National Academies Press: OpenBook
« Previous: Appendix B Criteria for Accrediting Engineering Programs Effective for Reviews during the 20162017 Accreditation Cycle
Suggested Citation:"Appendix C 20162017 Criteria for Accrediting Engineering Programs Proposed Changes." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×

Appendix C
2016
2017 Criteria for Accrediting Engineering Programs Proposed Changes

Definitions

While ABET recognizes and supports the prerogative of institutions to adopt and use the terminology of their choice, it is necessary for ABET volunteers and staff to have a consistent understanding of terminology. With that purpose in mind, the Commissions will use the following basic definitions:

Program Educational Objectives – Program educational objectives are broad statements that describe what graduates are expected to attain within a few years of graduation. Program educational objectives are based on the needs of the program’s constituencies.

Student Outcomes – Student outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the skills, knowledge, and behaviors that students acquire as they progress through the program.

Assessment – Assessment is one or more processes that identify, collect, and prepare data to evaluate the attainment of student outcomes. Effective assessment uses relevant direct, indirect, quantitative and qualitative measures as appropriate to the outcome being measured. Appropriate sampling methods may be used as part of an assessment process.

Evaluation – Evaluation is one or more processes for interpreting the data and evidence accumulated through assessment processes. Evaluation determines the extent to which student outcomes are being attained. Evaluation results in decisions and actions regarding program improvement.


This document contains three sections:

The first section includes important definitions used by all ABET commissions.

The second section contains the General Criteria for Baccalaureate Level Programs that must be satisfied by all programs accredited by the Engineering Accreditation Commission of ABET and the General Criteria for Masters Level Programs that must be satisfied by those programs seeking advanced level accreditation.

The third section contains the Program Criteria that must be satisfied by certain programs. The applicable Program Criteria are determined by the technical specialties indicated by the title of the program. Overlapping requirements need to be satisfied only once.


These criteria are intended to assure quality and to foster the systematic pursuit of improvement in the quality of engineering education that satisfies the needs of constituencies in a dynamic and competitive environment. It is the responsibility of the institution seeking accreditation of an engineering program to demonstrate clearly that the program meets the following criteria.

These criteria are intended to provide a framework of education that prepares graduates to enter the professionalpractice of engineering who are (i) able to participate in diverse multicultural workplaces; (ii) knowledgeable intopics relevant to their discipline, such as usability, constructability, manufacturability and sustainability; and (iii)cognizant of the global dimensions, risks, uncertainties, and other implications of their engineering solutions. Further,these criteria are intended to assure quality to foster the systematic pursuit of improvement in the quality ofengineering education that satisfies the needs of constituencies in a dynamic and competitive environment. It is theresponsibility of the institution seeking accreditation of an engineering program to demonstrate clearly that theprogram meets the following criteria.

The Engineering Accreditation Commission of ABET recognizes that its constituents may consider certain terms tohave certain meanings; however, it is necessary for the Engineering Accreditation Commission to have consistentterminology. Thus, the Engineering Accreditation Commission will use the following definitions:

Basic Science – Basic sciences consist of chemistry and physics, and other biological, chemical, and physical sciences,including astronomy, biology, climatology, ecology, geology, meteorology, and oceanography.

Suggested Citation:"Appendix C 20162017 Criteria for Accrediting Engineering Programs Proposed Changes." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×

College‐level Mathematics – College‐level mathematics consists of mathematics above pre‐calculus level.

Engineering Science – Engineering sciences are based on mathematics and basic sciences but carry knowledge furthertoward creative application needed to solve engineering problems.

Engineering Design – Engineering design is the process of devising a system, component, or process to meet desiredneeds, specifications, codes, and standards within constraints such as health and safety, cost, ethics, policy,sustainability, constructability, and manufacturability. It is an iterative, creative, decision‐making process in which thebasic sciences, mathematics, and the engineering sciences are applied to convert resources optimally into solutions.

Teams – A team consists of more than one person working toward a common goal and may include individuals ofdiverse backgrounds, skills, and perspectives. One Academic Year – One academic year is the lesser of 32 semestercredits (or equivalent) or one‐fourth of the total credits required for graduation with a baccalaureate degree.

Criterion 3. Student Outcomes

The program must have documented student outcomes that prepare graduates to attain the program educational objectives.

Student outcomes are outcomes (a) through (k) plus any additional outcomes that may be articulated by the program.

  1. an ability to apply knowledge of mathematics, science, and engineering
  2. an ability to design and conduct experiments, as well as to analyze and interpret data
  3. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
  4. an ability to function on multidisciplinary teams
  5. an ability to identify, formulate, and solve engineering problems
  6. an understanding of professional and ethical responsibility
  7. an ability to communicate effectively
  8. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
  9. a recognition of the need for, and an ability to engage in life‐long learning
  10. a knowledge of contemporary issues
  11. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

The program must have documented student outcomes. Attainment of these outcomes prepares graduates to enterthe professional practice of engineering. Student outcomes are outcomes (1) through (7) plus any additionaloutcomes that may be articulated by the program.

  1. An ability to identify, formulate, and solve engineering problems by applying principles of engineering, science, andmathematics.
  2. An ability to apply both analysis and synthesis in the engineering design process, resulting in designs that meetdesired needs.
  3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineeringjudgment to draw conclusions.
  4. An ability to communicate effectively with a range of audiences.
  5. An ability to recognize ethical and professional responsibilities in engineering situations and make informedjudgments, which must consider the impact of engineering solutions in global, economic, environmental, and societalcontexts.
  6. An ability to recognize the ongoing need for additional knowledge and locate, evaluate, integrate, and apply thisknowledge appropriately.
Suggested Citation:"Appendix C 20162017 Criteria for Accrediting Engineering Programs Proposed Changes." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×
  1. An ability to function effectively on teams that establish goals, plan tasks, meet deadlines, and analyze risk anduncertainty.

Criterion 5. Curriculum

The curriculum requirements specify subject areas appropriate to engineering but do not prescribe specific courses. The faculty must ensure that the program curriculum devotes adequate attention and time to each component, consistent with the outcomes and objectives of the program and institution. The professional component must include:

  1. one year of a combination of college level mathematics and basic sciences (some with experimental experience) appropriate to the discipline. Basic sciences are defined as biological, chemical, and physical sciences.
  2. one and one‐half years of engineering topics, consisting of engineering sciences and engineering design appropriate to the student's field of study. The engineering sciences have their roots in mathematics and basic sciences but carry knowledge 28 2016‐2017 Criteria for Accrediting Engineering Programs – Proposed Changes further toward creative application. These studies provide a bridge between mathematics and basic sciences on the one hand and engineering practice on the other. Engineering design is the process of devising a system, component, or process to meet desired needs. It is a decision‐making process (often iterative), in which the basic sciences, mathematics, and the engineering sciences are applied to convert resources optimally to meet these stated needs.
  3. a general education component that complements the technical content of the curriculum and is consistent with the program and institution objectives.

Students must be prepared for engineering practice through a curriculum culminating in a major design experience based on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints.

One year is the lesser of 32 semester hours (or equivalent) or one‐fourth of the total credits required for graduation.

The curriculum requirements specify subject areas appropriate to engineering but do not prescribe specific courses.The curriculum must support attainment of the student outcomes and must include:

  1. one academic year of a combination of college‐level mathematics and basic sciences (some with experimentalexperience) appropriate to the program.
  2. one and one‐half academic years of engineering topics, consisting of engineering sciences and engineering designappropriate to the program and utilizing modern engineering tools.
  3. a broad education component that includes humanities and social sciences, complements the technical content ofthe curriculum, and is consistent with the program educational objectives.

Students must be prepared to enter the professional practice of engineering through a curriculum culminating in amajor design experience based on the knowledge and skills acquired in earlier course work and incorporatingappropriate engineering standards and multiple constraints.

Suggested Citation:"Appendix C 20162017 Criteria for Accrediting Engineering Programs Proposed Changes." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×
Page 29
Suggested Citation:"Appendix C 20162017 Criteria for Accrediting Engineering Programs Proposed Changes." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×
Page 30
Suggested Citation:"Appendix C 20162017 Criteria for Accrediting Engineering Programs Proposed Changes." National Academy of Engineering. 2016. Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary. Washington, DC: The National Academies Press. doi: 10.17226/23556.
×
Page 31
Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5): A Workshop Summary Get This Book
×
Buy Ebook | $9.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

On February 16, 2016, the National Academy of Engineering held a forum to discuss proposed changes to criteria used by ABET (formerly the Accreditation Board for Engineering and Technology) to accredit engineering programs in colleges and universities around the world. The Forum on Proposed Revisions to ABET Engineering Accreditation Commission General Criteria on Student Outcomes and Curriculum (Criteria 3 and 5) convened a variety of stakeholders in the education of engineers, including representatives of universities, industry, and professional organizations. The presenters and attendees discussed the proposed changes and related issues such as a perceived lack of communication surrounding the development of the proposed changes and the degree to which the criteria prepare engineering students for jobs after graduation. This report summarizes the presentations and discussions from this forum.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!