 1999; also called the Yellow Book) proposes major alterations to the C&SF Project in an effort to reverse decades of ecosystem decline. The Yellow Book includes approximately 50 major projects consisting of 68 project components to be constructed at a cost of approximately $13.5 billion (estimated in 2009 dollars; DOI and USACE, 2011; Figure 2-2). Major components of the restoration plan focus on restoring the quantity, quality, timing, and distribution of water for the natural system. The Yellow Book outlines the major CERP components, including the following:

• Conventional surface-water storage reservoirs. The Yellow Book includes plans for approximately 1.5 million acre-feet of storage, located north of Lake Okeechobee, in the St. Lucie and Caloosahatchee basins, in the EAA, and in Palm Beach, Broward, and Miami-Dade counties.

• Aquifer storage and recovery (ASR). The Yellow Book proposes to provide substantial water storage through ASR, a highly engineered approach that would use a large number of wells built around Lake Okeechobee, in Palm Beach County, and in the Caloosahatchee Basin to store water approximately 1,000 feet belowground; the feasibility of this approach is currently being examined through pilot tests.

• In-ground reservoirs. The Yellow Book proposes additional water storage in quarries created by rock mining.

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

image

FIGURE 2-2 Major project components of the CERP.

SOURCE: Courtesy of Laura Mahoney, USACE.

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

• Stormwater treatment areas (STAs). The CERP contains plans for additional constructed wetlands that will treat agricultural and urban runoff water before it enters natural wetlands.1

• Seepage management. The Yellow Book outlines seepage management projects to prevent unwanted loss of water from the natural system through levees and groundwater flow. The approaches include adding impermeable barriers to the levees, installing pumps near levees to redirect lost water back into the Everglades, and holding water levels higher in undeveloped areas between the Everglades and the developed lands to the east.

• Removing barriers to sheet flow. The CERP includes plans for removing 240 miles of levees and canals, to reestablish shallow sheet flow of water through the Everglades ecosystem.

• Rainfall-driven water management. The Yellow Book includes operational changes in the water delivery schedules to the WCAs and Everglades National Park to mimic more natural patterns of water delivery and flow through the system.

• Water reuse and conservation. To address shortfalls in water supply, the Yellow Book proposes two advanced wastewater treatment plants so that the reclaimed water could be discharged to wetlands along Biscayne Bay or used to recharge the Biscayne aquifer.

The largest portion of the budget is devoted to storage and water conservation projects and to acquiring the lands needed for them (see NRC, 2005).

The modifications to the C&SF Project embodied in the CERP were originally expected to take more than three decades to complete (and will likely now take much longer), and to be effective, they require a clear strategy for managing and coordinating restoration efforts. The Everglades Programmatic Regulations (33 CFR Part 385) state that decisions on CERP implementation are made by the USACE and the SFWMD (or any other local project sponsors), in consultation with the Department of the Interior, the Environmental Protection Agency (EPA),

______________

1 Although some STAs are included among CERP projects, USACE has clarified its policy on federal cost-sharing for water quality features. A memo from the Assistant Secretary of the Army (Civil Works) (USACE, 2007) states: “Before there can be a Federal interest to cost share a WQ [water quality] improvement feature, the State must be in compliance with WQ standards for the current use of the water to be affected and the work proposed must be deemed essential to the Everglades restoration effort…. This determination must be based on some finding other than the project is a part of CERP and generally will aid the restoration effort.” The memo goes on to state, “the Yellow Book specifically envisioned that the State would be responsible for meeting water quality standards.” Therefore, it appears that until the water flowing into the project features meets existing water quality requirements or unless a special exemption is granted for projects deemed “essential to Everglades restoration,” the state is responsible for 100 percent of the costs of CERP water quality project features.

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

the Department of Commerce, the Miccosukee Tribe of Indians of Florida, the Seminole Tribe of Florida, the Florida Department of Environmental Protection, and other federal, state, and local agencies (33 CFR Part 385).

WRDA 2000 endorses the use of an adaptive management framework for the restoration process, and the Programmatic Regulations formally establish an adaptive management program that will “assess responses of the South Florida ecosystem to implementation of the Plan; … [and] seek continuous improvement of the Plan based upon new information resulting from changed or unforeseen circumstances, new scientific and technical information, new or updated modeling; information developed through the assessment principles contained in the Plan; and future authorized changes to the Plan.” An interagency body called Restoration, Coordination, and Verification (RECOVER) has been established to ensure that sound science is used in the restoration. The RECOVER leadership group oversees the monitoring and assessment program that will evaluate the progress of the CERP toward restoring the natural system and will assess the need for changes to the plan through the adaptive management process.

Major Program-Level CERP-Related Developments Since 2000

Several major program-level developments have occurred since the CERP was launched that have affected the pace and focus of CERP efforts. In 2004, Florida launched Acceler8, a plan to hasten the pace of project implementation that was bogged down by the slow federal planning process (for further discussion of Acceler8, see NRC, 2007). Acceler8 originally included 11 CERP project components and 1 non-CERP project, and although the state was unable to complete all of the original tasks, the program led to increased state investment and expedited project construction time lines for several CERP projects (see Chapter 4).

In 2008, Governor Charlie Crist announced the planned acquisition of 187,000 acres of agricultural land from the U.S. Sugar Corporation to maximize restoration opportunities for the South Florida ecosystem. The SFWMD subsequently launched the River of Grass public planning process to facilitate agency and stakeholder input on future uses of the new lands for restoration. In October 2010, the SFWMD closed on the purchase of 26,800 acres of land for approximately $197 million in cash and retained the option to acquire more than 153,000 additional acres over the next 10 years. Plans for use of the acquired lands have not been finalized at this time.

In 2011, the USACE initiated a pilot program to improve the pace of its project planning. As one of five pilot projects nationwide, the Central Everglades Planning Process was launched in November 2011, with the objective of developing a plan for restoration of the central Everglades that could be delivered for congressional authorization within 2 years. This effort has focused attention on central

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

Everglades planning at all levels of the CERP partnering agencies and involves extensive stakeholder engagement facilitated by the Task Force (see Chapter 3).

In 2010, EPA issued its court-ordered Amended Determination, which directed the State of Florida to correct deficiencies in meeting the narrative and numeric nutrient criteria in the Everglades Protection Area. In 2012, the State of Florida launched its Restoration Strategies Regional Water Quality Plan, which was approved by EPA and the Court as an alternative means to address the Amended Determination. The State of Florida is currently in the process of constructing approximately 6,500 acres of new STAs and 116,000 acres of flow equalization basins (see Chapter 4). These water quality treatment improvements are designed so that water leaving the STAs will meet a new water quality-based effluent limit (WQBEL) to comply with the 10-ppb total phosphorus water quality criterion for the Everglades Protection Area.

Non-CERP Restoration Activities

When Congress authorized the CERP in WRDA 2000, the SFWMD, the USACE, the National Park Service, and the U.S. Fish and Wildlife Service were already implementing several activities intended to restore key aspects of the Everglades ecosystem. These non-CERP initiatives are critical to the overall restoration progress. In fact, the CERP’s effectiveness was predicated upon the completion of many of these projects, which include Modified Water Deliveries to Everglades National Park (Mod Waters), C-111 (South Dade), and the Everglades Construction Project (see Box 2-1). Several additional projects are also under way to meet the broad restoration goals for the South Florida ecosystem and associated legislative mandates. They include extensive water quality initiatives, such as the Everglades Construction Project, and programs to establish best management practices (BMPs) to reduce nutrient loading.

SUMMARY

The Everglades ecosystem is one of the world’s ecological treasures, but for more than a century the installation of an extensive water control infrastructure has changed the geography of South Florida and facilitated extensive agricultural and urban development. These changes have had profound ancillary effects on regional hydrology, vegetation, and wildlife populations. The CERP, a joint effort led by the state and federal governments and launched in 2000, seeks to reverse the general decline of the ecosystem. Since 2000, the CERP and other major Everglades restoration efforts have adapted to changing budgets, refinements in scientific understanding, and an evolving legal context, particularly as it relates to water quality. The implications on implementation progress are discussed in more detail in Chapter 4.

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

BOX 2-1
Non-CERP Restoration Activities in South Florida

The following represent the major non-CERP initiatives currently under way in support of the South Florida ecosystem restoration (Figure 2-3).

Kissimmee River Restoration Project

This project, authorized by Congress in 1992, aims to reestablish the historical river-floodplain system at the headwaters of the Everglades watershed and thereby restore biological diversity and functionality. The project plans to backfill 22 miles of the 56-mile C-38 Canal and carve new sections of the river channel to connect channel remnants, thereby restoring over 40 miles of meandering river channel in the Kissimmee River. The project includes a comprehensive evaluation program to track ecological responses to restoration (Jones et al., 2014). See also Chapter 4.

State Water Quality Treatment Projects

The Everglades Forever Act (Fla. Stat. § 373.4592) required the State of Florida to construct stormwater treatment areas (STAs) to reduce the loading of phosphorus into the Arthur R. Marshall Loxahatchee National Wildlife Refuge (LNWR), the WCAs, and Everglades National Park. As part of the state’s Everglades Construction Project and long-term plan for meeting the total phosphorus criterion for the Everglades Protection Area of 10 parts per billion (ppb), the SFWMD constructed 57,000 acres of STAs between 1993 and 2012. In 2012, after continued violations of water quality standards, the state and the Environmental Protection Agency agreed upon a new Restoration Strategies Regional Water Quality Plan that has been approved by the U.S. District Court for the Southern District of Florida that requires an additional 6,500 acres of STAs and 116,000 acres of flow equalization basins (see Chapter 4).

Modifications to the C&SF: C-111 (South Dade) Project

This project is designed to improve hydrologic conditions in Taylor Slough and the Rocky Glades of the eastern panhandle of Everglades National Park and to increase freshwater flows to northeast Florida Bay, while maintaining flood protection for urban and agricultural development in south Miami-Dade County. The project plan includes a tieback levee with pumps to capture groundwater seepage to the east, detention areas to increase groundwater levels and thereby enhance flow into Everglades National Park, and backfilling or plugging several canals in the area. A combined operational plan (COP) will integrate the goals of the Mod Waters and C-111 projects and protect the quality of water entering Everglades National Park (DOI and USACE, 2005).

Modified Water Deliveries to Everglades National Park Project (Mod Waters)

This federally funded project, authorized in 1989, is designed to restore more natural hydrologic conditions in Everglades National Park. The project includes levee modifications and installation of a seepage control pump to increase water flow into WCA-3B and northeastern portions of Everglades National Park. It also includes providing flood mitigation to the 8.5-square-mile area (a low-lying but partially developed area on the northeast corner of Everglades National Park) and raising portions of the Tamiami Trail.

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

Mod Waters is a prerequisite for the first phase of decompartmentalization (i.e., removing some barriers to sheet flow), which is part of the CERP (DOI and USACE, 2005; NRC, 2008). See also Chapter 4.

Northern Everglades and Estuaries Protection Program

In 2007, the Florida legislature expanded the Lake Okeechobee Protection Act (LOPA) to include protection and restoration of the Lake Okeechobee watershed and the Caloosahatchee and St. Lucie estuaries. The legislation, being implemented as the Northern Everglades and Estuaries Protection Program, will focus resources on restoration efforts for Lake Okeechobee and the Caloosahatchee and St. Lucie estuaries. The Lake Okeechobee Watershed Construction Project Phase II Technical Plan, issued

image

FIGURE 2-3 Locations of major non-CERP initiatives.

SOURCE: © International Mapping Associates

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×

in February 2008 in accordance with LOPA, consolidated the numerous initiatives already under way through Florida’s Lake Okeechobee Protection Plan (LOPP) and Lake Okeechobee and Estuary Recovery (LOER) Plan.

Critical Projects

Congress gave programmatic authority for the Everglades and South Florida Ecosystem Restoration Critical Projects in Water Resources Development Act of 1996 (WRDA 1996), with modification in WRDA 1999 and WRDA 2007. These were small projects that could be quickly implemented to provide immediate and substantial restoration benefits such as improved quality of water discharged into WCA-3A and Lake Okeechobee and more natural water flows to estuaries. Examples of the Critical Projects include the Florida Keys Carrying Capacity Study, Lake Okeechobee Water Retention and Phosphorus Removal, Seminole Big Cypress Reservation Water Conservation Plan, Tamiami Trail Culverts, Ten Mile Creek Water Preserve Area, and the Lake Trafford Restoration (DOI and USACE, 2011).

Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page21
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page22
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page23
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page24
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page25
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page26
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page27
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page28
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page29
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page30
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page31
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page32
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page33
Suggested Citation:"2 The Restoration Plan in Context." National Research Council. 2014. Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014. Washington, DC: The National Academies Press. doi: 10.17226/18809.
×
Page34
Next: 3 Central Everglades Planning Project »
Progress Toward Restoring the Everglades: The Fifth Biennial Review: 2014 Get This Book
×
Buy Paperback | $89.00 Buy Ebook | $69.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The Everglades ecosystem is vast, stretching more than 200 miles from Orlando to Florida Bay, and Everglades National Park is but a part located at the southern end. During the 19th and 20th centuries, the historical Everglades has been reduced to half of its original size, and what remains is not the pristine ecosystem many image it to be, but one that has been highly engineered and otherwise heavily influenced, and is intensely managed by humans. Rather than slowly flowing southward in a broad river of grass, water moves through a maze of canals, levees, pump stations, and hydraulic control structures, and a substantial fraction is diverted from the natural system to meet water supply and flood control needs. The water that remains is polluted by phosphorus and other contaminants originating from agriculture and other human activities. Many components of the natural system are highly degraded and continue to degrade.

Progress Toward Restoring the Everglades is the fifth biennial review of progress made in meeting the goals of the Comprehensive Everglades Restoration Plan (CERP). This complex, multibillion-dollar project to protect and restore the remaining Everglades has a 30-40 year timeline. This report assesses progress made in the various separate project components and discusses specific scientific and engineering issues that may impact further progress. According to Progress Toward Restoring the Everglades, a dedicated source of funding could provide ongoing long-term system-wide monitoring and assessment that is critical to meeting restoration objectives. The report makes recommendations for restoration activities, project management strategies, management of invasive nonnative species, and high-priority research needs.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!