National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Defining and Measuring Aircraft Delay and Airport Capacity Thresholds. Washington, DC: The National Academies Press. doi: 10.17226/22428.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Defining and Measuring Aircraft Delay and Airport Capacity Thresholds. Washington, DC: The National Academies Press. doi: 10.17226/22428.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Defining and Measuring Aircraft Delay and Airport Capacity Thresholds. Washington, DC: The National Academies Press. doi: 10.17226/22428.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Defining and Measuring Aircraft Delay and Airport Capacity Thresholds. Washington, DC: The National Academies Press. doi: 10.17226/22428.
×
Page R4
Page v
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Defining and Measuring Aircraft Delay and Airport Capacity Thresholds. Washington, DC: The National Academies Press. doi: 10.17226/22428.
×
Page R5
Page vi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2014. Defining and Measuring Aircraft Delay and Airport Capacity Thresholds. Washington, DC: The National Academies Press. doi: 10.17226/22428.
×
Page R6

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

A I R P O R T C O O P E R A T I V E R E S E A R C H P R O G R A M ACRP REPORT 104 TRANSPORTAT ION RESEARCH BOARD WASHINGTON, D.C. 2014 www.TRB.org Research sponsored by the Federal Aviation Administration Subscriber Categories Aviation • Planning and Forecasting Defining and Measuring Aircraft Delay and Airport Capacity Thresholds TransSolutions Fort Worth, TX Futterman Consulting St. Petersburg, FL Harris Miller Miller & Hanson, Inc. Herndon, VA Jasenka Rakas Berkeley, CA

AIRPORT COOPERATIVE RESEARCH PROGRAM Airports are vital national resources. They serve a key role in trans­ portation of people and goods and in regional, national, and inter­ national commerce. They are where the nation’s aviation system connects with other modes of transportation and where federal respon­ sibility for managing and regulating air traffic operations intersects with the role of state and local governments that own and operate most airports. Research is necessary to solve common operating problems, to adapt appropriate new technologies from other industries, and to introduce innovations into the airport industry. The Airport Coopera­ tive Research Program (ACRP) serves as one of the principal means by which the airport industry can develop innovative near­term solutions to meet demands placed on it. The need for ACRP was identified in TRB Special Report 272: Airport Research Needs: Cooperative Solutions in 2003, based on a study spon­ sored by the Federal Aviation Administration (FAA). The ACRP carries out applied research on problems that are shared by airport operating agencies and are not being adequately addressed by existing federal research programs. It is modeled after the successful National Coopera­ tive Highway Research Program and Transit Cooperative Research Pro­ gram. The ACRP undertakes research and other technical activities in a variety of airport subject areas, including design, construction, mainte­ nance, operations, safety, security, policy, planning, human resources, and administration. The ACRP provides a forum where airport opera­ tors can cooperatively address common operational problems. The ACRP was authorized in December 2003 as part of the Vision 100­Century of Aviation Reauthorization Act. The primary participants in the ACRP are (1) an independent governing board, the ACRP Oversight Committee (AOC), appointed by the Secretary of the U.S. Department of Transportation with representation from airport operating agencies, other stakeholders, and relevant industry organizations such as the Airports Council International­North America (ACI­NA), the American Associa­ tion of Airport Executives (AAAE), the National Association of State Aviation Officials (NASAO), Airlines for America (A4A), and the Airport Consultants Council (ACC) as vital links to the airport community; (2) the TRB as program manager and secretariat for the governing board; and (3) the FAA as program sponsor. In October 2005, the FAA executed a contract with the National Academies formally initiating the program. The ACRP benefits from the cooperation and participation of airport professionals, air carriers, shippers, state and local government officials, equipment and service suppliers, other airport users, and research orga­ nizations. Each of these participants has different interests and respon­ sibilities, and each is an integral part of this cooperative research effort. Research problem statements for the ACRP are solicited periodically but may be submitted to the TRB by anyone at any time. It is the responsibility of the AOC to formulate the research program by iden­ tifying the highest priority projects and defining funding levels and expected products. Once selected, each ACRP project is assigned to an expert panel, appointed by the TRB. Panels include experienced practitioners and research specialists; heavy emphasis is placed on including airport pro­ fessionals, the intended users of the research products. The panels pre­ pare project statements (requests for proposals), select contractors, and provide technical guidance and counsel throughout the life of the project. The process for developing research problem statements and selecting research agencies has been used by TRB in managing cooper­ ative research programs since 1962. As in other TRB activities, ACRP project panels serve voluntarily without compensation. Primary emphasis is placed on disseminating ACRP results to the intended end­users of the research: airport operating agencies, service providers, and suppliers. The ACRP produces a series of research reports for use by airport operators, local agencies, the FAA, and other interested parties, and industry associations may arrange for work­ shops, training aids, field visits, and other activities to ensure that results are implemented by airport­industry practitioners. ACRP REPORT 104 Project 03­20 ISSN 1935­9802 ISBN 978­0­309­28380­9 Library of Congress Control Number 2014930049 © 2014 National Academy of Sciences. All rights reserved. COPYRIGHT INFORMATION Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein. Cooperative Research Programs (CRP) grants permission to reproduce material in this publication for classroom and not­for­profit purposes. Permission is given with the understanding that none of the material will be used to imply TRB or FAA endorsement of a particular product, method, or practice. It is expected that those reproducing the material in this document for educational and not­for­profit uses will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from CRP. NOTICE The project that is the subject of this report was a part of the Airport Cooperative Research Program, conducted by the Transportation Research Board with the approval of the Governing Board of the National Research Council. The members of the technical panel selected to monitor this project and to review this report were chosen for their special competencies and with regard for appropriate balance. The report was reviewed by the technical panel and accepted for publication according to procedures established and overseen by the Transportation Research Board and approved by the Governing Board of the National Research Council. The opinions and conclusions expressed or implied in this report are those of the researchers who performed the research and are not necessarily those of the Transportation Research Board, the National Research Council, or the program sponsors. The Transportation Research Board of the National Academies, the National Research Council, and the sponsors of the Airport Cooperative Research Program do not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the object of the report. Published reports of the AIRPORT COOPERATIVE RESEARCH PROGRAM are available from: Transportation Research Board Business Office 500 Fifth Street, NW Washington, DC 20001 and can be ordered through the Internet at http://www.national­academies.org/trb/bookstore Printed in the United States of America

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. On the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. C. D. Mote, Jr., is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, on its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. C. D. Mote, Jr., are chair and vice chair, respectively, of the National Research Council. The Transportation Research Board is one of six major divisions of the National Research Council. The mission of the Transporta- tion Research Board is to provide leadership in transportation innovation and progress through research and information exchange, conducted within a setting that is objective, interdisciplinary, and multimodal. The Board’s varied activities annually engage about 7,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individu- als interested in the development of transportation. www.TRB.org www.national-academies.org

C O O P E R A T I V E R E S E A R C H P R O G R A M S CRP STAFF FOR ACRP REPORT 104 Christopher W. Jenks, Director, Cooperative Research Programs Crawford F. Jencks, Deputy Director, Cooperative Research Programs Michael R. Salamone, ACRP Manager Joseph D. Navarrete, Senior Program Officer Terri Baker, Senior Program Assistant Eileen P. Delaney, Director of Publications Hilary Freer, Senior Editor ACRP PROJECT 03-20 PANEL Field of Policy and Planning David C. Smith, Port of Seattle, Seattle-Tacoma International Airport, Seattle, WA (Chair) Gregory H. Albjerg, HNTB Corporation, Minneapolis, MN Tina M. Anderson, University of North Dakota, Grand Forks, ND Michael S. Hines, Metropolitan Washington Airports Authority, Dulles, VA Gwenn Larson, Delta Connection, Minneapolis, MN Matthew H. Lee, Landrum & Brown, Cincinnati, OH Esther Hernandez, FAA Liaison Steve Urlass, FAA Liaison Heather M. Krause, US Government Accountability Office Liaison Chris Oswald, Airports Council International–North America Liaison Richard A. Cunard, TRB Liaison

F O R E W O R D By Joseph D. Navarrete Staff Officer Transportation Research Board ACRP Report 104: Defining and Measuring Aircraft Delay and Airport Capacity Thresholds provides airports and their stakeholders with guidance for understanding, selecting, calcu­ lating, and reporting measures of delay and capacity. The report describes common metrics, identifies data sources, recommends the most appropriate metrics based on user needs, and suggests ways to improve metrics. Airports and their stakeholders, including airlines, passengers, and the FAA, use dif­ ferent definitions of delay, based on their unique needs. These different definitions may lead to misunderstandings among stakeholders and uncertainty as to how the measures are calculated and used in various situations. As airports often quantify capacity and delay to determine whether a planned capacity improvement is cost­justified, it is important that the most appropriate measures be used and effectively communicated. Nevertheless, practitio­ ners may not have the knowledge and training needed to select the appropriate measures, gather the frequently large amounts of data required to derive the measures, and perform the often complex calculations needed to estimate delay and capacity. Research was needed to offer that guidance. This research, led by TransSolutions under ACRP Project 03­20, began with a review and evaluation of existing delay and capacity definitions, data, metrics, and tools. The research­ ers next undertook an extensive interview effort that included the FAA, airport manage­ ment, airlines, consumers, attorneys, aviation industry organizations, and academia. The research team also reviewed available literature, including FAA advisory circulars and guid­ ance documents, airport planning studies, delay databases, and capacity and delay com­ puter simulation modeling efforts. The research team used their findings and their own experience to prepare the report. ACRP Report 104 is divided into five chapters. Chapter 1 introduces the challenge of defining and measuring delay and describes the report’s organization. Chapter 2 discusses how delay is defined and used by various stakeholders, identifies sources of delay data, and describes how delay is calculated. Chapter 3 explains how capacity is defined and calculated and discusses the challenges of measuring capacity (including the interplay of how delay thresholds are used to set capacity thresholds). Recommendations for using the various definitions and measures of capacity and delay are provided in Chapter 4. Lastly, future trends for improving capacity and delay metrics, particularly for effectively communicating with the public, are summarized in Chapter 5.

C O N T E N T S Note: Many of the photographs, figures, and tables in this report have been converted from color to grayscale for printing. The electronic version of the report (posted on the Web at www.trb.org) retains the color versions. 1 Summary 2 Chapter 1 Introduction 4 Chapter 2 Delay 4 2.1 How Delay is Used and Defined by Various Stakeholders 13 2.2 Historical/Actual Delay Data 31 2.3 How Delays Are Calculated 33 2.4 Additional Delay Statistics 38 Chapter 3 Metrics to Define Airport Capacity 38 3.1 How Capacity Is Calculated 40 3.2 Timeframe of Capacity Measure 42 3.3 Capacity Coverage “Curves” (Graphs) 44 3.4 Delay Thresholds Used to Define Capacity 46 3.5 Challenges in Capacity Measurements 47 Chapter 4 Recommendations 47 4.1 Airport Characteristics Affecting Capacity/Delay Analyses 52 4.2 Estimation of Delay for Different Purposes 53 4.3 Capacity Metric Recommendations 54 Chapter 5 Future Trends in Improving Metrics 56 Appendix A Delay Database Summary 59 Appendix B Bibliography 61 Appendix C Glossary of Terms

Next: Summary »
Defining and Measuring Aircraft Delay and Airport Capacity Thresholds Get This Book
×
 Defining and Measuring Aircraft Delay and Airport Capacity Thresholds
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

TRB’s Airport Cooperative Research Program (ACRP) Report 104: Defining and Measuring Aircraft Delay and Airport Capacity Thresholds offers guidance to help airports understand, select, calculate, and report measures of delay and capacity. The report describes common metrics, identifies data sources, recommends metrics based on an airport’s needs, and suggests ways to potentially improve metrics.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!