National Academies Press: OpenBook

Memorial Tributes: Volume 19 (2015)

Chapter: HAROLD G. SOWMAN

« Previous: CEDOMIR M. SLIEPCEVICH
Suggested Citation:"HAROLD G. SOWMAN." National Academy of Engineering. 2015. Memorial Tributes: Volume 19. Washington, DC: The National Academies Press. doi: 10.17226/21785.
×

images

Suggested Citation:"HAROLD G. SOWMAN." National Academy of Engineering. 2015. Memorial Tributes: Volume 19. Washington, DC: The National Academies Press. doi: 10.17226/21785.
×

HAROLD G. SOWMAN

1923–2012

Elected in 1984

“For pioneering development of sol ceramics technology into new industrial materials, including ceramic fibers and abrasives.”

BY JAMES R. JOHNSON

HAROLD GENE SOWMAN, a remarkably productive engineer at the forefront of the changing field of post–World War II ceramic science and technology, died on November 29, 2012, at age 89. He was a pioneer in ceramic materials for nuclear reactors in his early career and later developed sol ceramics technology into new processes for manufacturing ceramic materials and products. In the course of this work he added much to the science of these materials as well.

Born on July 21, 1923, near Murphysboro, Illinois, Hal grew up in the southern Illinois coal mining country. He was grateful for the many who helped him get through his schooling, including a kindly landlady in whose boarding house he stayed and where he worked part-time to pay for room and board. He joined ROTC, graduated as a second lieutenant in the Corps of Engineers at Ft. Belvoir, Virginia, and was awaiting service in the Pacific when World War II ended. His wife to be, Gladys (Timmie), worked in nearby Washington and after the war they moved back to the University of Illinois, where he obtained his PhD in 1951. In the mid-1950s they adopted a daughter, Letitia (Letty), and a son, Daniel (Danny).

Hal joined the Titanium Alloy Division of National Lead Co. in 1951 but by 1952 was fascinated by the emerging atomic energy field and went to work at General Electric’s Knolls

Suggested Citation:"HAROLD G. SOWMAN." National Academy of Engineering. 2015. Memorial Tributes: Volume 19. Washington, DC: The National Academies Press. doi: 10.17226/21785.
×

Atomic Power Laboratory in Niskayuna, New York. Here he developed ceramic materials for the Navy submarine project and was involved with both cermets and ceramic oxides for commercial reactors. He was part of the very early UO2 fuel pellet program.

He left GE five years later to work with 3M in its new nuclear energy lab. At 3M he was coinventor of a number of nuclear materials patents that formed the basis of micro-spherical coated fuel particles embedded in graphite fuel elements such as the ensuing pebble bed reactors. These particles were first used in a prototype reactor designed for space rocketry, the Kiwi B4-E 301, successfully tested by Los Alamos National Laboratory in the Nevada desert. The technology was put on the shelf after the demise of nuclear reactor construction in the 1970s–1980s but it is making a comeback, in the Chinese construction of a modern version of a high-temperature reactor.

Hal became interested in developing sol gel ceramics, which he saw as the basis of revolutionary ways of making 3M abrasives and reflective beads of high index of refraction. He investigated detailed phase relationships of many ceramic oxides related to his sol gel products. His combined work in the field led to making sol gel–derived fibers, beads, bubbles, and thin films. The fiber work was soon found to be useful in classified nuclear projects, and later other fibers were used to toughen and strengthen the insulating tiles for the space shuttle.

His technology was especially useful in replacing conventional processes for making abrasive grains, which can now be formed essentially at room temperature and in compositions not obtainable by traditional methods. In turn the products have made major changes in the finishing of stainless steels and other metals. His ceramic fiber technology encouraged the related refractory fiber industry worldwide and provided a means for producing much lighter alumina-reinforced aluminum electric power transmission lines. And the safety of roadways has been improved with better light-reflecting microsphere media that resist traffic abrasion.

Suggested Citation:"HAROLD G. SOWMAN." National Academy of Engineering. 2015. Memorial Tributes: Volume 19. Washington, DC: The National Academies Press. doi: 10.17226/21785.
×

Many other uses have been found for his broad range of sol gel–derived ceramics, including medical and dental applications. He had 30 patents and authored 25 publications.

Hal received many honors in his lifetime: 3M’s highest honor, election to the Carlton Society (and 3M received the National Medal of Technology, accorded to the members of the Society); the Minnesota Wonders of Engineering Award, the I-R 100 award for his fibers, the University of Illinois Engineering Distinguished Alumni Award, and several prestigious awards from the American Ceramic Society, of which he was a fellow, for his many innovations in ceramic materials and processes. He was especially honored to be elected to the NAE in 1984 for his engineering accomplishments.

He was proud of his home state and a generous contributor to the University of Illinois, from which he obtained his undergraduate and graduate degrees. His service outside his local community included two years as industrial advisor for the Department of Engineering at Tuskegee University, membership on the NAE Steering Committee on the Commercialization of Technology and the Materials Advisory Board, and numerous activities for the University of Illinois Ceramic Engineering Department.

Hal was a born innovator and major contributor to his field. He was a great friend and generous man to many. He will be missed.

Suggested Citation:"HAROLD G. SOWMAN." National Academy of Engineering. 2015. Memorial Tributes: Volume 19. Washington, DC: The National Academies Press. doi: 10.17226/21785.
×
Page 281
Suggested Citation:"HAROLD G. SOWMAN." National Academy of Engineering. 2015. Memorial Tributes: Volume 19. Washington, DC: The National Academies Press. doi: 10.17226/21785.
×
Page 282
Suggested Citation:"HAROLD G. SOWMAN." National Academy of Engineering. 2015. Memorial Tributes: Volume 19. Washington, DC: The National Academies Press. doi: 10.17226/21785.
×
Page 283
Suggested Citation:"HAROLD G. SOWMAN." National Academy of Engineering. 2015. Memorial Tributes: Volume 19. Washington, DC: The National Academies Press. doi: 10.17226/21785.
×
Page 284
Next: MARSHALL B. STANDING »
Memorial Tributes: Volume 19 Get This Book
×
Buy Hardback | $79.00 Buy Ebook | $64.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

This is the 19th Volume in the series Memorial Tributes compiled by the National Academy of Engineering as a personal remembrance of the lives and outstanding achievements of its members and foreign associates. These volumes are intended to stand as an enduring record of the many contributions of engineers and engineering to the benefit of humankind. In most cases, the authors of the tributes are contemporaries or colleagues who had personal knowledge of the interests and the engineering accomplishments of the deceased. Through its members and foreign associates, the Academy carries out the responsibilities for which it was established in 1964.

Under the charter of the National Academy of Sciences, the National Academy of Engineering was formed as a parallel organization of outstanding engineers. Members are elected on the basis of significant contributions to engineering theory and practice and to the literature of engineering or on the basis of demonstrated unusual accomplishments in the pioneering of new and developing fields of technology. The National Academies share a responsibility to advise the federal government on matters of science and technology. The expertise and credibility that the National Academy of Engineering brings to that task stem directly from the abilities, interests, and achievements of our members and foreign associates, our colleagues and friends, whose special gifts we remember in this book.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!