National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2016. Post-Extreme Event Damage Assessment and Response for Highway Bridges. Washington, DC: The National Academies Press. doi: 10.17226/24647.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2016. Post-Extreme Event Damage Assessment and Response for Highway Bridges. Washington, DC: The National Academies Press. doi: 10.17226/24647.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2016. Post-Extreme Event Damage Assessment and Response for Highway Bridges. Washington, DC: The National Academies Press. doi: 10.17226/24647.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2016. Post-Extreme Event Damage Assessment and Response for Highway Bridges. Washington, DC: The National Academies Press. doi: 10.17226/24647.
×
Page R4
Page v
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2016. Post-Extreme Event Damage Assessment and Response for Highway Bridges. Washington, DC: The National Academies Press. doi: 10.17226/24647.
×
Page R5
Page vi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2016. Post-Extreme Event Damage Assessment and Response for Highway Bridges. Washington, DC: The National Academies Press. doi: 10.17226/24647.
×
Page R6
Page vii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2016. Post-Extreme Event Damage Assessment and Response for Highway Bridges. Washington, DC: The National Academies Press. doi: 10.17226/24647.
×
Page R7

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

NAT IONAL COOPERAT IVE H IGHWAY RESEARCH PROGRAM NCHRP SYNTHESIS 497 2016 Research Sponsored by the American Association of State Highway and Transportation Officials in Cooperation with the Federal Highway Administration SubScriber categorieS Bridges and Other Structures • Highways • Security and Emergencies • Safety and Human Factors Post–Extreme Event Damage Assessment and Response for Highway Bridges A Synthesis of Highway Practice conSultant Alice Alipour Iowa State University Ames, Iowa

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM Systematic, well-designed research is the most effective way to solve many problems facing highway administrators and engineers. Often, highway problems are of local interest and can best be stud- ied by highway departments individually or in cooperation with their state universities and others. However, the accelerating growth of highway transportation results in increasingly complex problems of wide interest to highway authorities. These problems are best studied through a coordinated program of cooperative research. Recognizing this need, the leadership of the American Associa- tion of State Highway and Transportation Officials (AASHTO) in 1962 initiated an objective national highway research program using modern scientific techniques—the National Cooperative Highway Research Program (NCHRP). NCHRP is supported on a continuing basis by funds from participating member states of AASHTO and receives the full cooperation and support of the Federal Highway Administration, United States Department of Transportation. The Transportation Research Board (TRB) of the National Acad- emies of Sciences, Engineering, and Medicine was requested by AASHTO to administer the research program because of TRB’s recognized objectivity and understanding of modern research practices. TRB is uniquely suited for this purpose for many rea- sons: TRB maintains an extensive committee structure from which authorities on any highway transportation subject may be drawn; TRB possesses avenues of communications and cooperation with federal, state, and local governmental agencies, universities, and industry; TRB’s relationship to the Academies is an insurance of objectivity; and TRB maintains a full-time staff of specialists in highway transportation matters to bring the findings of research directly to those in a position to use them. The program is developed on the basis of research needs identi- fied by chief administrators and other staff of the highway and trans- portation departments and by committees of AASHTO. Topics of the highest merit are selected by the AASHTO Standing Committee on Research (SCOR), and each year SCOR’s recommendations are proposed to the AASHTO Board of Directors and the Academies. Research projects to address these topics are defined by NCHRP, and qualified research agencies are selected from submitted propos- als. Administration and surveillance of research contracts are the responsibilities of the Academies and TRB. The needs for highway research are many, and NCHRP can make significant contributions to solving highway transportation prob- lems of mutual concern to many responsible groups. The program, however, is intended to complement, rather than to substitute for or duplicate, other highway research programs. Published reports of the NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM are available from Transportation Research Board Business Office 500 Fifth Street, NW Washington, DC 20001 and can be ordered through the Internet by going to http://www.national-academies.org and then searching for TRB Printed in the United States of America NCHRP SYNTHESIS 497 Project 20-05, Topic 46-11 ISSN 0547-5570 ISBN 978-0-309-38978-5 Library of Congress Control No. 2016941224 © 2016 National Academy of Sciences. All rights reserved. COPYRIGHT INFORMATION Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein. Cooperative Research Programs (CRP) grants permission to reproduce material in this publication for classroom and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply TRB, AASHTO, FAA, FHWA, FMCSA, FRA, FTA, Office of the Assistant Secretary for Research and Technology, PHMSA, or TDC endorsement of a particular product, method, or practice. It is expected that those reproducing the material in this document for educational and not-for-profit uses will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from CRP. NOTICE The report was reviewed by the technical panel and accepted for publica- tion according to procedures established and overseen by the Transporta- tion Research Board and approved by the National Academies of Sciences, Engineering, and Medicine. The opinions and conclusions expressed or implied in this report are those of the researchers who performed the research and are not necessari- ly those of the Transportation Research Board; the National Academies of Sciences, Engineering, and Medicine; or the program sponsors. The Transportation Research Board; the National Academies of Sciences, Engineering, and Medicine; and the sponsors of the National Cooperative Highway Research Program do not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are con- sidered essential to the object of the report.

The National Academy of Sciences was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, non- governmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for outstanding contributions to research. Dr. Marcia McNutt is president. The National Academy of Engineering was established in 1964 under the charter of the National Academy of Sciences to bring the practices of engineering to advising the nation. Members are elected by their peers for extraordinary contributions to engineering. Dr. C. D. Mote, Jr., is president. The National Academy of Medicine (formerly the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. Dr. Victor J. Dzau is president. The three Academies work together as the National Academies of Sciences, Engineering, and Medicine to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine. Learn more about the National Academies of Sciences, Engineering, and Medicine at www.national-academies.org. The Transportation Research Board is one of seven major programs of the National Academies of Sciences, Engineering, and Medicine. The mission of the Transportation Research Board is to increase the benefits that transportation contributes to society by providing leadership in transportation innovation and progress through research and information exchange, conducted within a setting that is objective, interdisciplinary, and multimodal. The Board’s varied committees, task forces, and panels annually engage about 7,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation. Learn more about the Transportation Research Board at www.TRB.org.

TOPIC PANEL 46-11 BRIAN B. CLANG, Massachusetts Department of Transportation, Boston ARTHUR W. D’ANDREA, Louisiana Department of Transportation & Development, Baton Rouge BENJAMIN M. GOLDSBERRY, Florida Department of Transportation, Tallahassee RICHARD A. PRATT, Alaska Department of Transportation and Public Facilities, Juneau DOLORES M. VALLS, California Department of Transportation, Sacramento BOJIDAR YANEV, New York City Department of Transportation, New York FRANK JALINOOS, Federal Highway Administration (Liaison) W. PHILLIP YEN, International Association of Bridge Earthquake Engineering (Liaison) SYNTHESIS STUDIES STAFF STEPHEN R. GODWIN, Director for Studies and Special Programs JON M. WILLIAMS, Program Director, IDEA and Synthesis Studies JO ALLEN GAUSE, Senior Program Officer GAIL R. STABA, Senior Program Officer DONNA L. VLASAK, Senior Program Officer TANYA M. ZWAHLEN, Consultant DON TIPPMAN, Senior Editor CHERYL KEITH, Senior Program Assistant DEMISHA WILLIAMS, Senior Program Assistant DEBBIE IRVIN, Program Associate COOPERATIVE RESEARCH PROGRAMS STAFF CHRISTOPHER J. HEDGES, Director, Cooperative Research Programs EILEEN P. DELANEY, Director of Publications NCHRP COMMITTEE FOR PROJECT 20-05 CHAIR BRIAN A. BLANCHARD, Florida Department of Transportation MEMBERS STUART D. ANDERSON, Texas A&M University SOCORRO “COCO” BRISENO, California Department of Transportation DAVID M. JARED, Georgia Department of Transportation CYNTHIA L. JONES, Ohio Department of Transportation MALCOLM T. KERLEY, NXL, Richmond, Virginia JOHN M. MASON, JR., Auburn University ROGER C. OLSON, Bloomington, Minnesota BEN ORSBON, South Dakota Department of Transportation RANDY PARK, Utah Department of Transportation ROBERT L. SACK, New York State Department of Transportation FRANCINE SHAW WHITSON, Federal Highway Administration JOYCE N. TAYLOR, Maine Department of Transportation FHWA LIAISON JACK JERNIGAN TRB LIAISON STEPHEN F. MAHER

FOREWORD Highway administrators, engineers, and researchers often face problems for which infor- mation already exists, either in documented form or as undocumented experience and prac- tice. This information may be fragmented, scattered, and unevaluated. As a consequence, full knowledge of what has been learned about a problem may not be brought to bear on its solution. Costly research findings may go unused, valuable experience may be overlooked, and due consideration may not be given to recommended practices for solving or alleviating the problem. There is information on nearly every subject of concern to highway administrators and engineers. Much of it derives from research or from the work of practitioners faced with problems in their day-to-day work. To provide a systematic means for assembling and evalu- ating such useful information and to make it available to the entire highway community, the American Association of State Highway and Transportation Officials—through the mecha- nism of the National Cooperative Highway Research Program—authorized the Transpor- tation Research Board to undertake a continuing study. This study, NCHRP Project 20-5, “Synthesis of Information Related to Highway Problems,” searches out and synthesizes useful knowledge from all available sources and prepares concise, documented reports on specific topics. Reports from this endeavor constitute an NCHRP report series, Synthesis of Highway Practice. This synthesis series reports on current knowledge and practice, in a compact format, without the detailed directions usually found in handbooks or design manuals. Each report in the series provides a compendium of the best knowledge available on those measures found to be the most successful in resolving specific problems. This NCHRP synthesis reviews the procedures that state departments of transportation and two local authorities, New York City and Los Angeles County, use to assess the dam- age in bridges in response to extreme events and conduct the emergency response activities. Extreme events include those with geological sources (such as earthquakes and landslides), of hydro-meteorological sources (such as hurricanes and floods), or those of man-made origin, either accidental (such as truck crashes) or malicious (such as terrorist attacks). The study found that collision (mostly over-height vehicles) is the number one source of failures in bridges followed by those caused by hydraulic sources such as scour and flood and debris flow. Visual inspection is the first tool for assessing damage to bridges. Bridge engineers use other techniques for assessing damage, such as non-destructive testing and sonar surveys. Most states have emergency response plans for extreme events. Follow-up interviews, however, found that not all of the response plans are tailored for response to bridge damage. Alice Alipour, Iowa State University, Ames, Iowa, collected and synthesized the infor- mation and wrote the report. The members of the topic panel are acknowledged on the preceding page. This synthesis is an immediately useful document that records the practices that were acceptable within the limitations of the knowledge available at the time of its preparation. As progress in research and practice continues, new knowledge will be added to that now at hand. PREFACE By Jon M. Williams Program Director Transportation Research Board

CONTENTS 1 SUMMARY 3 CHAPTER ONE INTRODUCTION Definition of Extreme Events, 3 Transportation Infrastructure Resilience in the Face of Extreme Events, 4 Road Map of the Report, 6 7 CHAPTER TWO SURVEY OF STATE BRIDGE ENGINEERS Multiple Threats Affecting Transportation Infrastructure, 7 Damage Detection Techniques Used by States, 10 Availability of Emergency Response Plans, 10 13 CHAPTER THREE BRIDGE DAMAGE DETECTION TECHNIQUES: CURRENT PRACTICE AND FUTURE DIRECTIONS Current Practice, 13 Future Directions, 18 22 CHAPTER FOUR REVIEW OF AGENCY RESPONSES Alabama Department of Transportation, 22 Alaska Department of Transportation & Public Facilities, 22 California Department of Transportation, 24 Colorado Department of Transportation, 25 Connecticut Department of Transportation, 25 Delaware Department of Transportation, 25 Florida Department of Transportation, 26 Illinois Department of Transportation, 26 Indiana Department of Transportation, 27 Iowa Department of Transportation, 31 Kentucky Transportation Cabinet, 34 Louisiana Department of Transportation & Development, 34 Michigan Department of Transportation, 34 Minnesota Department of Transportation, 35 Mississippi Department of Transportation, 36 Missouri Department of Transportation, 37 Montana Department of Transportation, 40 New Hampshire Department of Transportation, 40 New York State Department of Transportation, 41 Ohio Department of Transportation, 44 Oregon Department of Transportation, 44 Tennessee Department of Transportation, 46 Washington State Department of Transportation, 46 Wyoming Department of Transportation, 47 New York City Department of Transportation, 48 Department of Transportation: Los Angeles County, 48 50 CHAPTER FIVE PROJECT FINDINGS

53 GLOSSARY OF KEY TERMS 55 REFERENCES 58 REFERENCES PROVIDED BY STATES 61 APPENDIX A1 STATE DOT BRIDGE ENGINEERS SURVEY QUESTIONNAIRE 74 APPENDIX A2 STATE DOT HYDRAULIC ENGINEERS SURVEY QUESTIONNAIRE 79 APPENDIX A3 STATE-BY-STATE EXAMPLES OF EXTREME EVENTS AND THEIR EMERGENCY RESPONSE 1. Impact, 79 2. Earthquake, 84 3. Flood, 86 4. Hurricane, 88 5. Fire, 89 91 APPENDIX A4 OVERVIEW OF SELECTED EMERGENCY RESPONSE PLANS (E-APPENDIX, WEB ONLY) Note: Photographs, figures, and tables in this report may have been converted from color to grayscale for printing. The electronic version of the report (posted on the web at www.trb.org) retains the color versions.

Next: Summary »
Post-Extreme Event Damage Assessment and Response for Highway Bridges Get This Book
×
 Post-Extreme Event Damage Assessment and Response for Highway Bridges
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 497: Post-Extreme Event Damage Assessment and Response for Highway Bridges reviews the procedures that state departments of transportation and two local authorities, New York City and Los Angeles County, use to assess the damage in bridges in response to extreme events and conduct emergency response activities. Extreme events include those with geological sources (such as earthquakes and landslides), from hydro-meteorological sources (such as hurricanes and floods), or those of man-made origin, either accidental (such as truck crashes) or malicious (such as terrorist attacks).

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!