National Academies Press: OpenBook

NASA Space Technology Roadmaps and Priorities Revisited (2016)

Chapter: Appendix E: 2012 Findings and Recommendations on Observations and General Themes

« Previous: Appendix D: Committee Member Biographies
Suggested Citation:"Appendix E: 2012 Findings and Recommendations on Observations and General Themes." National Academies of Sciences, Engineering, and Medicine. 2016. NASA Space Technology Roadmaps and Priorities Revisited. Washington, DC: The National Academies Press. doi: 10.17226/23582.
×

E

2012 Findings and Recommendations on
Observations and General Themes

The 2012 National Research Council report on technology roadmaps included 11 findings and recommendations related to observations and general themes. The present study was not tasked with reviewing those findings and recommendations, which are repeated in this appendix, although some of the topics they address are mentioned in some of its recommendations.1

Recommendation. Systems Analysis. NASA’s Office of the Chief Technologist (OCT) should use disciplined systems analysis for the ongoing management and decision support of the space technology portfolio, particularly with regard to understanding technology alternatives, relationships, priorities, timing, availability, down-selection, maturation, investment needs, system engineering considerations, and cost-to-benefit ratios; to examine “what-if” scenarios; and to facilitate multidisciplinary assessment, coordination, and integration of the roadmaps as a whole. OCT should give early attention to improving systems analysis and modeling tools, if necessary to accomplish this recommendation.

Recommendation. Managing the Progression of Technologies to Higher Technology Readiness Levels (TRLs). OCT should establish a rigorous process to down-select among competing technologies at appropriate milestones and TRLs to ensure that only the most promising technologies proceed to the next TRL.

Recommendation. Foundational Technology Base. OCT should reestablish a discipline-oriented technology base program that pursues both evolutionary and revolutionary advances in technological capabilities and that draws upon the expertise of NASA centers and laboratories, other federal laboratories, industry, and academia.

Recommendation. Cooperative Development of New Technologies. OCT should pursue cooperative development of high-priority technologies with other federal agencies, foreign governments, industry, and academic institutions to leverage resources available for technology development.

___________________

1 National Research Council, 2012, NASA Space Technology Roadmaps and Priorities: Restoring NASA’s Technological Edge and Paving the Way for a New Era in Space, The National Academies Press, Washington, D.C., pp. 78-85.

Suggested Citation:"Appendix E: 2012 Findings and Recommendations on Observations and General Themes." National Academies of Sciences, Engineering, and Medicine. 2016. NASA Space Technology Roadmaps and Priorities Revisited. Washington, DC: The National Academies Press. doi: 10.17226/23582.
×

Recommendation. Flight Demonstrations and Technology Transition. OCT should collaborate with other NASA mission offices and outside partners in defining, advocating, and where necessary co-funding flight demonstrations of technologies. OCT should document this collaborative arrangement using a technology transition plan or similar agreement that specifies success criteria for flight demonstrations as well as budget commitments by all involved parties.

Finding. Facilities. Adequate research and testing facilities are essential to the timely development of many space technologies. In some cases, critical facilities do not exist or no longer exist, but defining facility requirements and then meeting those requirements fall outside the scope of NASA’s Office of the Chief Technologist (and this study).

Finding. Program Stability. Repeated, unexpected changes in the direction, content, and/or level of effort of technology development programs have diminished their productivity and effectiveness. In the absence of a sustained commitment to address this issue, the pursuit of OCT’s mission to advance key technologies at a steady pace will be threatened.

Recommendation. Industry Access to NASA Data. OCT should make the engineering, scientific, and technical data that NASA has acquired from past and present space missions and technology development more readily available to U.S. industry, including companies that do not have an ongoing working relationship with NASA and which are pursuing their own commercial goals apart from NASA’s science and exploration missions. To facilitate this process in the future, OCT should propose changes to NASA procedures so that programs are required to archive data in a readily accessible format.

Recommendation. NASA Investments in Commercial Space Technology. While OCT should focus primarily on developing advanced technologies of high value to NASA’s own mission needs, OCT should also collaborate with the U.S. commercial space industry in the development of precompetitive technologies of interest to and sought by the commercial space industry.

Finding. Crosscutting Technologies. Many technologies, such as those related to avionics and space weather beyond radiation effects, cut across many of the existing draft roadmaps, but the level 3 technologies in the draft roadmaps provide an uneven and incomplete list of the technologies needed to address these topics comprehensively.

Recommendation. Crosscutting Technologies. OCT should review and, as necessary, expand the sections of each roadmap that address crosscutting level 3 technologies, especially with regard to avionics and space weather beyond radiation effects. OCT should assure effective ownership responsibility for crosscutting technologies in each of the roadmaps where they appear and establish a comprehensive, systematic approach for synergistic, coordinated development of high-priority crosscutting technologies.

Suggested Citation:"Appendix E: 2012 Findings and Recommendations on Observations and General Themes." National Academies of Sciences, Engineering, and Medicine. 2016. NASA Space Technology Roadmaps and Priorities Revisited. Washington, DC: The National Academies Press. doi: 10.17226/23582.
×
Page 98
Suggested Citation:"Appendix E: 2012 Findings and Recommendations on Observations and General Themes." National Academies of Sciences, Engineering, and Medicine. 2016. NASA Space Technology Roadmaps and Priorities Revisited. Washington, DC: The National Academies Press. doi: 10.17226/23582.
×
Page 99
Next: Appendix F: Acronyms »
NASA Space Technology Roadmaps and Priorities Revisited Get This Book
×
Buy Paperback | $55.00 Buy Ebook | $44.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Historically, the United States has been a world leader in aerospace endeavors in both the government and commercial sectors. A key factor in aerospace leadership is continuous development of advanced technology, which is critical to U.S. ambitions in space, including a human mission to Mars. To continue to achieve progress, NASA is currently executing a series of aeronautics and space technology programs using a roadmapping process to identify technology needs and improve the management of its technology development portfolio.

NASA created a set of 14 draft technology roadmaps in 2010 to guide the development of space technologies. In 2015, NASA issued a revised set of roadmaps. A significant new aspect of the update has been the effort to assess the relevance of the technologies by listing the enabling and enhancing technologies for specific design reference missions (DRMs) from the Human Exploration and Operations Mission Directorate and the Science Mission Directorate. NASA Space Technology Roadmaps and Priorities Revisited prioritizes new technologies in the 2015 roadmaps and recommends a methodology for conducting independent reviews of future updates to NASA's space technology roadmaps, which are expected to occur every 4 years.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!