National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2012. Nondestructive Testing to Identify Concrete Bridge Deck Deterioration. Washington, DC: The National Academies Press. doi: 10.17226/22771.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2012. Nondestructive Testing to Identify Concrete Bridge Deck Deterioration. Washington, DC: The National Academies Press. doi: 10.17226/22771.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2012. Nondestructive Testing to Identify Concrete Bridge Deck Deterioration. Washington, DC: The National Academies Press. doi: 10.17226/22771.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2012. Nondestructive Testing to Identify Concrete Bridge Deck Deterioration. Washington, DC: The National Academies Press. doi: 10.17226/22771.
×
Page R4
Page v
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2012. Nondestructive Testing to Identify Concrete Bridge Deck Deterioration. Washington, DC: The National Academies Press. doi: 10.17226/22771.
×
Page R5
Page vi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2012. Nondestructive Testing to Identify Concrete Bridge Deck Deterioration. Washington, DC: The National Academies Press. doi: 10.17226/22771.
×
Page R6
Page vii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2012. Nondestructive Testing to Identify Concrete Bridge Deck Deterioration. Washington, DC: The National Academies Press. doi: 10.17226/22771.
×
Page R7

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

TRANSPORTATION RESEARCH BOARD WASHINGTON, D.C. 2013 www.TRB.org RepoRt S2-R06A-RR-1 The Second S T R A T E G I C H I G H W A Y R E S E A R C H P R O G R A M Nondestructive Testing to Identify Concrete Bridge Deck Deterioration NeNad GucuNski, arezoo imaNi, aNd FraNcisco romero Rutgers University—Center for Advanced Infrastructure and Transportation soheil NazariaN aNd dereN YuaN The University of Texas at El Paso—Center for Transportation Infrastructure Systems herbert WiGGeNhauser, Parisa shokouhi, aNd alexaNder taFFe Federal Institute for Materials Research and Testing (BAM), Germany doria kutrubes Radar Systems International, Inc.

Subscriber Categories Bridges and Other Structures Construction Highways Maintenance and Preservation Materials

SHRP 2 Reports Available by subscription and through the TRB online bookstore: www.TRB.org/bookstore Contact the TRB Business Office: 202-334-3213 More information about SHRP 2: www.TRB.org/SHRP2 SHRP 2 Report S2-R06A-RR-1 ISBN: 978-0-309-12933-6 Library of Congress Control Number: 2012955018 © 2013 National Academy of Sciences. All rights reserved. Copyright Information Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copy- right to any previously published or copyrighted material used herein. The second Strategic Highway Research Program grants permission to repro- duce material in this publication for classroom and not-for-profit purposes. Per- mission is given with the understanding that none of the material will be used to imply TRB, AASHTO, or FHWA endorsement of a particular product, method, or practice. It is expected that those reproducing material in this document for educational and not-for-profit purposes will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from SHRP 2. Note: SHRP 2 report numbers convey the program, focus area, project number, and publication format. Report numbers ending in “w” are published as web documents only. Notice The project that is the subject of this report was a part of the second Strategic Highway Research Program, conducted by the Transportation Research Board with the approval of the Governing Board of the National Research Council. The members of the technical committee selected to monitor this project and review this report were chosen for their special competencies and with regard for appropriate balance. The report was reviewed by the technical committee and accepted for publication according to procedures established and overseen by the Transportation Research Board and approved by the Governing Board of the National Research Council. The opinions and conclusions expressed or implied in this report are those of the researchers who performed the research and are not necessarily those of the Trans- portation Research Board, the National Research Council, or the program sponsors. The Transportation Research Board of the National Academies, the National Research Council, and the sponsors of the second Strategic Highway Research Pro- gram do not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the object of the report. The Second Strategic Highway Research Program America’s highway system is critical to meeting the mobility and economic needs of local communities, regions, and the nation. Developments in research and technology—such as advanced materials, communications technology, new data collection technologies, and human factors science—offer a new oppor- tunity to improve the safety and reliability of this important national resource. Breakthrough resolution of significant trans- portation problems, however, requires concentrated resources over a short time frame. Reflecting this need, the second Strategic Highway Research Program (SHRP 2) has an intense, large-scale focus, integrates multiple fields of research and technology, and is fundamentally different from the broad, mission-oriented, discipline-based research programs that have been the mainstay of the highway research industry for half a century. The need for SHRP 2 was identified in TRB Special Report 260: Strategic Highway Research: Saving Lives, Reducing Congestion, Improving Quality of Life, published in 2001 and based on a study sponsored by Congress through the Transportation Equity Act for the 21st Century (TEA-21). SHRP 2, modeled after the first Strategic Highway Research Program, is a focused, time- constrained, management-driven program designed to comple- ment existing highway research programs. SHRP 2 focuses on applied research in four areas: Safety, to prevent or reduce the severity of highway crashes by understanding driver behavior; Renewal, to address the aging infrastructure through rapid design and construction methods that cause minimal disrup- tions and produce lasting facilities; Reliability, to reduce conges- tion through incident reduction, management, response, and mitigation; and Capacity, to integrate mobility, economic, envi- ronmental, and community needs in the planning and designing of new transportation capacity. SHRP 2 was authorized in August 2005 as part of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). The program is managed by the Transportation Research Board (TRB) on behalf of the National Research Council (NRC). SHRP 2 is conducted under a memorandum of understanding among the American Associa- tion of State Highway and Transportation Officials (AASHTO), the Federal Highway Administration (FHWA), and the National Academy of Sciences, parent organization of TRB and NRC. The program provides for competitive, merit-based selection of research contractors; independent research project oversight; and dissemination of research results.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. On the authority of the charter granted to it by Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achieve- ments of engineers. Dr. Charles M. Vest is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, on its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, of the National Research Council. The Transportation Research Board is one of six major divisions of the National Research Council. The mission of the Transportation Research Board is to provide leadership in transportation innovation and progress through research and information exchange, conducted within a setting that is objective, interdisci- plinary, and multimodal. The Board’s varied activities annually engage about 7,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transporta- tion, and other organizations and individuals interested in the development of transportation. www.TRB.org www.national-academies.org

ACKNOWLEDGMENTS This work was sponsored by the Federal Highway Administration in cooperation with the American Asso- ciation of State Highway and Transportation Officials. It was conducted in the second Strategic Highway Research Program (SHRP 2), which is administered by the Transportation Research Board of the National Academies. The project was managed by Monica Starnes, Senior Program Officer for SHRP 2 Renewal. The research reported herein was performed by the Center for Advanced Infrastructure and Transporta- tion (CAIT) at Rutgers University (RU); the Center for Transportation Infrastructure Systems (CTIS) at The University of Texas at El Paso (UTEP); the Federal Institute for Materials Research and Testing (BAM), Germany; and Radar Systems International, Inc. (RSI). Rutgers University was the coordinator and con- tractor for this project. Dr. Nenad Gucunski, professor and chair of Civil and Environmental Engineering and director of CAIT’s Infrastructure Condition Monitoring Program at RU, was the principal investigator. The other authors of this report are Dr. Soheil Nazarian, professor of Civil Engineering and director of CTIS at UTEP; Dr. Deren Yuan, research associate at CTIS at UTEP; Dr. Herbert Wiggenhauser, head of Non-Destructive Testing (NDT) in Civil Engineering at BAM; Dr. Alexander Taffe, leader of Combination and Automation of NDT of Buildings at BAM; Dr. Parisa Shokouhi, Alexander von Humboldt Research Fellow, hosted by BAM; and Doria Kutrubes, president of RSI. Arezoo Imani and Touraj Tayebi, graduate research assistants at RU, helped conduct the validation testing, data analysis, and web manual content preparation. Hoda Azari, a graduate research assistant, and Dr. Manuel Celaya, a research engineer at UTEP, assisted in the validation study as well. Hooman Parvardeh, research assistant at RU, helped build the reference database and develop the framework for the web manual, while Erica Erlanger, a research staff member at RU, edited the manuscript. Their contributions are gratefully acknowledged. The research team also gratefully acknowledges contributions of the participants from industry and academia in the validation testing. The participants include NDT Corporation; Germann Instruments; Olson Engineering; Dr. Ralf Arndt, National Research Council associate at FHWA Turner–Fairbank Highway Research Center; Ingegneria Dei Sistemi S.p.A. (IDS), Italy; 3D-RADAR, Norway; Dr. John Popovics, University of Illinois at Urbana-Champaign; Dr. Jinying Zhu, The University of Texas at Austin; Rutgers University— Center for Advanced Infrastructure and Transportation; and The University of Texas at El Paso—Center for Transportation Infrastructure Systems. The contributions of these participants were critical for the evaluation and grading of the performance of NDT technologies. SHRP 2 STAFF Ann M. Brach, Director Stephen J. Andrle, Deputy Director Neil J. Pedersen, Deputy Director, Implementation and Communications James Bryant, Senior Program Officer, Renewal Kenneth Campbell, Chief Program Officer, Safety JoAnn Coleman, Senior Program Assistant, Capacity and Reliability Eduardo Cusicanqui, Financial Officer Walter Diewald, Senior Program Officer, Safety Jerry DiMaggio, Implementation Coordinator Shantia Douglas, Senior Financial Assistant Charles Fay, Senior Program Officer, Safety Carol Ford, Senior Program Assistant, Renewal and Safety Elizabeth Forney, Assistant Editor Jo Allen Gause, Senior Program Officer, Capacity Rosalind Gomes, Accounting/Financial Assistant Abdelmename Hedhli, Visiting Professional James Hedlund, Special Consultant, Safety Coordination Alyssa Hernandez, Reports Coordinator Ralph Hessian, Special Consultant, Capacity and Reliability Andy Horosko, Special Consultant, Safety Field Data Collection William Hyman, Senior Program Officer, Reliability Michael Marazzi, Senior Editorial Assistant Linda Mason, Communications Officer Reena Mathews, Senior Program Officer, Capacity and Reliability Matthew Miller, Program Officer, Capacity and Reliability Michael Miller, Senior Program Assistant, Capacity and Reliability David Plazak, Senior Program Officer, Capacity Monica Starnes, Senior Program Officer, Renewal Charles Taylor, Special Consultant, Renewal Onno Tool, Visiting Professional Dean Trackman, Managing Editor Connie Woldu, Administrative Coordinator Patrick Zelinski, Communications/Media Associate

The extensive number of concrete bridge decks in poor structural conditions is one of the biggest problems affecting U.S. bridges. Highway agencies have an increased need to evaluate bridge deck condition in order to optimize the effective timing, scope, and approaches for preventive maintenance, repair, and replacement. The difficulty is that bridge deck deterioration often takes place below the surface where it cannot be evaluated by visual means. Nondestructive testing (NDT) techniques have the potential of providing the needed information about the under-the-surface deteriorated condition of the deck. Over the past few decades, new techniques and equipment have been developed that can provide high-speed testing potentially capable of being used for bridge deck condition assessment. These technologies, however, have not been widely accepted in part because of less than positive experiences that may have occurred from unrealistic expectations or improper use. This research project has been carried out with the goal of offering an independent evalu- ation of the capabilities and limitations of the most common NDT techniques to detect and characterize typical deterioration mechanisms in concrete bridge decks. As designed, the independent evaluation depended on a participation of manufacturers of NDT equipment, service providers, research institutions, and consultants. All the participants were evalu- ated on the basis of the same series of tests, the same environmental factors, and the same performance metrics. As such, their individual performances were tested in an environment analogous to a rodeo. The independent evaluation, or rodeo, was conducted in both laboratory and field con- ditions. Through this rodeo, the research team evaluated the NDT technologies from the perspective of speed, accuracy, precision, and ease of use. The information gathered from the tested technologies has been organized in an electronic repository called the NDToolbox. Additional tasks were recently added to this project in order to expand the coverage of the NDToolbox. Once completed, the NDToolbox will include the results from all the NDT research projects studied under SHRP 2; thus the NDToolbox could serve as a quick refer- ence of validated methods for identifying deterioration on concrete bridge decks, as well as methods for conducting quality control of construction materials and pavements and for assessing the condition of pavements and tunnels. F O R EWO R D Monica A. Starnes, PhD, SHRP 2 Senior Program Officer, Renewal

C O N T E N T S 1 Executive Summary 5 CHAPTER 1 Background 7 CHAPTER 2 Common Defects of Concrete Bridge Decks 7 Common Deterioration Types in Bridge Decks 11 Overlay Debonding 12 CHAPTER 3 Candidate Methods for Deterioration in Concrete Bridge Decks 12 Impact Echo 14 Ultrasonic Pulse Echo 16 Ultrasonic Surface Waves 18 Impulse Response 19 Ground-Penetrating Radar 21 Half-Cell Potential 22 Galvanostatic Pulse Measurement 24 Electrical Resistivity 25 Infrared Thermography 25 Chain Dragging and Hammer Sounding 29 CHAPTER 4 Criteria and Methodology for Evaluating NDT Methods for Assessment of Bridge Decks 29 Performance Measures and Deterioration Types Selection 29 Description and Definition of Main Deterioration Types 30 Elements Constituting Performance Measures 32 Conclusions 34 CHAPTER 5 Approach to Validation Testing 34 Field Validation Testing 36 Laboratory Validation Testing 48 CHAPTER 6 Results and Discussion 48 Field Validation Testing 53 Laboratory Validation Testing: Fabricated Bridge Deck 60 Laboratory Validation Testing: Retrieved Bridge Deck 68 CHAPTER 7 Evaluation and Ranking of NDT for Condition Assessment of Bridge Decks 68 Assessment of NDT Technologies 76 Summary Grades 78 CHAPTER 8 Implementation of the Results from the Study 82 CHAPTER 9 Summary, Conclusions, and Recommendations 84 References Online version of this report: www.trb.org/Main/Blurbs/167278.aspx.

Next: Executive Summary »
Nondestructive Testing to Identify Concrete Bridge Deck Deterioration Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

TRB’s second Strategic Highway Research Program (SHRP 2) Report S2-R06A-RR-1: Nondestructive Testing to Identify Concrete Bridge Deck Deterioration identifies nondestructive testing technologies for detecting and characterizing common forms of deterioration in concrete bridge decks.

The report also documents the validation of promising technologies, and grades and ranks the technologies based on results of the validations.

The main product of this project will be an electronic repository for practitioners, known as the NDToolbox, which provides information regarding recommended technologies for the detection of a particular deterioration.

An e-book version of this report is available for purchase at Amazon, iTunes, and Google

As part of the project that developed SHRP 2 Report S2-R06A-RR-1, a series of videos were produced that show various nondestructive testing technologies being demonstrated by teams from industry and academia. Technologies highlighted in the videos include electrical resistivity (Rutgers); galvanostatic pulse measurement (Olson Engineering); ground penetrating radar (3D Radar, IDS-Italy, NDT Corp, Aladdin System, Olson Engineering/IDS, and Rutgers); half-cell potential (Rutgers); impact echo (University of Illinois, NDT Corp, Olson Engineering, Rutgers, University of Texas at Austin, and Germann Instruments); impulse response (Germann Instruments); infrared thermography (FHWA and the University of Texas at El Paso); ultrasonic pulse echo (University of Texas at El Paso); and ultrasonic surface waves (Rutgers).

Renewal Project R06A is one of seven follow-on projects to SHRP Renewal Project R06 that produced SHRP 2 Report S2-R06-RW: A Plan for Developing High-Speed, Nondestructive Testing Procedures for Both Design Evaluation and Construction Inspection, which examines existing and emerging nondestructive evaluation technologies and their current state of implementation to satisfy the NDE needs for highway renewal.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!