National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R4
Page v
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R5
Page vi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R6
Page vii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R7
Page viii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R8
Page ix
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R9
Page x
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R10
Page xi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R11
Page xii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R12
Page xiii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R13
Page xiv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2007. Environmental Effects in Pavement Mix and Structural Design Systems. Washington, DC: The National Academies Press. doi: 10.17226/23244.
×
Page R14

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Web-Only Document 113: Environmental Effects in Pavement Mix and Structural Design Systems National Cooperative Highway Research Program W. N. Houston M. W. Mirza C. E. Zapata S. Raghavendra Arizona State University Part 1 of Contractor’s Final Report for NCHRP Project 9-23 Submitted September 2005 NCHRP

ACKNOWLEDGMENT This work was sponsored by the American Association of State Highway and Transportation Officials (AASHTO), in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program (NCHRP), which is administered by the Transportation Research Board (TRB) of the National Academies. COPYRIGHT PERMISSION Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein. Cooperative Research Programs (CRP) grants permission to reproduce material in this publication for classroom and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply TRB, AASHTO, FAA, FHWA, FMCSA, FTA, Transit Development Corporation, or AOC endorsement of a particular product, method, or practice. It is expected that those reproducing the material in this document for educational and not-for-profit uses will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from CRP. DISCLAIMER The opinion and conclusions expressed or implied in the report are those of the research agency. They are not necessarily those of the TRB, the National Research Council, AASHTO, or the U.S. Government. This report has not been edited by TRB.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished schol- ars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. On the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and techni- cal matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Acad- emy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achieve- ments of engineers. Dr. Charles M. Vest is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, on its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Acad- emy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scien- tific and engineering communities. The Council is administered jointly by both the Academies and the Insti- tute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, of the National Research Council. The Transportation Research Board is one of six major divisions of the National Research Council. The mission of the Transportation Research Board is to provide leadership in transportation innovation and progress through research and information exchange, conducted within a setting that is objective, interdisci- plinary, and multimodal. The Board’s varied activities annually engage about 7,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation. www.TRB.org www.national-academies.org

TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................ iv LIST OF TABLES .......................................................................................................... ix ACKNOWLEDGMENTS .............................................................................................. xi ABSTRACT.................................................................................................................... xii SUMMARY ...................................................................................................................xiii INTRODUCTION AND RESEARCH APPROACH................................................... 1 PROBLEM STATEMENT.......................................................................................... 1 CURRENT KNOWLEDGE ........................................................................................ 2 RESEARCH OBJECTIVES ........................................................................................ 4 RESEARCH APPROACH .......................................................................................... 4 ORGANIZATION OF THE REPORT........................................................................ 6 PART I CALIBRATION OF PP1-98 (AASHTO DESIGNATION PP1-98: STANDARD PRACTICE FOR ACCELERATED AGING OF ASPHALT BINDER USING A PRESSURIZED AGING VESSEL) AND PP2 (AASHTO DESIGNATION PP2-99: STANDARD PRACTICE FOR MIXTURE CONDITIONING OF HOT MIX ASPHALT) PROTOCOLS ................................... 7 CHAPTER 1 INTRODUCTION.................................................................................... 8 BACKGROUND ......................................................................................................... 8 RESEARCH OBJECTIVE ........................................................................................ 10 ORGANIZATION OF THE REPORT...................................................................... 11 CHAPTER 2 LITERATURE REVIEW ..................................................................... 14 INTRODUCTION ..................................................................................................... 14 FUNDAMENTAL ASPHALT CEMENT PROPERTIES ........................................ 15 MECHANISM OF ASPHALT HARDENING ......................................................... 24 FACTORS AFFECTING AGE HARDENING......................................................... 27 EFFECT OF AGING AND ITS RELATION TO PAVEMENT PERFORMANCE 31 IMPORTANCE OF AGING FOR PAVEMENT SPECIFICATIONS ..................... 34 AGING PREDICTION METHODOLOGIES........................................................... 35 AASHTO STANDARDS FOR AGE HARDENING CHARACTERIZATION ...... 42 AGING OF ASPHALT BINDER.............................................................................. 43 BINDER EXTRACTION AND RECOVERY.......................................................... 46 TEST PROCEDURES USED IN THIS STUDY ...................................................... 50 CHAPTER 3 CORRECTION FACTOR FOR BINDER RECOVERY .................. 92 INTRODUCTION ..................................................................................................... 92 MATERIALS USED ................................................................................................. 92 LABORATORY TESTING PROGRAM.................................................................. 92 LABORATORY RESULTS...................................................................................... 93 CONCLUSION.......................................................................................................... 94 CHAPTER 4 VERIFICATION OF PP1-98 PROTOCOL/AASHTO DESIGNATION PP1-98: STANDARD PRACTICE FOR ACCELERATED AGING OF ASPHALT BINDER USING A PRESSURIZED AGING VESSEL (PAV) .... 102 INTRODUCTION ................................................................................................... 102 CURRENT CONDITIONS FOR THE PP1-98 PROTOCOL................................. 102

ii APPROACH ............................................................................................................ 102 LABORATORY TESTING ON BINDER.............................................................. 103 DSR TEST RESULTS ON LABORATORY AGED BINDERS ........................... 103 LABORATORY TESTING ON RECOVERED BINDER FROM FIELD CORES103 DSR TEST RESULTS ON FIELD-AGED BINDER ............................................. 104 DATA ANALYSIS.................................................................................................. 104 RESULTS AND CONCLUSIONS ......................................................................... 105 CHAPTER 5 IMPROVEMENT OF THE PP1-98 PROTOCOL AND MODEL DEVELOPMENT ........................................................................................................ 129 INTRODUCTION ................................................................................................... 129 CURRENT CONDITIONS FOR THE PP1-98 PROTOCOL................................. 129 LIMITATIONS OF THE EXISTING PROTOCOL ............................................... 129 MATERIALS COLLECTED .................................................................................. 130 APPROACH ............................................................................................................ 130 LABORATORY TESTING PROGRAM................................................................ 131 LABORATORY TESTING ON BINDER.............................................................. 132 VISCOSITY PREDICTION FROM EQUATION DEVELOPED BY PREVIOUS RESEARCH............................................................................................................. 132 DATA ANALYSIS.................................................................................................. 133 OPTIMIZATION OF THE MODEL....................................................................... 133 SUMMARY OF THE DEVELOPMENT OF THE MODEL ................................. 134 CHAPTER 6 CALIBRATION OF THE EXPANDED PP1 MODEL WITH FIELD DATA ............................................................................................................................ 158 INTRODUCTION ................................................................................................... 158 MATERIALS USED ............................................................................................... 158 BACKGROUND ..................................................................................................... 158 APPROACH ............................................................................................................ 158 ESTIMATION OF PAV AGING TEMPERATURE.............................................. 159 FIELD ANALYSIS ................................................................................................. 159 BINDER CHARACTERIZATION ......................................................................... 160 FIELD CALIBRATION AT 85ºC AND 60ºC ANALYSIS TEMPERATURES ... 162 DISCUSSION OF IMPLEMENTATION ............................................................... 162 CHAPTER 7 VALIDATION OF THE EXPANDED PP1 MODEL WITH FIELD DATA ............................................................................................................................ 187 INTRODUCTION ................................................................................................... 187 MATERIALS USED ............................................................................................... 187 APPROACH ............................................................................................................ 187 STEPS USED TO FOLLOW THE AFOREMENTIONED APPROACH ............. 187 LABORATORY TESTING ON FIELD CORES.................................................... 188 VISCOSITY PREDICTION.................................................................................... 188 ESTIMATION OF PAV AGING TEMPERATURE.............................................. 188 CHAPTER 8 PARAMETRIC STUDY OF THE EXPANDED PP1 EQUATION 205 INTRODUCTION ................................................................................................... 205 INPUT MATRIX..................................................................................................... 205

iii PP1 EQUATION ..................................................................................................... 205 CASE 1: INFLUENCE OF AIR-VOIDS ................................................................ 205 CASE 2: INFLUENCE OF MAAT ......................................................................... 205 CASE 3: INFLUENCE OF BINDER TYPE........................................................... 206 CASE 4: COMBINED INFLUENCE OF BINDER TYPE AND MAAT .............. 206 CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH ON PP1 PROTOCOL........................................................................... 214 CONCLUSIONS...................................................................................................... 214 RECOMMENDATIONS FOR FUTURE WORK .................................................. 215 RECOMMENDATIONS FOR THE IMPLEMENTATION OF THE PP1 MODEL .................................................................................................................................. 215 RECOMMENDED PROVISIONAL PROTOCOL ................................................ 216 CHAPTER 10 VERIFICATION OF PP2-99 PROTOCOL/AASHTO DESIGNATION PP2-99: STANDARD PRACTICE FOR MIXTURE CONDITIONING OF HOT MIX ASPHALT........................................................... 219 INTRODUCTION ................................................................................................... 219 CURRENT CONDITIONS FOR THE PP2-99 PROTOCOL................................. 219 APPROACH ............................................................................................................ 219 MATERIALS USED ............................................................................................... 220 MINI – STUDY ON COMPACTED SPECIMENS................................................ 221 LABORATORY AGING ........................................................................................ 223 COMPLEX MODULUS E* TESTING ON LABORATORY AGED CORES ..... 224 COMPLEX MODULUS E* TESTING ON FIELD CORES.................................. 224 ANALYSIS AND CONCLUSIONS ....................................................................... 224 CHAPTER 11 ANALYSIS AND CORRELATION OF LABORATORY AGED AND FIELD AGED CORES DATA.......................................................................... 255 INTRODUCTION ................................................................................................... 255 TEST RESULTS OF LABORATORY-AGED CORES......................................... 255 TEST RESULTS OF FIELD-AGED CORES......................................................... 255 ANALYSIS AND CONCLUSIONS ....................................................................... 256 CHAPTER 12 CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH WORK ON PP2-99 PROTOCOL ....................................................... 274 CONCLUSION........................................................................................................ 275 RECOMMENDATIONS FOR FURTHER RESEARCH....................................... 276 REFERENCES............................................................................................................. 278

iv LIST OF FIGURES Figure 1 Types of Molecules in Asphalt(10) ...................................................................... 58 Figure 2 Types of Molecular Bonding in Asphalt (10) ....................................................... 59 Figure 3 Flow Diagram Showing Three Commonly Used Fractionation Schemes(11) ..... 60 Figure 4 Typical Properties of Chemical Fractions Observed in Three Crude Sources(15) ................................................................................................................................... 61 Figure 5 Typical Schematic Output Profile from Gel Permeation Chromatography ....... 62 Figure 6 Typical Infrared Spectra Profile Used in Functional Group Analysis(16) ........... 63 Figure 7 Illustration of Temperature Susceptibility Behavior of Three Types of Asphalts ................................................................................................................................... 64 Figure 8 Important Chemical Functionalities Present in Asphalt Molecules(17)............... 65 Figure 9 Changes in Chemical Functionality During Cure of Asphalt Cement(17)........... 66 Figure 10 Mechanism of Change for (a) Top 1/8 in. Layer (b) ¼ in. Minus Layer ......... 67 Figure 11 Asphaltene Production in Aged PA Fraction (a) and Asphaltene Production in Aged NA Fractions (b).............................................................................................. 68 Figure 12 FTIR Spectra of Unaged and Aged SHRP AAA-1(22)...................................... 69 Figure 13 Carbonyl Area vs. Aging Time ........................................................................ 70 Figure 14 Relationship between Binder Viscosity and Carbonyl Area(22)........................ 71 Figure 15 Relationship between Mixing Temperature and the Change in Penetration During Mixing Operation(27) ..................................................................................... 72 Figure 16 Percent Penetration Retained as a Function of Plant Type(27) .......................... 72 Figure 17 Effect of Air Voids on Hardening Properties(30)............................................... 73 Figure 18 Effect of Climatic on Hardening Properties(30)................................................. 74 Figure 19 Hardening of 200-300 Paving Grade Asphalt at Zaca Wigmore Project(31)..... 75 Figure 20 Typical Schematic Plot for Change in Serviceability as a Function of Time .. 76 Figure 21 Change in Consistency of Asphalt as a Function of Time(35) ........................... 77 Figure 22 Laboratory Age Hardening Process.................................................................. 78 Figure 23 Penetration versus Time of Aging(37) ............................................................... 79 Figure 24 Aging Modulus Ratios for Three Asphalt Mixtures(42) .................................... 80 Figure 25 Typical Viscosity-Depth Relationship as a Function of the Time at a Given Temperature (a) Asphalt Layer Cross Section (b) Three Stage Viscosity Change Process with Depth ................................................................................................... 81 Figure 26 Revised Dynamic Modulus Predictive Equation(45) ......................................... 82 Figure 27 Results from the AASHTO Materials Reference Laboratory Proficiency Sample Program. Samples 27 and 28 are Replicates............................................... 82 Figure 28 Average Viscosities of Asphalt Binder Extracted from Tex 21/77 Samples Using Various Extraction Methods........................................................................... 83 Figure 29 Average Viscosities of Asphalt Binder Extracted from Young Brothers Samples Using Various Extraction Methods. ........................................................... 83 Figure 30 Removal of Solvent and Resulting Changes in Asphalt Viscosity................... 84 Figure 31 Hardening of Asphalt in TCE at Room Temperature for Extended Periods of Incubation Time Prior to Hot Recovery.................................................................... 84

v Figure 32 Residual Solvent Concentrations versus Abson Recovery Time at Three Temperatures for a Tank (AC-20) Asphalt............................................................... 85 Figure 33 Residual Solvent Concentrations versus Roto-Vap Recovery Time at Three Temperatures for an AC-20 Asphalt......................................................................... 85 Figure 34 The BOHLIN DSR.......................................................................................... 86 Figure 35 Schematic of the DSR Equipment. ................................................................... 86 Figure 36 Schematic of the DSR Plate Movement. .......................................................... 87 Figure 37 DSR Measurements .......................................................................................... 87 Figure 38 Rolling Thin Film Oven, RTFO – Short-Term Aging ..................................... 88 Figure 39 Schematic/Concept of Operation of RTFO ...................................................... 88 Figure 40 Pressure Aging Vessel, PAV – Long-Term Aging .......................................... 89 Figure 41 Schematic of the PAV ...................................................................................... 89 Figure 42 Pressure Vessel, TFO Pans, and TFO Pan Holder ........................................... 90 Figure 43 Schematic of the SHRP Extraction Procedure ................................................. 91 Figure 44 Viscosity Comparison for ADOT AC-40......................................................... 96 Figure 45 Viscosity Comparison for all Binders .............................................................. 97 Figure 46 Modulus Comparison for All Binders in Arithmetic Scale .............................. 98 Figure 47 Modulus Comparison for All Binders in Log Scale......................................... 99 Figure 48 Plot of Percentage Difference in Viscosities of Un-Extracted (Aged) and Recovered Binders vs. Un-Extracted Binder Viscosity.......................................... 100 Figure 49 Frequency Distribution of Percentage Difference in Viscosities of Un- Extracted (aged) and Recovered Binders................................................................ 101 Figure 50 A-VTS Plots for ADOT AC-30...................................................................... 112 Figure 51 A-VTS Plots for ADOT AC-30 Binder.......................................................... 113 Figure 52 A-VTS Plots for MnRoad AC-20 Binder....................................................... 114 Figure 53 A-VTS Plots for WesTrack AC-20 Binder .................................................... 115 Figure 54 Sketch of Sub-Cored and Sliced Field Core................................................... 116 Figure 55 A-VTS for ADOT Kingman Field Core......................................................... 117 Figure 56 A-VTS for MnRoad Cell-16 Field Core......................................................... 118 Figure 57 A-VTS for MnRoad Cell-18 Field Core......................................................... 119 Figure 58 A-VTS for WesTrack Section 12 Field Core ................................................. 120 Figure 59 A-VTS for WesTrack Section 15 Field Core ................................................. 121 Figure 60 A-VTS for WesTrack Section 16 Field Core ................................................. 122 Figure 61 Field Viscosity Plotted on Top of Laboratory Aged Binder A-VTS Plots for ADOT AC-30 Binder.............................................................................................. 123 Figure 62 Field Viscosity Plotted on Top of Laboratory Aged Binder A-VTS Plots for MnRoad AC-20 Binder........................................................................................... 124 Figure 63 Field Viscosity Plotted on Top of Laboratory Aged Binder A-VTS Plots for WesTrack AC-20 Binder ........................................................................................ 125 Figure 64 Field-Aged Viscosity at 65°F on A-VTS Plots for ADOT AC-30................. 126 Figure 65 Field-Aged Viscosity at 65°F on A-VTS Plots for MnRoad AC-20.............. 127 Figure 66 Field-Aged Viscosity at 65°F on A-VTS Plots for WesTrack AC-20 ........... 128 Figure 67 A-VTS Plots for ADOT AC-30 Binder.......................................................... 140 Figure 68 A-VTS Plots for ADOT AC-40 Binder.......................................................... 141

vi Figure 69 A-VTS Plot for MnRoad AC-120/150 Binder ............................................... 142 Figure 70 A-VTS Plot for MnRoad AC-20 Binder ........................................................ 143 Figure 71 A-VTS Plot for WesTrack AC-20 Binder ...................................................... 144 Figure 72 Predicted Viscosities Plotted on A-VTS Plots for ADOT AC-30.................. 145 Figure 73 Predicted Viscosities Plotted on A-VTS Plots for ADOT AC-40.................. 146 Figure 74 Predicted Viscosities Plotted on A-VTS Plots for MnRoad AC-120/150...... 147 Figure 75 Predicted Viscosities Plotted on A-VTS Plots for MnRoad AC-20............... 148 Figure 76 Predicted Viscosities Plotted on the A-VTS Plots for WesTrack AC-20 ...... 149 Figure 77 Field Aging Time vs. PAV Aging Temperature for ADOT AC-30............... 150 Figure 78 Field Aging Time vs. PAV Aging Temperature for ADOT AC-40............... 151 Figure 79 Field Aging Time vs. PAV Aging Temperature for MnRoad AC-120/150... 152 Figure 80 Field Aging Time vs. PAV Aging Temperature for MnRoad AC-20............ 153 Figure 81 Field Aging Time vs. PAV Aging Temperature for WesTrack AC-20 ......... 154 Figure 82 Plot of Difference in PAV Aging Temperatures Estimated from the Analyses of Binders at 65ºC and 85ºC vs. Aging Time ......................................................... 155 Figure 83 Frequency Distribution of the Difference in PAV Aging Temperatures Estimated from the Analyses of Binders at 65ºC and 85ºC.................................... 156 Figure 84 Frequency Distribution of the Percentage Error in Actual and Predicted PAV Aging Temperatures Estimated from Equation 5.6 ................................................ 157 Figure 85 A-VTS Plot for ADOT Kingman Field Core ................................................. 168 Figure 86 A-VTS Plot for MnRoad Cell 16 Field Core.................................................. 169 Figure 87 A-VTS Plot for MnRoad Cell 18 Field Core.................................................. 170 Figure 88 A-VTS Plot for WesTrack Section 12 Field Core.......................................... 171 Figure 89 A-VTS Plot for WesTrack Section 15 Field Core.......................................... 172 Figure 90 A-VTS Plot for WesTrack Section 16 Field Core.......................................... 173 Figure 91 Viscosity at 65ºC vs. PAV Aging Temperature for ADOT AC-30................ 174 Figure 92 Viscosity at 65ºC vs. PAV Aging Temperature for MnRoad AC-20............. 175 Figure 93 Viscosity at 65ºC vs. PAV Aging Temperature for WesTrack AC-20 .......... 176 Figure 94 Viscosity at 65ºC vs. PAV Aging Temperature for ADOT AC-30................ 177 Figure 95 Viscosity at 65ºC vs. PAV Aging Temperature for MnRoad AC-20............. 178 Figure 96 Viscosity at 65ºC vs. PAV Aging Temperature for WesTrack AC-20 .......... 179 Figure 97 Comparison of Predicted PAV Aging Temperature Required and Measured Equivalent PAV Aging Temperature...................................................................... 180 Figure 98 Ratio of Measured and Predicted PAV Aging Temperatures vs. Original Mix Air-Voids ................................................................................................................ 181 Figure 99 Comparison Plot of Predicted PAV Aging Temperature With Air-Voids Correction Factor and Measured PAV Aging Temperature ................................... 182 Figure 100 Modulus Equivalent To Predicted PAV Aging Temperature vs. Modulus Equivalent to Measured PAV Aging Temperature................................................. 183 Figure 101 Comparison Plot of PAV Aging Temperatures Obtained from Model Calibrated for Mix Air-Voids At 85ºC and PAV Aging Temperature Corresponding to Field-Aged Viscosity at 85ºC ............................................................................. 184

vii Figure 102 Comparison Plot of PAV Aging Temperature Obtained from Model Calibrated for Mix Air-Voids at 60ºC and PAV Aging Temperature Corresponding to Field-Aged Viscosity at 60ºC ............................................................................. 185 Figure 103 Plot of Percentage Error in PAV Aging Temperature Estimated from the Model Corrected for Mix Air-Voids and PAV Aging Temperature Corresponding to Field-Aged Viscosity .............................................................................................. 186 Figure 104 A-VTS Plot for Groton, Connecticut Field Core.......................................... 195 Figure 105 A-VTS Plot for Charlotte, Vermont Field Core ........................................... 196 Figure 106 A-VTS Plot for Big Timber, Montana Field Core ....................................... 197 Figure 107 A-VTS Plot for Ranchester, Wyoming Field Core ...................................... 198 Figure 108 A-VTS Plot for Gillette, Wyoming Field Core ............................................ 199 Figure 109 A-VTS Plot for Aurora, Colorado Field Core .............................................. 200 Figure 110 A-VTS Plot for Delta, Colorado Field Core................................................. 201 Figure 111 A-VTS Plot for Pullman, Washington Field Core........................................ 202 Figure 112 Plot of Parameters a and b vs. ηRTFO, 60ºC...................................................... 203 Figure 113 Comparison Plot of Predicted vs. Measured Viscosities at 60ºC................. 204 Figure 114 Predicted PAV Aging Temperature with Varying Air-Voids, and Constant MAAT and Binder Type .......................................................................................... 209 Figure 115 Predicted PAV Aging Temperature with Varying MAATs, and Constant Initial Air-Voids and Binder Type .................................................................................... 210 Figure 116 Predicted PAV Aging Temperature with Varying Binder Types, and Constant Initial Air-Voids and MAAT.................................................................................... 211 Figure 117 Aged Viscosities Corresponding to Predicted PAV Aging Temperature with Varying Binder Types, and Constant Initial Air-Voids and MAAT........................ 212 Figure 118 Predicted PAV Aging Temperature with Varying Binder Types and MAAT, and Constant Initial Air-Voids................................................................................ 213 Figure 119 Complex Modulus Test Results.................................................................... 231 Figure 120 Binder Viscosity – Radial Profile................................................................. 233 Figure 121 Binder Viscosity – Vertical Profile .............................................................. 235 Figure 122 Percent Difference between the Outer Shell and the Middle Shell .............. 236 Figure 123 Percent Difference between the Middle Shell and the Inner Core ............... 236 Figure 124 Percent Difference between Inner 1 and Inner 2 (middle of sample)........... 237 Figure 125 E* Test Cores Encased in Wire Mesh and Clamps to Eliminate Slump During Aging....................................................................................................................... 237 Figure 126 Plot of Complex Modulus vs. Loading Frequency for ADOT Flagstaff...... 238 Figure 127 Plot of Complex Modulus vs. Loading Frequency for ADOT Kingman..... 239 Figure 128 Plot of Complex Modulus vs. Loading Frequency for ADOT Perryville .... 240 Figure 129 Plot of Complex Modulus vs. Loading Frequency for MnRoad Cell 16 ..... 241 Figure 130 Plot of Complex Modulus vs. Loading Frequency for MnRoad Cell 18 ..... 242 Figure 131 Plot of Complex Modulus vs. Loading Frequency for MnRoad Cell 21 ..... 243 Figure 132 Plot of Complex Modulus vs. Loading Frequency for WesTrack Section 12 ................................................................................................................................. 244 Figure 133 Plot of Complex Modulus vs. Loading Frequency for WesTrack Section 15 ................................................................................................................................. 245

viii Figure 134 Plot of Complex Modulus vs. Loading Frequency for WesTrack Section 16246 Figure 135 E* Comparison of Lab-aged and Field-aged Cores for ADOT, Flagstaff ... 247 Figure 136 E* Comparison of Lab-aged and Field-aged Cores for ADOT, Kingman... 248 Figure 137 E* Comparison of Lab-aged and Field-aged Cores for MnRoad Cell 16 .... 249 Figure 138 E* Comparison of Lab-aged and Field-aged Cores for MnRoad Cell 18 .... 250 Figure 139 E* Comparison of Lab-aged and Field-aged Cores for MnRoad Cell 21 .... 251 Figure 140 E* Comparison of Lab-aged and Field-aged Cores for WesTrack Section 12 ................................................................................................................................. 252 Figure 141 E* Comparison of Lab-aged and Field-aged Cores for WesTrack Section 15 ................................................................................................................................. 253 Figure 142 E* Comparison of Lab-aged and Field-aged Cores for WesTrack Section 16 ................................................................................................................................. 254 Figure 143 Plot of Complex Modulus vs. Loading Frequency for ADOT Flagstaff...... 257 Figure 144 Plot of Complex Modulus vs. Loading Frequency for ADOT Kingman..... 258 Figure 145 Plot of Complex Modulus vs. Loading Frequency for ADOT Perryville .... 259 Figure 146 Plot of Complex Modulus vs. Loading Frequency for MnRoad Cell - 16 ... 260 Figure 147 Plot of Complex Modulus vs. Loading Frequency for MnRoad - Cell 18 ... 261 Figure 148 Plot of Complex Modulus vs. Loading Frequency for MnRoad - Cell 21 ... 262 Figure 149 Plot of Complex Modulus vs. Loading Frequency for WesTrack Section 12 ................................................................................................................................. 263 Figure 150 Plot of Complex Modulus vs. Loading Frequency for WesTrack Section 15 ................................................................................................................................. 264 Figure 151 Plot of Complex Modulus vs. Loading Frequency for WesTrack Section 16 ................................................................................................................................. 265 Figure 152 E* Comparison of Lab-aged and Field-aged Cores for ADOT, Flagstaff ... 266 Figure 153 E* Comparison of Lab-aged and Field-aged Cores for ADOT, Kingman... 267 Figure 154 E* Comparison of Lab-aged and Field-aged Cores for MnRoad - Cell 16.. 268 Figure 155 E* Comparison of Lab-aged and Field-aged Cores for MnRoad - Cell 18.. 269 Figure 156 E* Comparison of Lab-aged and Field-aged Cores for MnRoad - Cell 21.. 270 Figure 157 E* Comparison of Lab-aged and Field-aged Cores for WesTrack Section 12 ................................................................................................................................. 271 Figure 158 E* Comparison of Lab-aged and Field-aged Cores for WesTrack Section 15 ................................................................................................................................. 272 Figure 159 E* Comparison of Lab-aged and Field-aged Cores for WesTrack Section 16 ................................................................................................................................. 273

ix LIST OF TABLES Table 1 Elemental Analysis of Representative Petroleum Asphalts(12) ............................ 54 Table 2 General Characterization of Each of the Four Generic Fractions Found in Bitumen(14) ................................................................................................................ 54 Table 3 Physical Properties of Chemical Fractions(18)...................................................... 54 Table 4 Changes in Chemical Composition During Rolling Thin Film Oven (RTFO) Test (12) .............................................................................................................................. 55 Table 5 The Aging Conditions for Figure 3.13(22) ............................................................ 55 Table 6 Correlation of Pavement Condition with Physical Properties ............................. 56 Table 7 Comparison of Extraction Methods..................................................................... 57 Table 8 DSR Results of Aged and Recovered Binders..................................................... 95 Table 9 DSR Results for ADOT AC-30 Binder ............................................................. 106 Table 10 DSR Results for MnRoad AC-20 Binder ........................................................ 107 Table 11 DSR Results for WesTrack AC-20 Binder ...................................................... 108 Table 12 DSR Test Results on Extracted Field Aged Binder......................................... 109 Table 13 Summary of the Comparison Results at 65ºC.................................................. 110 Table 14 Summary of the Comparison Results at 65ºC.................................................. 110 Table 15 Summary of the Comparison Results at 60ºC.................................................. 111 Table 16 DSR Results for ADOT AC-30 Binder ........................................................... 135 Table 17 DSR Results for ADOT AC-40 Binder ........................................................... 136 Table 18 DSR Results for MnRoad AC-120/150 Binder ............................................... 137 Table 19 DSR Results for MnRoad AC-20 Binder ........................................................ 138 Table 20 DSR Results for WesTrack AC-20 Binder ...................................................... 139 Table 21 Field Aging Conditions.................................................................................... 164 Table 22 Estimated Required PAV Aging Temperature ................................................ 164 Table 23 DSR Results for the Field Cores...................................................................... 165 Table 24 Field-Aged Viscosity of the Cores at 65ºC...................................................... 165 Table 25 DSR Results of PAV Aged Binders at 65ºC.................................................... 166 Table 26 Parameters a and b Obtained from Regression Analysis for Various Binders 166 Table 27 Equivalent PAV Aging Temperatures to Simulate Field Aging...................... 166 Table 28 Predicted vs. Measured PAV Aging Temperatures ......................................... 167 Table 29 Summary of PAV Temperatures and Air-Voids.............................................. 167 Table 30 Summary of Predicted and Measured PAV Aging Temperatures................... 168 Table 31 DSR Results from LTPP Field-Cores.............................................................. 191 Table 32 Field-Aged Viscosity of the Cores at 60ºC...................................................... 192 Table 33 Binder Grade and RTFO Viscosity of the LTPP Binders at 60ºC................... 192 Table 34 Field Aging Conditions.................................................................................... 193 Table 35 Predicted PAV Aging Temperature Required to Simulate Field Aging.......... 193 Table 36 Predicted Aged Viscosities at 60ºC Corresponding to the Estimated TPAV..... 194 Table 37 Comparison of Predicted and Measured Viscosities at 60ºC........................... 194 Table 38 Matrix of Input Values..................................................................................... 208 Table 39 Summary of Input Data Used in the Prediction............................................... 217 Table 40 Predicted PAV Aging Temperatures ............................................................... 217

x Table 41 Estimated Field Aging Times .......................................................................... 218 Table 42 Recommended Provisional Protocol................................................................ 218 Table 43 Slump Measurements....................................................................................... 228 Table 44 DSR Testing Results on the Aged Binder ....................................................... 229 Table 45 Core Height Measurements ............................................................................. 231

xi ACKNOWLEDGMENTS The research reported herein was performed under NCHRP Project 9-23 by the Department of Civil and Environmental Engineering at Arizona State University (ASU). Dr. William N. Houston, Professor of Civil Engineering, ASU, was the principal investigator of the project and Dr. M. Waseem Mirza, Assistant Research Professor, ASU, was the co-investigator. The other authors of this report are Claudia E. Zapata, Faculty Research Associate at ASU and Suresh Raghavendra, former Research Assistant at ASU. The preparation of this report was a team effort, with general supervision being provided by Professor Houston, Dr. Mirza, and Dr. Zapata. Major contributions were made by Suresh Raghavendra, Bonnie Whitley, and Yugantha Perera, Research Assistants; Dr. Matthew W. Witczak, Professor of Civil Engineering, ASU, and Project Coordinator; Dr. Norma F. Hubele, Professor of Industrial and Management Systems Engineering Department, ASU, and statistical consultant for the project; Gregg Larson, at ERES Consultants and programming consultant for the project; and Arianna Valle, Student Assistant.

Next: Abstract »
Environmental Effects in Pavement Mix and Structural Design Systems Get This Book
×
 Environmental Effects in Pavement Mix and Structural Design Systems
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

TRB's National Cooperative Highway Research Program (NCHRP) Web-Only Document 113: Environmental Effects in Pavement Mix and Structural Design Systems examines limitations associated with provisional protocols on hardening potential of asphalt binders and mixes, and explores ways to enhance the predictive capabilities of these protocols. A summary of this effort was published as NCHRP Research Results Digest 324.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!