National Academies Press: OpenBook
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×

CONTINUITY OF NASA EARTH
OBSERVATIONS FROM SPACE

A VALUE FRAMEWORK

Committee on a Framework for Analyzing the Needs for Continuity of
NASA-Sustained Remote Sensing Observations of the Earth from Space

Space Studies Board

Division on Engineering and Physical Sciences

images

THE NATIONAL ACADEMIES PRESS

Washington, DC

www.nap.edu

Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×

THE NATIONAL ACADEMIES PRESS    500 Fifth Street, NW    Washington, DC 20001

This report is based on work supported by Contract NNH11CD57B between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of the agency that provided support for the project.

International Standard Book Number-13: 978-0-309-37743-0
International Standard Book Number-10: 0-309-37743-9
DOI: 10.17226/21789

Copies of this report are available free of charge from

Space Studies Board
National Academies of Sciences, Engineering, and Medicine
Keck Center of the National Academies
500 Fifth Street, NW
Washington, DC 20001

Additional copies of this report are available from the National Academies Press, 500 Fifth Street, NW, Keck 360, Washington, DC 20001; (800) 624-6242 or (202) 334-3313; http://www.nap.edu.

Copyright 2015 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

Suggested citation: National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press.

Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×

images

The National Academy of Sciences was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, nongovernmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for outstanding contributions to research. Dr. Ralph J. Cicerone is president.

The National Academy of Engineering was established in 1964 under the charter of the National Academy of Sciences to bring the practices of engineering to advising the nation. Members are elected by their peers for extraordinary contributions to engineering. Dr. C. D. Mote, Jr., is president.

The National Academy of Medicine (formerly the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. Dr. Victor J. Dzau is president.

The three Academies work together as the National Academies of Sciences, Engineering, and Medicine to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine.

Learn more about the National Academies of Sciences, Engineering, and Medicine at www.national-academies.org.

Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×

OTHER RECENT REPORTS OF THE SPACE STUDIES BOARD

Sharing the Adventure with the Student: Exploring the Intersections of NASA Space Science and Education: A Workshop Summary (Space Studies Board [SSB], 2015)

The Space Science Decadal Surveys: Lessons Learned and Best Practices (SSB, 2015)

Evaluation of the Implementation of WFIRST/AFTA in the Context of New Worlds, New Horizons in Astronomy and Astrophysics (Board on Physics and Astronomy [BPA] with the SSB, 2014)

Opportunities for High-Power, High-Frequency Transmitters to Advance Ionospheric/Thermospheric Research: Report of a Workshop (SSB, 2014)

Pathways to Exploration: Rationales and Approaches for a U.S. Program of Human Space Exploration (Aeronautics and Space Engineering Board [ASEB] with SSB, 2014)

Landsat and Beyond: Sustaining and Enhancing the Nation’s Land Imaging Program (SSB, 2013)

Lessons Learned in Decadal Planning in Space Science: Summary of a Workshop (SSB, 2013)

Review of the Draft 2014 Science Mission Directorate Science Plan (SSB, 2013)

Solar and Space Physics: A Science for a Technological Society (SSB, 2013)

Assessment of a Plan for U.S. Participation in Euclid (BPA with SSB, 2012)

Assessment of Planetary Protection Requirements for Spacecraft Missions to Icy Solar System Bodies (SSB, 2012)

Earth Science and Applications from Space: A Midterm Assessment of NASA’s Implementation of the Decadal Survey (SSB, 2012)

The Effects of Solar Variability on Earth’s Climate: A Workshop Report (SSB, 2012)

NASA’s Strategic Direction and the Need for a National Consensus (Division on Engineering and Physical Sciences, 2012)

Report of the Panel on Implementing Recommendations from the New Worlds, New Horizons Decadal Survey (BPA and SSB, 2012)

Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation (SSB, 2012)

Assessment of Impediments to Interagency Collaboration on Space and Earth Science Missions (SSB, 2011)

An Assessment of the Science Proposed for the Deep Underground Science and Engineering Laboratory (DUSEL) (BPA, 2011)

Panel Reports New Worlds, New Horizons in Astronomy and Astrophysics (BPA and SSB, 2011)

Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era (SSB and ASEB, 2011)

Sharing the Adventure with the Public The Value and Excitement of “Grand Questions” of Space Science and Exploration: Summary of a Workshop (SSB, 2011)

Vision and Voyages for Planetary Science in the Decade 2013-2022 (SSB, 2011)

Capabilities for the Future: An Assessment of NASA Laboratories for Basic Research (Laboratory Assessments Board with SSB and ASEB, 2010)

Controlling Cost Growth of NASA Earth and Space Science Missions (SSB, 2010)

Defending Planet Earth: Near-Earth-Object Surveys and Hazard Mitigation Strategies: Final Report (SSB with ASEB, 2010)

An Enabling Foundation for NASA’s Space and Earth Science Missions (SSB, 2010)

Forging the Future of Space Science: The Next 50 Years (SSB, 2010)

Life and Physical Sciences Research for a New Era of Space Exploration: An Interim Report (SSB with ASEB, 2010)

New Worlds, New Horizons in Astronomy and Astrophysics (BPA and SSB, 2010)

Revitalizing NASA’s Suborbital Program: Advancing Science, Driving Innovation, and Developing a Workforce (SSB, 2010)

Limited copies of SSB reports are available free of charge from:
Space Studies Board
Keck Center of the National Academies of Sciences, Engineering, and Medicine
500 Fifth Street, NW, Washington, DC 20001
(202) 334-3477/ssb@nas.edu
www.nationalacademies.org/ssb/ssb.html

Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×

COMMITTEE ON A FRAMEWORK FOR ANALYZING THE NEEDS FOR CONTINUITY OF
NASA-SUSTAINED REMOTE SENSING OBSERVATIONS OF THE EARTH FROM SPACE

BYRON D. TAPLEY, University of Texas at Austin, Chair

MICHAEL D. KING, University of Colorado, Boulder, Vice Chair

MARK R. ABBOTT, Oregon State University

STEVEN A. ACKERMAN, University of Wisconsin, Madison

JOHN J. BATES, NOAA/NESDIS National Climate Data Center

RAFAEL L. BRAS, Georgia Institute of Technology

ROBERT E. DICKINSON, University of Texas at Austin

RANDALL R. FRIEDL, Jet Propulsion Laboratory

LEE-LUENG FU, Jet Propulsion Laboratory

CHELLE L. GENTEMANN, Remote Sensing Systems

KATHRYN A. KELLY, University of Washington

JUDITH L. LEAN, Naval Research Laboratory

JOYCE E. PENNER, University of Michigan

MICHAEL J. PRATHER, University of California, Irvine

ERIC J. RIGNOT, University of California, Irvine

WILLIAM L. SMITH, Hampton University

COMPTON J. TUCKER, NASA Goddard Space Flight Center

BRUCE A. WIELICKI, NASA Langley Research Center

Staff

ARTHUR A. CHARO, Senior Program Officer, Study Director

LEWIS B. GROSWALD, Associate Program Officer1

KATIE DAUD, Research Associate2

ANESIA WILKS, Senior Project Assistant

ANGELA DAPREMONT, 2014 Fall Lloyd V. Berkner Space Policy Intern3

MICHELLE THOMPSON, 2014 Fall Lloyd V. Berkner Space Policy Intern4

MICHAEL H. MOLONEY, Director, Aeronautics and Space Engineering Board and Space Studies Board

______________

1 Through June 20, 2014.

2 From September 22, 2014.

3 From September 29, 2014 to March 27, 2015.

4 From October 6, 2014 to December 12, 2014.

Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×

SPACE STUDIES BOARD

DAVID N. SPERGEL, Princeton University, Chair

ROBERT D. BRAUN, Georgia Institute of Technology Vice Chair

MARK R. ABBOTT, Oregon State University

JAMES G. ANDERSON, Harvard University

JAMES P. BAGIAN, University of Michigan

JEFF M. BINGHAM, Consultant

PENELOPE J. BOSTON, New Mexico Institute of Mining and Technology

JOSEPH FULLER, JR., Futron Corporation

THOMAS R. GAVIN, Jet Propulsion Laboratory

NEIL GEHRELS, NASA Goddard Space Flight Center

SARAH GIBSON, National Center for Atmospheric Research

RODERICK HEELIS, University of Texas

WESLEY HUNTRESS, Carnegie Institution of Washington

ANTHONY C. JANETOS, Boston University

SAUL PERLMUTTER, Lawrence Berkeley National Laboratory

LOUISE M. PROCKTER, Johns Hopkins University, Applied Physics Laboratory

MARCIA J. RIEKE, University of Arizona

MARK THIEMENS, University of California, San Diego

MEENAKSHI WADHWA, Arizona State University

CLIFFORD M. WILL, University of Florida

THOMAS H. ZURBUCHEN, University of Michigan

MICHAEL H. MOLONEY, Director

CARMELA J. CHAMBERLAIN, Administrative Coordinator

TANJA PILZAK, Manager, Program Operations

CELESTE A. NAYLOR, Information Management Associate

MEG A. KNEMEYER, Financial Officer

SANDRA WILSON, Financial Assistant

Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×

Preface

In a highly constrained budgetary environment, NASA, like all federal agencies, is faced with difficult choices among competing priorities for investment. Within NASA’s Earth Science Division (ESD), part of the Science Mission Directorate, these choices include whether to invest in the continuation of a particular existing data stream versus another (including, but not limited to, climate-related measurements), or to develop a new measurement capability sought by research and applications communities. None of these choices is straightforward; for example, prioritizing among competing “continuity” measurements requires a uniform valuation method and a rigorous understanding of how that value evolves over time, including the implications of a data gap.

In 2013, at the request of ESD, an ad hoc committee of the National Research Council (NRC)1 was formed with the task of providing a framework to assist in the determination of when a measurement(s) or data set(s) initiated by ESD should be collected for extended periods. In particular, and considering the expected constrained budgets for the NASA Earth science program, the committee was asked to:

  1. Provide working definitions of, and describe the roles for “continuity” for the measurements and data sets ESD initiates and uses to accomplish Earth system science objectives; and
  2. Establish methodologies and/or metrics that NASA can use to inform strategic programmatic decisions regarding the scope and design of its observation and processing systems.

In carrying out its task, the committee focused on developing a decision framework that allows prioritization of measurements based on their scientific value. In addition, the committee identified, defined, and evaluated a small set of key measurement characteristics to illustrate the framework concept. In its report, the committee presents two notional evaluation frameworks that may be broadly categorized as qualitative and quantitative. The qualitative framework has an analog in the proposal review process that NASA currently employs while the quantitative framework—a decision approach that is the subject of this report—was developed to provide more rigor to an inherently subjective decision-making process. Though the committee’s quantitative framework also requires inputs that are subjective, they enter the framework in a transparent manner and the sensitivity of the calculated “value” to variations in the inputs is easily seen.

______________

1 Effective July 1, 2015, the institution is called the National Academies of Sciences, Engineering, and Medicine. References in this report to the National Research Council are used in an historic context identifying programs prior to July 1.

Page viii Cite
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×

The committee recognizes an important qualification regarding its treatment of task item 2, above: As explained in the report, the proposed quantitative decision framework can be adapted to include choices between the continuation of an existing measurement and the initiation of a new measurement, or choices among measurements focused on societal-benefit applications. However, the framework it presents is by design directed toward choices among extended missions undertaken for research purposes aimed at quantifying global change. The committee endeavored to provide a more general response to task item 2; however, it found that development of even the simpler “apples-to-apples” decision framework for the measurements highlighted above in italics to be extremely challenging. Finally, the committee acknowledges the limitations of its approach. While the proposed methodology can inform measurement choices based on their value to achieving a quantified science objective, it does not capture non-quantifiable objectives such as increasing the knowledge and experience base to facilitate the development of a new remote sensing capability.

The report from the ad hoc committee is presented here; it is organized as follows:

Chapter 1—Introduction—provides background relevant to the committee’s task;

Chapter 2—Measurement Continuity—includes the committee’s working definition of measurement continuity; a discussion of the four criteria—instrument calibration uncertainty, repeatability, time and space sampling, and data systems and delivery for climate variables (algorithms, reprocessing, and availability)—that are used in a framework to determine whether a data set has the requisite quality for long-term Earth observations and global change research; and the introduction of the “quantified objective” that is central to the committee’s methodology;

Chapter 3—A Decision Framework for NASA Earth Science Continuity Measurements—presents a quantitative framework that can be applied to “value” competing choices for measurement continuity;

Chapter 4—Applying the Framework to Continuity Measurements—provides an overview of the application of the framework; and

AppendixesAppendixes B-G provide comprehensive illustrations of the framework applied to several representative quantified Earth science objectives. Also in the appendixes are the full task statement (Appendix A), biographical information for committee members (Appendix H), and a list of acronyms (Appendix I).

A note on terminology: When characterizing a measurement, the committee uses terms such as uncertainty, repeatability, accuracy, and precision in a manner consistent with the definitions provided in reference guides published by the National Institute of Standards and Technology (NIST). For example, NIST defines “uncertainty” as a “parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand [which is the property that is the object of measurement].” Similarly, NIST defines repeatability (of results of measurements) as the “closeness of the agreement between the results of successive measurements of the same measurand carried out under the same conditions of measurement.”2 In this report, the “combined standard uncertainty” is obtained by combining the individual uncertainties, including those evaluated by statistical methods (what the committee terms Type A) and those evaluated by other means (Type B). The committee uses “stability” in the context of the normal dictionary definition—“the quality or state of something that is not easily changed”—whereas repeatability applies to all components that translate a measurement (or measurements) to a geophysical quantity (or qualities) that pertain to a specified quantified science objective. Most often, it refers to the instrument calibration, which carries through all processing levels.

______________

2 See “Measurement Uncertainty,” a publication of the NIST Information Technology Laboratory available online at http://www.nist.gov/itl/sed/gsg/uncertainty.cfm. Also see Appendix D, “Terminology,” in B.N. Taylor and C.E. Kuyatt, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, 1994 Edition, http://www.nist.gov/pml/pubs/tn1297/index.cfm. Another useful reference is G. Ohring, B. Wielicki, R. Spencer, B. Emery, and R. Datla, eds., Satellite Instrument Calibration for Measuring Global Climate Change, NIST Rep. NISTIR 7047, 2004, http://tinyurl.com/p92bkul.

Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×

Acknowledgment of Reviewers

This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report:

George H. Born, University of Colorado, Boulder,

Amy J. Braverman, Jet Propulsion Laboratory,

Inez Y. Fung, University of California, Berkeley,

Kristina B. Katsaros, Northwest Research Associates, Inc. (emeritus),

Ralph F. Milliff, University of Colorado, Boulder,

Steven E. Platnick, NASA Goddard Space Flight Center,

Kevin E. Trenberth, National Center for Atmospheric Research,

Eric F. Wood, Princeton University, and

Howard A. Zebker, Stanford University.

Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by James O. Berger, Duke University, and Charles F. Kennel, University of California, San Diego, who were responsible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution.

Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×

This page intentionally left blank.

Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×
PageR1
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×
PageR2
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×
PageR3
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×
PageR4
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×
PageR5
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×
PageR6
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×
PageR7
Page viii Cite
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×
PageR8
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×
PageR9
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×
PageR10
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×
PageR11
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2015. Continuity of NASA Earth Observations from Space: A Value Framework. Washington, DC: The National Academies Press. doi: 10.17226/21789.
×
PageR12
Next: Summary »
Continuity of NASA Earth Observations from Space: A Value Framework Get This Book
×
Buy Paperback | $52.00 Buy Ebook | $41.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

NASA's Earth Science Division (ESD) conducts a wide range of satellite and suborbital missions to observe Earth's land surface and interior, biosphere, atmosphere, cryosphere, and oceans as part of a program to improve understanding of Earth as an integrated system. Earth observations provide the foundation for critical scientific advances and environmental data products derived from these observations are used in resource management and for an extraordinary range of societal applications including weather forecasts, climate projections, sea level change, water management, disease early warning, agricultural production, and the response to natural disasters.

As the complexity of societal infrastructure and its vulnerability to environmental disruption increases, the demands for deeper scientific insights and more actionable information continue to rise. To serve these demands, NASA's ESD is challenged with optimizing the partitioning of its finite resources among measurements intended for exploring new science frontiers, carefully characterizing long-term changes in the Earth system, and supporting ongoing societal applications. This challenge is most acute in the decisions the Division makes between supporting measurement continuity of data streams that are critical components of Earth science research programs and the development of new measurement capabilities.

This report seeks to establish a more quantitative understanding of the need for measurement continuity and the consequences of measurement gaps. Continuity of NASA's Earth's Observations presents a framework to assist NASA's ESD in their determinations of when a measurement or dataset should be collected for durations longer than the typical lifetimes of single satellite missions.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!