National Academies Press: OpenBook
« Previous: 7 Long-Term Research Needs
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

References

Ackerman, F., Stanton, E.A., and Bueno, R. (2010). Fat tails, exponents, extreme uncertainty: Simulating catastrophe in DICE. Ecological Economics, 69(8), 1657-1665.

Ackerman, F., Stanton, E.A., and Bueno, R. (2013). Epstein–Zin utility in DICE: Is risk aversion irrelevant to climate policy? Environmental and Resource Economics, 56, 73.

Agnew, M., Schrattenholzer, L., and Voss, A. (1978). User’s Guide for the MESSAGE Computer Program. RM-78-026. Laxenburg, Austria: International Institute for Applied Systems Analysis.

Alley, R.B., Marotzke, J., Nordhaus, W.D., Overpeck, J.T., Peteet, D.M., Pielke, R.A., Pierrehumbert, R.T., Rhines, P.B., Stocker, T.F., Talley, L.D., and Wallace, J.M. (2003). Abrupt climate change. Science, 299(5615), 2005-2010.

Altizer, S., Ostfeld, R.S., Johnson, P.T., Kutz, S., and Harvell, C.D. (2013). Climate change and infectious diseases: From evidence to a predictive framework. Science, 341(6145), 514-519.

Andrews, T., Gregory, J.M., Webb, M.J., and Taylor, K.E. (2012). Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophysical Research Letters, 39(9), 1-7.

Anthoff, D., and Tol, R.S.J. (2014). FUND—Climate Framework for Uncertainty, Negotiation and Distribution. Version 3.8. Available: http://www.fund-model.org/versions [October 2016].

Anthoff, D., Nicholls, R.J., Tol, R.S.J., and Vafeidis, A.T. (2006). Global and Regional Exposure to Large Rises in Sea-Level: A Sensitivity Analysis. Working Paper 96. Norwich, U.K.: Tyndall Centre for Climate Change Research.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Arent, D.J., Tol, R.S.J., Faust, E., Hella, J.P., Kumar, S., Strzepek, K.M., Tóth, F.L., and Yan, D. (2014). Key economic sectors and services—supplementary material. In C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available: http://www.ipcc.ch/report/ar5/wg2 and www.ipcc.ch [January 2017].

Armour, K.C., Bitz, C.M., and Roe, G.H. (2012). Time-varying climate sensitivity from regional feedbacks. Journal of Climate, 26(13), 4518-4534.

Arora, V.K., Boer, G.J., Friedlingstein, P., Eby, M., Jones, C.D., Christian, J.R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J.F., and Wu, T. (2013). Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. Journal of Climate, 26(15), 5289-5314.

Arrow, K.J., Cline, W.R., Maler, K.G., Munasinghe, M., Squitieri, R., and Stiglitz, J.E. (1996). Chapter 4: Intertemporal Equity, Discounting, and Economic Efficiency. In Climate Change 1995: Economic and Social Dimensions of Climate Change Contribution of Working Group III to the Second Assessment Report of the Intergovernmental Panel on Climate Change (pp. 125-144). Available: https://www.ipcc.ch/ipccreports/sar/wg_III/ipcc_sar_wg_III_full_report.pdf [January 2017].

Arrow, K.J., Cropper, M.L., Gollier, C., Groom, B., Heal, G.M, Newell, R.G., Nordhaus, W.D., Pindyck, R.S., Pizer, W.A., Portney, P.R., Sterner, T., Tol, R.S.J, and Weitzman, M.L. (2013). Determining benefits and costs for future generations. Science, 341(6144), 349-350.

Arrow, K.J., Cropper, M.L., Gollier, C., Groom, B., Heal, G.M., Newell, R.G., Nordhaus, W.D., Pindyck, R.S., Pizer, W.A., Portney, P.R., Sterner, T., Tol, R.S.J., and Weitzman, M.L. (2014). Should governments use a declining discount rate in project analysis? Review of Environmental Economics and Policy, 8(2), 145-163.

Atkinson, G., Dietz, S., Helgeson, J., Hepburn, C., and Sælend, H. (2009). Siblings, not triplets: Social preferences for risk, inequality and time in discounting climate change. Economics, 3(26), 1-28.

Auffhammer, M., and Aroonruengsawat, A. (2012). Hotspots of Climate-Driven Increases in Energy Demand: A Simulation Exercise Based on Household Level Billing Data for California. Available: http://www.energy.ca.gov/2012publications/CEC-500-2012-021/CEC-5002012-021.pdf [October 2016].

Auffhammer, M., Ramanathan, V., and Vincent J. (2012). Observation-based evidence that climate change has reduced Indian rice harvests. (2012). Climatic Change, 111(2), 411-424.

Auffhammer, M., and Mansur, E.T. (2014). Measuring climatic impacts on energy consumption: A review of the empirical literature. Energy Economics, 46, 522-530.

Ayres, R., and Walter, J. (1991). The greenhouse effect: Damages, costs and abatement. Environmental & Resource Economics 1(3), 237-270.

Azar, C., and Lindgren, K. (2003). Catastrophic events and stochastic cost-benefit analysis of climate change. Climatic Change, 56(3), 245-255.

Baldos, U.L.C., and Hertel, T.W. (2014). Global food security in 2050: The role of agricultural productivity and climate change. Australian Journal of Agricultural and Resource Economics, 58(4), 554-570.

Barreca, A., Clay, K., Deschenes, O., Greenstone, M., and Shapiro, J.S. (2013). Adapting to Climate Change: The Remarkable Decline in the U.S. Temperature-Mortality Relationship over the 20th Century. Working Paper No. 18692. Cambridge, MA: National Bureau of Economic Research.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Barreca, A.I., Clay, K., Deschenes, O., Greenstone, M., and Shapiro, J.S. (2015). Adapting to Climate Change: The Remarkable Decline in the U.S. Temperature-Mortality Relationship over the 20th Century. IZA discussion papers, No. 8915. Available: http://www.nber.org/papers/w18692 [April 2017].

Barro, R.J., and Ursúa, J.F. (2008a). Consumption disasters in the twentieth century. The American Economic Review, 98(2), 58-63.

Barro, R.J., and Ursúa, J.F. (2008b). Macroeconomic crises since 1870. Brookings Papers on Economic Activity, 39(1), 255-350.

Barton, A., Hales, B., Waldbusser, G.G., Langdon, C., and Feely, R.A. (2012). The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnology and Oceanography, 57(3), 698-710.

Basten, S., Lutz, W., and Sherbov, S. (2013). Very long range global population scenarios to 2300 and the implications of sustained low fertility. Demographic Research, 28(39), 1145-1166.

Bates, N.R. (2007). Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. Journal of Geophysical Research, 112(C9), 1-26.

Bijlsma, L., Ehler, C.N., Klein, R.J.T., Kulshrestha, S.M., McLean, R.F., Mimura, N., Nicholls, R.J., Nurse, L.A., Perez Nieto, H., Stakhiv, E.Z., Turner, R.K., and Warrick, R.A. (1996). Coastal zones and small islands. In R.T. Watson, M.C. Zinyowera, and R.H. Moss (Eds.), Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses—Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change (1st Edition) (pp. 289-324). Cambridge, U.K.: Cambridge University Press,

Blanford, G., Merrick, J., Richels, R., and Steven, R. (2014). Trade-offs between mitigation costs and temperature change. Climatic Change, 123(3-4), 527-541.

Bloch-Johnson, J., Pierrehumbert, R.T., and Abbot, D.S. (2015). Feedback temperature dependence determines the risk of high warming. Geophysical Research Letters, 42(12), 4973-4980.

Bopp, L., Resplandy, L., Orr, J.C., Doney, S.C., Dunne, J.P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M. (2013). Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models, Biogeosciences, 10, 6225-6245.

Bosello, F., Roson, R., and Tol, R.S.J. (2007). Economy-wide estimates of the implications of climate change: Sea level rise. Environmental and Resource Economics, 37(3), 549-571.

Bosello, F., Nicholls, R.J., Richards, J., Roson, R., and Tol, R.S.J. (2012). Economic impacts of climate change in Europe: Sea-level rise. Climatic Change, 112(1), 63-81.

Bosetti, V., Carraro, C., Galeotti, M., Massetti, E., and Tavoni, M. (2006). WITCH: A World Induced Technical Change Hybrid Model. The Energy Journal, 27(SI2), 13-37.

Bosetti, V., Marangoni, G., Borgonovo, E., Diaz Anadon, L., Barron, R., McJeon, H., Politis, S., and Friley, P. (2015). Sensitivity to energy technology costs: A multi-model comparison analysis. Energy Policy, 80, 244-263.

Bradford, D.F. (1975). Constraints on government investment opportunities and the choice of discount rate, The American Economic Review, 65(5), 887-899. Available: http://www.jstor.org/stable/1806627?seq=1#page_scan_tab_contents [January 2017]

Brander, L.M., Florax, R.J.G.M., and Vermaat, J.E. (2006). The empirics of wetland valuation: A comprehensive summary and a meta-analysis of the literature. Environmental and Resource Economics, 33(2), 223-250.

Burke, M., Hsiang, S., Miguel, E. (2015). Global non-linear effect of temperature on economic production, Nature, 527, 235-239.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Butler, E.E., and Huybers, P. (2013). Adaptation of U.S. maize to temperature variations. Nature Climate Change, 3(1), 68-72.

Caballero, R., and Huber, M. (2013). State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proceedings of the National Academy of Sciences of the United States of America, 110(35), 14162-14167.

Cai, Y., Lenton, T.M., and Lontzek, T.S. (2016). Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction. Nature Climate Change, 6(5), 520-525.

Caldeira, K., and Myhrvold, N.P. (2013). Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration. Environmental Research Letters, 8(3), 034039.

Caldwell, P., and Bretherton, C.S. (2009). Response of a subtropical stratocumulus-capped mixed layer to climate and aerosol changes. Journal of Climate, 22, 20-38.

Calvin, K., Wise, M., Clarke, L., Edmonds, J., Kyle, G., Luckow, P., and Thomson, A. (2013). Implications of simultaneously mitigating and adapting to climate change: Initial experiments using GCAM. Climatic Change, 117(3), 545-560.

Caminade, C., Kovats, S., Rocklov, J., Tompkins, A.M., Morse, A.P., Colón-González, F.J., Stenlund, H., Martens, P., and Lloyd, S.J. (2014). Impact of climate change on global malaria distribution. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3286-3291.

Carleton, T.A., and Hsiang, S.M. (2016). Social and economic impacts of climate. Science, 353(6304).

Carlos, C.M.J., Luc, F., Antonio, S.R., Carlo, L., Miles, P., Frank, R., Francoise, N., Hande, D., Máté, R., Alessandro, D., Marcello, D., Kumar, S.A., Davide, F., Stefan, N., Shailesh, S., Pavel, C., Mihaly, H., Benjamin, V.D., Salvador, B., Nicolás, I.R.J., Giovanni, F., Felipe, R.M.R., Alessandra, B., Paul, D., Andrea, C., Giorgio, L., Jesus, S.-M.-A., Daniele, D.R., Giovanni, C., Ignacio, B.C.J., Daniele, P., Jonathan, P., Bert, S., Tamas, R., Claudia, B., Ine, V., Filipe, B.E.S., and Dolores, I.R. (2014). Climate Impacts in Europe. The JRC PESETA II Project. Report EUR 26586EN. Luxembourg: European Union. Available: http://publications.jrc.ec.europa.eu/repository/handle/JRC87011 [September 2016].

Castruccio, S., McInerney, D.J., Stein, M.L., Crouch, F.L., Jacob, R.L., and Moyer, E.J. (2014). Statistical emulation of climate model projections based on precomputed GCM runs. Journal of Climate, 27(5), 1829-1844.

Chen, Y.-H.H., Paltsev, S., Reilly, J.M., Morris, J.F., and Babiker, M.H. (2015). The MIT EPPA6 Model: Economic Growth, Energy Use, and Food Consumption. Report 278. Cambridge, MA: MIT Joint Program on the Science and Policy of Global Change.

Chen, Y.-H.H., Paltsev, S., Reilly, J., Morris, J.F., and Babiker, M.H. (2016). Long-term economic modeling for climate change assessment. Economic Modeling, 52(Part B), 867-883.

Church, J.A., Clark, P.U., Cazenave, A., Gregory, J.M., Jevrejeva, S., Levermann, A., Merrifeld, M.A., Milne, G.A., Nerem, R.S., Nunn, P.D., Payne, A.J., Pfeffer, W.T., Stammer, D., and Unnikrishnan, A.S. (2013). Sea level change. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Ch. 13) (pp. 1137-1216). Cambridge, U.K. and New York: Cambridge University Press.

Chuwah, C., van Noije, T., van Vuuren, D.P., Hazeleger, W., Strunk, A., Deetman, S., Beltran, A.M., and van Vliet, J. (2013). Implications of alternative assumptions regarding future air pollution control in scenarios similar to the Representative Concentration Pathways. Atmospheric Environment, 79, 787-801.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., and Thornton, P. (2013). Carbon and other biogeochemical cycles. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Ch. 6) (pp. 465-570). Cambridge, U.K. and New York: Cambridge University Press.

Ciscar, J.-C., Iglesias, A., Feyen, L., Szabo, L., Van Regemorter, D., Amelung, B., Nicholls, R., Watkiss, P., Christensen, O., Dankers, R., Garrote, L., Goodess, C., Hunt, A., Moreno, A., Richards, J., and Soria, A. (2011). Physical and economic consequences of climate change in Europe. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2678-2683.

Ciscar, J.-C., Feyen, L., Soria, A., Lavalle, C., Raes, F., Perry, M., Nemry, F., Demirel, H., Rozsai, M., Dosio, A., Donatelli, M., Srivastava, A., Fumagalli, D., Niemeyer, S., Shrestha, S., Ciaian, P., Himics, M., van Doorslaer, B., Barrios, S., Ibáñez, N., Forzieri, G., Rojas, R., Bianchi, A., Dowling, P., Camia, A., Libertà, G., San Miguel, J., de Rigo, D., Caudullo, G., Barredo, J.I., Paci, D., Pycroft, J., Saveyn, B., van Regemorter, D., Revesz, T., Vandyck, T., Vrontisi, Z., Baranzelli, C., Vandecasteele, I., Batista e Silva, F., and Ibarreta, D. (2014). Climate Impacts in Europe: The JRC PESETA II Project. Luxembourg: European Union.

Clarke, L., Edmonds, J., Krey, V., Richels, R., Rose, S., and Tavoni, M. (2009). International policy architectures: Overview of the EMF-22 International Scenarios. Energy Economics, 31(Suppl. 2), S64-S81.

Clemen, R.T., and Winkler, R.L. (1985). Limits for the precision and value of information from dependent sources. Operations Research, 33(2), 427-442.

Collier, P., Elliott V.L., Hegre H., Hoeffler A., Reynal-Querol M., and Sambanis, N. (2003). Breaking the Conflict Trap: Civil War and Development Policy. Washington, DC: The World Bank.

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J., and Wehner, M. (2013). Long-term climate change: Projections, commitments and irreversibility. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Ch. 12) (pp. 1029-1136). Cambridge, U.K. and New York: Cambridge University Press.

Cooley, S.R., and Doney, S.C. (2009). Anticipating ocean acidification’s economic consequences for commercial fisheries. Environmental Research Letters, 4(2), 1-8.

Cooley, S.R., Rheuban, J.E., Hart, D.R., Luu, V., Glover, D.M., Hare, J.A., and Doney, S.C. (2015). An integrated assessment model for helping the United States sea scallop (Placopecten magellanicus) fishery plan ahead for ocean acidification and warming. PLoS One, 10(5), 1-27.

Cropper, M.L., Freeman, M.C., Groom, B., and Pizer, W.A. (2014). Declining discount rates. The American Economic Review, 104(5), 538-543.

Crucifix, M. (2006). Does the last glacial maximum constrain climate sensitivity? Geophysical Research Letters, 33(18), 1-5.

Daioglou, V., Wicke, B., Faaijand, A.P.C., and van Vuuren, D.P. (2014). Competing uses of biomass for energy and chemicals: Implications for long-term global CO2 mitigation potential. GCB Bioenergy, 7(6), 1321-1334.

Darwin, R., Tsigas, M., Lewandrowski, J., and Raneses, A. (1995). World Agriculture and Climate Change. AER-703. Available: https://www.ers.usda.gov/webdocs/publications/aer703/32471_aer703_002.pdf?v=41304 [January 2017].

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Davie, J.C.S., Falloon, P.D., Kahana, R., Dankers, R., Betts, R., Portmann, F.T., Wisser, D., Clark, D.B., Ito, A., Masaki, Y., Nishina, K., Fekete, B., Tessler, Z., Wada, Y., Liu, X., Tang, Q., Hagemann, S., Stacke, T., Pavlick, R., Schaphoff, S., Gosling, S.N., Franssen, W., and Arnell, N. (2013). Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP. Earth System Dynamics, 4(2), 359-374.

DeConto, R.M., and Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise. Nature 531, 591-597.

Dell, M., Jones, B.F., and Olken, B.A. (2012). Temperature shocks and economic growth: Evidence from the last half century. American Economic Journal: Macroeconomics, 4(3), 66-95.

Dell, M., Jones, B.F., and Olken, B.A. (2014). What do we learn from the weather? The new climate-economy literature. Journal of Economic Literature, 52(3), 740-798.

Deschenes, O. (2014). Temperature, human health, and adaptation: A review of the empirical literature. Energy Economics, 46, 606-619.

Diaz, D.B. (2016). Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM). Climatic Change, 137(1), 143-156.

Dickson, A.G. (1981). An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep Sea Research Part A Oceanographic Research Papers, 28(6), 609-623.

Diffenbaugh, N.S., Hertel, T.W., Scherer, M., and Verma, M. (2012). Response of corn markets to climate volatility under alternative energy futures. Nature Climate Change, 2, 514-518.

Doney, S., Balch, W., Fabry, V., and Feely, R. (2009). Ocean acidification: A critical emerging problem for the ocean sciences. Oceanography, 22(4), 16-25.

Dore, J.E., Lukas, R., Sadler, D.W., Church, M.J., and Karl, D.M. (2009). Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12235-12240.

Downing, T.E., Greener, R.A., and Eyre, N. (1995). The Economic Impacts of Climate Change: Assessment of Fossil Fuel Cycles for the ExternE Project. Oxford and Lonsdale, U.K.: Environmental Change Unit and Eyre Energy Environment.

Downing, T.E., Eyre, N., Greener, R., and Blackwell, D. (1996). Full Fuel Cycle Study: Evaluation of the Global Warming Externality for Fossil Fuel Cycles with and without CO2 Abatement and for Two Reference Scenarios, Environmental Change Unit. Oxford, U.K.: University of Oxford.

Drijfhout, S. (2015). Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance. Scientific Reports, 5, 14877.

Edmonds, J., and Reilly, J. (1983). Global energy and CO2 to the year 2050. The Energy Journal, 4(3), 21-47.

Epstein, L.G., and Zin, S.E. (1989). Substitution, risk aversion, and the temporal behavior of consumption and asset returns: A theoretical framework. Econometrica, 57, 937-969.

Epstein, L.G., and Zin, S.E. (1991). Substitution, risk aversion, and the temporal behavior of consumption and asset returns: An empirical analysis. Journal of Political Economy, 99, 263-286.

Fabry, V.J., Seibel, B.A., Feely, R.A., and Orr, J.C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science, 65(3), 414-432.

Fankhauser, S. (1994). The social costs of greenhouse gas emissions: An expected value approach. The Energy Journal, 15(2), 157-184.

Fischer, G., Frohberg, K., Parry, M.L., and Rosenzweig, C. (1996). Impacts of potential climate change on global and regional food production and vulnerability. In T.E. Downing (Ed.), Climate Change and World Food Security (pp. 115-159). Berlin, Germany: Springer-Verlag.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Glecker, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M. (2013). Evaluation of climate models. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Ch. 9) (pp. 741-866). Cambridge, U.K. and New York: Cambridge University Press.

Fowler, H.J., Blenkinsop, S., and Tebaldi, C. (2007). Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27, 1547-1578.

Frame, D.J., Booth, B.B.B., Kettleborough, J.A., Stainforth, D.A., Gregory, J.M., Collins, M., and Allen, M.R. (2005). Constraining climate forecasts: The role of prior assumptions. Geophysical Research Letters, 32(9), 1-5.

Frame, D.J., Stone, D.A., Stott, P.A., and Allen, M.R. (2006). Alternatives to stabilization scenarios. Geophysical Research Letters, 33(14), 1-4.

Frieler, K., Meinshausen, M., Mengel, M., Braun, N., and Hare, W. (2012). A scaling approach to probabilistic assessment of regional climate change. Journal of Climate, 25, 3117-3144.

Gattuso, J.-P., Magnan, A., Billé, R., Cheung, W.W.L., Howes, E.L., Joos, F., Allemand, D., Bopp, L., Cooley, S.R., Eakin, C.M., Hoegh-Guldberg, O., Kelly, R.P., Pörtner, H.-O., Rogers, A.D., Baxter, J.M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U.R., Treyer, S., and Turley, C. (2015). Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349(6243):aac4722.

Geoffroy, O., Saint-Martin, D., Bellon, G., Voldoire, A., Olivié, D.J.L., and Tytéca, S. (2013). Transient climate response in a two-layer energy-balance model. Part II: Representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs. Journal of Climate, 26(6), 1859-1876.

Gerland, P., Raftery, A.E., Šev íková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L, Fosdick, B.K., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G.K., and Wilmoth, J. (2014). World population stabilization unlikely this century. Science, 346(6206), 234-237.

Giglio, S., Maggiori, M., and Stroebel, J. (2015). Very long-run discount rates. Quarterly Journal of Economics, 130(1), 1-53.

Gillett, N.P., Arora, V.K., Matthews, D., and Allen, M.R. (2013). Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. Journal of Climate, 26, 6844-6858.

Gillingham, K., Nordhaus, W., Anthoff, D., Blanford, G., Bosetti, V., Christensen, P., McJeon, H., Reilly, J., and Sztorc, P. (2015). Modeling Uncertainty in Climate Change: A Multi-Model Comparison. Cowles Foundation Discussion Paper No. 2022. Available: http://cowles.yale.edu/sites/default/files/files/pub/d20/d2022.pdf [October 2016].

Gollier, C. (2002). Time horizon and the discount rate. Journal of Economic Theory, 107(2), 463-473.

Gollier, C. (2008). Discounting with fat-tailed economic growth. Journal of Risk and Uncertainty, 37(2), 171-186.

Gollier, C. (2012). Pricing the Planet’s Future: The Economics of Discounting in an Uncertain World. Princeton, NJ: Princeton University Press.

Gollier, C. (2014). Discounting and growth. American Economic Review, 104(5):534-537.

Gollier, C., and Hammitt, J. (2014). The long-run discount rate controversy. Annual Review of Resource Economics, 6, 273-295.

Graff Zivin, J., and Neidell, M. (2014). Temperature and the allocation of time: Implications for climate change. Journal of Labor Economics, 32(1), 1-26.

Gregory, J. M. (2000). Vertical heat transports in the ocean and their effect on time-dependent climate change. Climate Dynamics, 16(7), 501-515.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Gregory, J.M., and Forster, P.M. (2008). Transient climate response estimated from radiative forcing and observed temperature change. Journal of Geophysical Research: Atmospheres, 113(D23).

Gregory, J.M., Jones, C.D., Cadule, P., and Friedlingstein, P. (2009). Quantifying carbon cycle feedbacks. Journal of Climate, 22(19), 5232-5250.

Grinsted, A., Moore, J.C., and Jevrejeva, S. (2009). Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Climate Dynamics, 34(4), 461-472.

Grogan, D.S., Zhang, F., Prusevich, A., Lammers, R.B., Wisser, D., Glidden, S., Li, C., and Frolking, S. (2015). Quantifying the link between crop production and mined groundwater irrigation in China. Science of the Total Environment, 511, 161-175.

Hakuba, M.Z., Folini, D., Wild, M., and Schär, C. (2012). Impact of Greenland’s topographic height on precipitation and snow accumulation in idealized simulations. Journal of Geophysical Research: Atmospheres, 117(D9), 7436.

Hall, R.E. (1988). Intertemporal substitution in consumption. Journal of Political Economy, 96(2), 339-357.

Hanasaki, N., Fujimori, S., Yamamoto, T., Yoshikawa, S., Masaki, Y., Hijioka, Y., Kainuma, M., Kanamori, Y., Masui, T., Takahashi, K., and Kanae, S. (2013). A global water scarcity assessment under shared socio-economic pathways—Part 2: Water availability and scarcity. Hydrological Earth System Science, 17, 2393-2413.

Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., and Russell, G. (1981). Climate impact of increasing atmospheric carbon dioxide. Science, 213(4511), 957-966.

Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R., and Lerner, J. (1984). Climate sensitivity: Analysis of feedback mechanisms. Geophysical Monograph, 29(5), 130-163.

Haraden, J. (1992). An improved shadow price for CO2. Energy, 17(5), 419-426.

Harrison, P.A., Dunford, R.W., Holman, I.P., and Rounsevell, M.D.A. (2016). Climate change impact modelling needs to include cross-sectoral interactions. Nature Climate Change, 6, 885-890.

Harvey, C.R. (1988). The real term structure and consumption growth. Journal of Financial Economics, 22(2), 305-333.

Hauri, C., Gruber, N., Vogt, M., Doney, S.C., Feely, R.A., Lachkar, Z., Leinweber, A., McDonnell, A.M.P., Munnich, M., and Plattner, G.-K. (2013). Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences, 10, 193-216.

Heal, G., and Millner, A. (2014). Uncertainty and decision making in climate change economics. Review of Environmental Economics and Policy, 8(1), 120-137.

Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., Wise, M., Patel, P., Eom, J., and Calvin, K. (2014). Integrated assessment of water scarcity over the 21st century under multiple climate change mitigation policies. Hydrology and Earth System Sciences, 18, 2859-2883.

Held, I.M., Winton, M., Takahashi, K., Delworth, T., Zeng, F.R., and Vallis, G.K. (2010). Probing the fast and slow components of global warming by returning abruptly to preindustrial forcing. Journal of Climate, 23, 2418-2427.

Herrington, T., and Zickfeld, K. (2014). Path independence of climate and carbon cycle response over a broad range of cumulative carbon emissions. Earth System Dynamics, 5, 409-422.

Hirota, M., Holmgren, M., Van Nes, E.H., and Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. Science, 334(6053), 232-235.

Hitz, S., Smith, J., (2004). Estimating global impacts from climate change. Global Environmental Change, 14(2004) 201-218.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Hodgson, D., and Miller, K. (1995). Modelling U.K. energy demand. In T. Barker, P. Ekins, and N. Johnstone (Eds.), Global Warming and Energy Demand (pp. 172-187). London, U.K.: Routledge.

Hoozemans, F.M.J., Marchand, M., and Pennekamp, H.A. (1993). A Global Vulnerability Analysis: Vulnerability Assessment for Population, Coastal Wetlands and Rice Production and a Global Scale (2nd Edition). Delft, The Netherlands: Delft Hydraulics.

Houser, T., Hsiang, S., Kopp, R., Larsen, K., Delgado, M., Jina, A., Mastrandrea, M., Mohan, S., Muir-Wood, R., Rasmussen, D.J., and Wilson, P. (2015). Economic Risks of Climate Change: An American Prospectus. New York: Columbia University Press.

Howard, P.H. (2014). Omitted Damages: What’s Missing from the Social Cost of Carbon. Available: http://ww.policyintegrity.org/files/publications/Omitted_Damages_Whats_Missing_From_the_Social_Cost_of_Carbon.pdf [January 2017].

Howard, P.H., and Schwartz, J. (2016). Think Global: International Reciprocity as Justification for a Global Social Cost of Carbon. Available: https://ssrn.com/abstract=2822513 [February 2017].

Howard, P.H., and Sylvan, D. (2016). The Wisdom of the Economic Crowd: Calibrating Integrated Assessment Models Using Consensus. Available: http://ageconsearch.umn.edu/bitstream/235639/2/HowardSylvan_AAEA2016.pdf [October 2016].

Hsiang, S.M., and Narita, D. (2012). Adaptation to cyclone risk: Evidence from the global cross-section. Climate Change Economics, 3(2), 1-28.

Hsiang, S.M., M. Burke, and E. Miguel (2013), Quantifying the influence of climate on human conflict. Science, 341(6151), 1235367.

Hsiang, S.M., and Jina, A.J. (2014). The Causal Effect of Environmental Catastrophe on Long-Run Economic Growth: Evidence from 6,700 Cyclones. Technical report, National Bureau of Economic Research. Available: http://www.nber.org/papers/w20352 [April 2017].

Huybers, P. (2010). Compensation between model feedbacks and curtailment of climate sensitivity. Journal of Climate, 23, 3009-3018.

Intergovernmental Panel on Climate Change. (2007a). Climate Change 2007: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, and C.E. Hanson (Eds.). Cambridge, U.K. and New York: Cambridge University Press.

Intergovernmental Panel on Climate Change. (2007b). Climate Change 2007: Mitigation of Climate Change. Working Group III Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, and L.A. Meyer (Eds.). Cambridge, U.K. and New York: Cambridge University Press.

Intergovernmental Panel on Climate Change. (2013). Climate Change 2013: The Physical Science Basis. Summary for Policymakers. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Eds.). Cambridge, U.K. and New York: Cambridge University Press. Available: https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WGIAR5_SPM_brochure_en.pdf [October 2016].

Intergovernmental Panel on Climate Change. (2014a). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. C.B. Field, V.R. Barros, and L.L. White (Eds.). Cambridge, U.K. and New York: Cambridge University Press.

Intergovernmental Panel on Climate Change. (2014b). Climate Change 2014: Mitigation of Climate Change. Working Group II: Impacts, Adaptation and Vulnerability. Cambridge, U.K. and New York: Cambridge University Press.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Intergovernmental Panel on Climate Change. (2014c). Climate Change 2014: Mitigation of Climate Change. Working Group III: Mitigation of Climate Change. Cambridge, U.K. and New York: Cambridge University Press.

Interagency Working Group on the Social Cost of Carbon. (2010). Technical Support Document: Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866 (February 2010). Available: https://obamawhitehouse.archives.gov/sites/default/files/omb/inforeg/for-agencies/Social-Cost-of-Carbon-for-RIA.pdf [January 2017].

Interagency Working Group on the Social Cost of Carbon. (2013a). Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866 (May 2013). Available: https://obamawhitehouse.archives.gov/sites/default/files/omb/inforeg/social_cost_of_carbon_for_ria_2013_update.pdf [January 2017].

Interagency Working Group on the Social Cost of Carbon. (2013b). Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866 (November 2013 Revision). Available: https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/inforeg/technical-update-social-cost-ofcarbon-for-regulator-impact-analysis.pdf [January 2017].

Interagency Working Group on the Social Cost of Carbon. (2015a). Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866 (July 2015 Revision). Available: https://obamawhitehouse.archives.gov/sites/default/files/omb/inforeg/scc-tsd-final-july-2015.pdf [January 2017].

Interagency Working Group on the Social Cost of Carbon. (2015b). Response to Comments: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866 (July 2015). Available: https://obamawhitehouse.archives.gov/sites/default/files/omb/inforeg/scc-response-to-comments-final-july-2015.pdf [January 27, 2017].

Interagency Working Group on the Social Cost of Greenhouse Gases. (2016a). Addendum to Technical Support Document on Social Cost of Carbon for Regulatory Impact Analysis under Executive Order 12866: Application of the Methodology to Estimate the Social Cost of Methane and the Social Cost of Nitrous Oxide. Available: https://obamawhitehouse.archives.gov/sites/default/files/omb/inforeg/august_2016_sc_ch4_sc_n2o_addendum_final_8_26_16.pdf [January 2017].

Interagency Working Group on the Social Cost of Greenhouse Gases. (2016b). Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis Under Executive Order 12866 (September 2016 Revision). Washington, DC: Interagency Working Group on the Social Cost of Carbon. Available: https://obamawhitehouse.archives.gov/sites/default/files/omb/inforeg/august_2016_sc_ch4_sc_n2o_addendum_final_8_26_16.pdf [January 2017].

Isaac, M., and van Vuuren, D.P. (2009). Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy, 37(2), 507-521.

Jevrejeva, S., Grinsted, A., and Moore, J.C. (2014). Upper limit for sea level projections by 2100. Environmental Research Letters, 9(10), 104008.

Joint Global Change Research Institute. (2015). Climate Change Assessment Model (v. 4.2). Richland, WA: Pacific Northwest National Laboratory.

Jones, C., Robertson, E., Arora, V., and others (2013). 21st Century compatible CO2 emissions and airborne fraction simulated by CMIP5 Earth System models under four representative concentration pathways. Journal of Climate, 26, 4398-4413.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Joos, F., Roth, R., Fuglestvedt, J.S., Peters, G.P., Enting, I.G., Bloh, W. von, Brovkin, V., Burke, E.J., Eby, M., Edwards, N.R., Friedrich, T., Frölicher, T.L., Halloran, P.R., Holden, P.B., Jones, C., Kleinen, T., Mackenzie, F.T., Matsumoto, K., Meinshausen, M., Plattner, G.K., Reisinger, A., Segschneider, J., Shaffer, G., Steinacher, M., Strassmann, K., Tanaka, K., Timmermann, A., and Weaver, A.J. (2013). Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmospheric Chemistry and Physics, 13, 2793-2825.

Kane, S., Reilly, J.M., and Tobey, J. (1992). An empirical study of the economic effects of climate change on world agriculture. Climatic Change, 21(1), 17-35.

Kay, J.E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J.M., Bates, S.C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M. (2014). The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bulletin of the American Meteorological Society, 96, 1333-1349.

Keller, K., Bolker, B.M., and Bradford, D.F. (2004). Uncertain climate thresholds and optimal economic growth. Journal of Environmental Economics and Management, 48(1), 723-741.

Kim, S.H., Hejazi, M., Liu, L., Calvin, K., Clarke, L., Edmonds, J., Kyle, P., Patel, P., Wise, M., and Davies, E. (2016). Balancing global water availability and use at basin scale in an integrated assessment model. Climatic Change, 136(2), 217-231.

Kitous, K. (2006). Web Documentation by Enerdata Services of the POLES Model. Available: http://www.eie.gov.tr/projeler/document/5_POLES_description.pdf [October 2016].

Klein, A.-M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., and Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society of London B: Biological Sciences, 274(1608), 303-313.

Knutti, R., and Rugenstein, M.A.A. (2015). Feedbacks, climate sensitivity and the limits of linear models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2054).

Kolstad, C., Urama, K., Broome, J., Bruvoll, A., Cariño-Olvera, M., Fullerton, D., Gollier, C., Hanemann, W.M., Hassan, R., Jotzo, F., Khan, M.R., Meyer, L., and Mundaca, L. (2014). Social, economic and ethical concepts and methods. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel, and J.C. Minx (Eds.), Climate Change 2014: Mitigation of Climate Change. Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Ch. 3) (pp. 173-248). Cambridge, U.K. and New York: Cambridge University Press.

Kopp, R.E., and Mignone, B.K. (2012). The U.S. government’s social cost of carbon estimates after their first two years: Pathways for improvement. Economics, 6(2012-15), 1-41.

Kopp, R.E., Golub, A., Keohane, N.O., and Onda, C. (2012). The influence of the specification of climate change damages on the social cost of carbon. Economics, 6(2012-13), 1-40.

Kopp, R.E., and Mignone, B.K. (2013). Circumspection, reciprocity, and optimal carbon prices. Climatic Change 120(4), 831-843.

Kopp, R.E., Horton, R.M., Little, C.M., Mitrovica, J.X., Oppenheimer, M., Rasmussen, D.J., Strauss, B.H., and Tebaldi, C. (2014). Probabilistic 21st and 22nd century sea-level projections at a global network of tide gauge sites. Earth’s Future, 2(8), 383-406.

Kopp, R.E., Hay, C.C., Little, C.M., and Mitrovica, J.X. (2015). Geographic variability of sea-level change. Current Climate Change Reports, 1(3), 192-204.

Kopp, R.E., Kemp, A.C., Bittermann, K., Horton, B.P., Donnelly, J.P., Gehrels, W.R., Hay, C.C., Mitrovica, J.X., Morrow, E.D., and Rahmstorf, S. (2016a). Temperature-driven global sea-level variability in the Common Era. Proceedings of the National Academy of Sciences of the United States of America, 113(1), E1434-E1441.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Kopp, R.E., Shwom, R., Wagner, G., and Yuan, J. (2016b). Tipping Elements, Tipping Points, and Economic Catastrophes: Implications for the Cost of Climate Change. New Brunswick, NJ: Rutgers University.

Kraucunas I., Clarke, L., Dirks, J. Hathaway, J., Hejazi, M., Hibbard, K., Huang, M., Jin, C., Kintner-Meyer, M., Kleese van Dam, K., Leung, R., Li, H.-Y., Moss, R., Peterson, M., Rice, J., Scott, M., Thomson, A., Voisin, N., and West, T. (2015). Investigating the nexus of climate, energy, water, and land at decision-relevant scales: The platform for regional integrated modeling and analysis (PRIMA). Climatic Change, 129(3-4), 573-588.

Kriegler, E., Edmonds, J., Hallegatte, S., Ebi, K.L., Kram, T., Riahi, K., Winkler, H., and van Vuuren, D.P. (2014). A new scenario framework for climate change research: The concept of shared climate policy assumptions. Climatic Change, 122(3), 401-414.

Kunreuther H., S. Gupta, V. Bosetti, R. Cooke, V. Dutt, M. Ha-Duong, H. Held, J. Llanes-Regueiro, A. Patt, E. Shittu, and E. Weber. (2014). Integrated Risk and Uncertainty Assessment of Climate Change Response Policies. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, U.K. and New York: Cambridge University Press.

Kyle, P., Mueller, C., Calvin, K., and Thomson, A.M. (2014). Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts. Earth’s Future, 2(2), 83-98.

Labriet, M., Joshi, S., Babonneau, F., Edwards, N., Holden, P., Kanudia, A., Loulou, R., and Vielle, M. (2013). Worldwide impacts of climate change on energy for heating and cooling. Mitigation and Adaptation Strategies for Global Change, 20(7), 1111-1136.

Leatherman, S.P., and Nicholls, R.J. (1995). Accelerated sea-level rise and developing countries: An overview. Journal of Coastal Research, 14, 1-14.

Leggett, J., W.J. Pepper and R.J. Swart. (1992). Emissions scenarios for the IPCC: An update. In J.T. Houghton, B.A. Callander, and S.K. Varney (Eds.). Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment (pp. 75-95). Cambridge, U.K.: Cambridge University Press.

Lemoine, D., and Traeger, C.P. (2016). Economics of tipping the climate dominoes. Nature Climate Change, 6, 514-519.

Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., and Schellnhuber, H.J. (2008). Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1786-1793.

Lewis, N., and Curry, J.A. (2014). The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Climate Dynamics, 45(3), 1009-1023.

Li, J., Mullan, M., and Helgeson. J. (2014). Improving the practice of economic analysis of climate change adaptation. Journal of Benefit-Cost Analysis, 5(3), 445-467.

Libardoni, A.G., and Forest, C.E. (2011). Sensitivity of distributions of climate system properties to the surface temperature dataset. Geophysical Research Letters, 38(22).

Libardoni, A.G., and Forest, C.E. (2013). Correction to “Sensitivity of distributions of climate system properties to the surface temperature data set.” Geophysical Research Letters, 40(10), 2309-2311.

Lind, R. (1982). Discounting for Time and Risk in Energy Policy. Baltimore, MD: Johns Hopkins University Press for Resources for the Future.

Link, P.M., and Tol, R.S.J. (2004). Possible economic impacts of a shutdown of the thermohaline circulation: An application of FUND. Portuguese Economic Journal, 3, 99-114.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

LoGiudice, K., Ostfeld, R.S., Schmidt, K.A., and Keesing, F. (2003). The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proceedings of the National Academy of Sciences of the United States of America, 100(2), 567-571.

Lutz, W., Butz, W., and S. KC (Eds.). (2014). World Population and Human Capital in the Twenty-First Century. Oxford, U.K.: Oxford University Press.

Manabe, S., and Stouffer, R.J. (1980). Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. Journal of Geophysical Research: Oceans, 85(C10), 5529-5554.

Manabe, S., and Wetherald, R.T. (1967). Thermal equilibrium of the atmosphere with a given distribution of relative humidity. Journal of the Atmospheric Sciences, 24(3), 241-259.

Manabe, S., and Wetherald, R.T. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of Atmospheric Sciences, 32(1), 3-15.

Manabe, S., and Wetherald, R.T. (1980). On the distribution of climate change resulting from an increase in CO2 content of the atmosphere. Journal of the Atmospheric Sciences, 37, 99-118.

Mankiw, G. (1981). The permanent income hypothesis and the real interest rate. Economics Letters, 7(4), 307-311.

Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., and Ni, F. (2009). Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science, 326(5957), 1256-1260.

Manne, A.S., and Richels, R.G. (1994). The costs of stabilizing global CO2 emissions: A probabilistic analysis based on expert judgment. Energy Journal, 15(1), 31-56.

Marcott, S.A., Shakun, J.D., Clark, P.U. and Mix, A.C. (2013). A reconstruction of regional and global temperature for the past 11,300 years. Science, 339, 1198-1201.

Marten, A.L., Kopp, R.E., Shouse, K.C., Griffiths, C.W., Hodson, E.L., Kopits, E., Mignone, B.K., Moore, C., Newbold, S.C., Waldhoff, S., and Wolverton, A. (2013). Improving the assessment and valuation of climate change impacts for policy and regulatory analysis. Climatic Change, 117(3), 433-438.

Martens, W.J.M. (1998). Climate change, thermal stress and mortality changes. Social Science and Medicine, 46(3), 331-344.

Martens, W.J.M., Jetten, T.H., Rotmans, J., and Niessen, L.W. (1995). Climate change and vector-borne diseases: A global modelling perspective. Global Environmental Change, 5(3), 195-209.

Martens, W.J.M., Jetten, T.H., and Focks, D.A. (1997). Sensitivity of malaria, schistosomiasis and dengue to global warming. Climatic Change, 35(2), 145-156.

Martin, P.H., and Lefebvre, M.G. (1995). Malaria and climate: Sensitivity of malaria potential transmission to climate. AMBIO: A Journal of the Human Environment, 24(4), 200-207.

Mastrandrea, M.D., Field, C.B., Stocker, T.F., Edenhofer, O., Ebi, K.L., Frame, D.J., Held, H., Kriegler, E., Mach, K.J., and Matschoss, P.R. (2010). Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties. Geneva, Switzerland: Intergovernmental Panel on Climate Change. Available: http://www.ipcc.ch/pdf/supporting-material/uncertainty-guidance-note.pdf [October 2016].

Mathis, J.T., Cooley, S.R., Lucey, N., Colt, S., Ekstrom, J., Hurst, T., Hauri, C., Evans, W., Cross, J.N., and Feely, R.A. (2015). Ocean acidification risk assessment for Alaska’s fishery sector. Progress in Oceanography: Synthesis of Arctic Research (SOAR), 136, 71-91.

Matsuoka Y., Kainuma, M., and Morita, T. (1995). Scenario analysis of global warming using the Asian Pacific Integrated Model (AIM). Energy Policy, 23(4/5), 357-371.

McNeil, B.I., and Matear, R.J. (2008). Southern Ocean acidification: A tipping point at 450 ppm atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18860-18864.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitch, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J., and Zhao, Z.-C. (2007). Global climate projections. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Eds.), Climate Change 2007: The Physical Science Basis (pp. 747-845). Cambridge, U.K. and New York: Cambridge University Press.

Meinshausen, M., Meinshausen, N., Hare, W., Raper, S.C., Frieler, K., Knutti, R., Frame, D.J., and Allen, M.R. (2009). Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature, 458, 1158-1162.

Mengel, M., Levermann, A., Frieler, K., Robinson, A., Marzeion, B., and Winkelmann, R. (2016). Future sea level rise constrained by observations and long-term commitment. Proceedings of the National Academy of Sciences of the United States of America, 113(10), 2597-2602.

Meraner, K., Mauritsen, T., and Voigt, A. (2013). Robust increase in equilibrium climate sensitivity under global warming. Geophysical Research Letters, 40(22), 5944-5948.

Millar, R.J., Otto, A., Forster, P.M., Lowe, J.A., Ingram, W.J., and Allen, M.R. (2015). Model structure in observational constraints on transient climate response. Climatic Change, 131(2), 199-211.

Millar, R.J., Nicholls, Z.R., Friedlingstein, P., and Allen, M.R. (2016). A modified impulse-response representation of the global response to carbon dioxide emissions. Atmospheric Chemistry and Physics, 1-20.

Milne, G.A., Gehrels, W.R., Hughes, C.W., and Tamisiea, M.E. (2009). Identifying the causes of sea-level change. Nature Geoscience, 2, 471-478.

Mima, S., and Criqui, P. (2009). Assessment of the Impacts Under Future Climate Change on the Energy Systems with the POLES model. Paper Presented at 2009 International Energy Workshop, June 17-19, Venice, Italy.

Mitchell, T.D. (2003). Pattern scaling: An examination of the accuracy of the technique for describing future climates. Climatic Change, 60(3), 217-242.

Moore, F., Lantz Baldos, U., Hertel, T., and Diaz, D. (2016). Welfare Changes from Climate Change Impacts on the Agricultural Sector: New Damage Functions from Over 1000 Yield Studies. Presented at the 19th Annual Conference on Global Economic Analysis, Washington, DC. Available: https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=5056 [December 2016].

Morita, T., Kainuma, M., Harasawa, H., Kai, K., Dong-Kun, L., and Matsuoka, Y. (1994). Asian-Pacific Integrated Model for Evaluating Policy Options to Reduce Greenhouse Gas Emissions and Global Warming Impacts. Tsukuba, Japan: National Institute for Environmental Studies.

Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P., and Wilbanks, T.W. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747-756.

Mueller, U.K., and Watson, M.W. (2016). Measuring uncertainty about long-run predictions. Review of Economic Studies, 83(4), 1711-1740.

Murphy, K.M., and Topel, R.H. (2013). Some basic economics of national security. American Economic Review, 103(3), 508-511.

Murray, C.J.L., and Lopez, A.D. (Eds.). (1996). The Global Burden of Disease. Cambridge, MA: Harvard School of Public Health, Harvard University Press.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Myhre, G., Shindell, D., Bréon, F.M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H. (2013). Anthropogenic and natural radiative forcing. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 659-740). Cambridge, U.K. and New York: Cambridge University Press.

Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, J., Gaffin, S., Gregory, K., Grübler, A., Jung, T.Y., Kram, T., La Rovere, E. L., Michaelis, L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Riahi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., and Dadi, Z. (2000). Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge, U.K.: Cambridge University Press. Available: http://www.grida.no/climate/ipcc/emission/index.htm [October 2016].

Nam, K., Waugh, C.J., Paltsev, S., Reilly, J.M., Karplus, V.J., (2014). Synergy between pollution and carbon emissions control: comparing China and the United States. Energy Economics, 46, 186-201.

Narita, D., Rehdanz, K., and Tol, R.S.J. (2012). Economic costs of ocean acidification: A look into the impacts on global shellfish production. Climatic Change, 113(3), 1049-1063.

National Academy of Sciences. (1979). Carbon Dioxide and Climate: A Scientific Assessment. Washington, DC: National Academy Press.

National Research Council. (2010). Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use. Committee on Health, Environmental, and Other External Costs and Benefits of Energy Production and Consumption; Board on Environmental Studies and Toxicology; Division on Earth and Life Studies; Board on Energy and Environmental Systems; Division on Engineering and Physical Sciences; Board on Science, Technology, and Economic Policy; Policy and Global Affairs. Washington, DC: The National Academies Press.

National Research Council. (2012). A National Strategy for Advancing Climate Modeling. Committee on a National Strategy for Advancing Climate Modeling; Division on Earth and Life Studies; Board on Atmospheric Sciences and Climate. Washington, DC: The National Academies Press.

National Research Council. (2013). Abrupt Impacts of Climate Change: Anticipating Surprises. Committee on Understanding and Monitoring Abrupt Climate Change and its Impacts, Board on Atmospheric Sciences and Climate Division on Earth and Life Studies. Washington, DC: The National Academies Press. Available: https://www.nap.edu/catalog/18373/abrupt-impacts-of-climate-change-anticipating-surprises [January 2017].

National Academies of Sciences, Engineering, and Medicine. (2016). Assessment of Approaches to Updating the Social Cost of Carbon: Phase 1 Report on a Near-Term Update. Committee on Assessing Approaches to Updating the Social Cost of Carbon, Board on Environmental Change and Society. Washington, DC: The National Academies Press.

Nelson, G.C., Valin, H., Sands, R.D., Havlík, P., Ahammad, H., Deryng, D., Elliott, J.F., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., Von Lampe, M., Lotze-Campen, H., Mason d’Croz, D., van Meijl, H., van der Mensbrugghe, D., Müller, C., Popp, A., Robertson, R., Robinson, S., Schmid, E., Schmitz, C., Tabeau, A., and Willenbockel, D. (2014). Climate change effects on agriculture: Economic responses to biophysical shocks. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3274-3279.

Newell, R., and Pizer, W. (2003). Discounting the distant future: How much do uncertain rates increase valuations? Journal of Environmental Economics and Management, 46(1), 52-71.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Nicholls, R.J., and Leatherman, S.P. (1995). The implications of accelerated sea-level rise for developing countries: A discussion. Journal of Coastal Research, 14, 303-323.

Nicholls, R.J., Tol, R.S.J., and Vafeidis, A.T. (2008). Global estimates of the impact of a collapse of the west Antarctic ice sheet: An application of FUND. Climate Change, 91(1-2), 171-191.

Nordhaus, W. (1982). How fast should we graze the global commons? American Economic Review, 72(2), 242-246.

Nordhaus, W.D. (1991). To slow or not to slow: The economics of the greenhouse effect. Economic Journal, 101(407), 920-937.

Nordhaus, W.D. (1994a). Expert opinion on climatic change. American Scientist, 82, 45-51.

Nordhaus, W.D. (1994b). Managing the Global Commons: The Economics of Climate Change. Cambridge, MA: MIT Press.

Nordhaus, W.D. (2007). Accompanying Notes and Documentation on Development of DICE-2007 Model: Notes on DICE-2007.delta.v8 as of September 21, 2007. New Haven, CT: Yale University Press. Available: http://www.econ.yale.edu/~nordhaus/homepage/Accom_Notes_100507.pdf [October 2016].

Nordhaus, W.D. (2008). A Question of Balance: Weighing the Options on Global Warming Policies. New Haven, CT: Yale University Press.

Nordhaus, W.D. (2010). Economic aspects of global warming in a post-Copenhagen environment. Proceedings of the National Academy of Sciences of the United States of America, 107(26), 11721-11726.

Nordhaus, W.D. (2011). Estimates of the Social Cost of Carbon: Background and Results from the RICE-2011 Model. Working Paper 17540. Cambridge, MA: National Bureau of Economic Research.

Nordhaus, W.D. (2014). Estimates of the social cost of carbon: Concepts and results from the DICE-2013R model and alternative assumptions. Journal of the Association of Environmental and Resource Economists, 1(1/2), 273-312.

Nordhaus, W.D., and Boyer, J. (2000). Warming the World: Economic Models of Global Warming. Cambridge, MA: MIT Press.

Nordhaus, W.D., and Popp, D. (1997). What is the value of scientific knowledge? An application to global warming using the PRICE model. The Energy Journal, 1-45.

O’Neill, B.C., Kriegler, E., Riahi, K., Ebi, K.L., Hallegatte, S., Carter, T.R., Mathur, R., and van Vuuren, D.P. (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122(3), 387-400.

Oppenheimer, M., Campos, M., Warren, R., Birkmann, J., Luber, G., O’Neill, B., and Takahashi, K. (2014). Emergent risks and key vulnerabilities. In C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1039-1099). Cambridge, U.K. and New York: Cambridge University Press. Available: http://www.ipcc.ch/pdf/assessmentreport/ar5/wg2/WGIIAR5-Chap19_FINAL.pdf [January 2017].

Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G.K., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.F., Yamanaka, Y., and Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437(7059), 681-686.

Otto, A., Todd, B.J., Bowerman, N., Frame, D.J., and Allen, M.R. (2013). Climate system properties determining the social cost of carbon. Environmental Research Letters, 8(2), 024032.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

PALAEOSENS Project. (2012). Making sense of palaeoclimate sensitivity. Nature, 491, 683-691.

Parry M., Arnell, N., Berry, P., Dodman, D., Fankhauser, S., Hope, C., Kovats, S., Nicholls, R., Satterthwaite, D., Tiffin, R., and Wheeler, T. (2009). Assessing the Costs of Adaptation to Climate Change: A Review of the UNFCCC and Other Recent Estimates. London, U.K.: International Institute for Environment and Development and Grantham Institute for Climate Change.

Pearce, D.W., and Moran, D. (1994). The Economic Value of Biodiversity. London, U.K.: EarthScan.

Peck, S.C., and Teisberg, T.J. (1993). Global warming uncertainties and the value of information: An analysis using CETA. Resource and Energy Economics, 15(1), 71-97.

Pepper. W.J., Leggett, J.A., Swart, R.J., Wasson, J., Edmonds, J., and Mintzer, I. (1992). Emission Scenarios for the IPCC—An Update: Background Documentation on Assumptions, Methodology, and Results. Washington, DC: U.S. Environmental Protection Agency.

Perez-Garcia, J., Joyce, L.A., Binkley, C.S., and McGuire, A.D. (1995). Economic impacts of climatic change on the global forest sector: An integrated ecological/economic assessment. Journal Critical Reviews in Environmental Science and Technology, 27(Suppl. 1), 123-138.

Pindyck, R.S. (2015). The Use and Misuse of Models for Climate Policy. Working Paper 21097. Cambridge, MA: National Bureau of Economic Research.

Pizer, W., M. Adler, J. Aldy, D. Anthoff, M. Cropper, K. Gillingham, M. Greenstone, B. Murray, R. Newell, R. Richels, A. Rowell, S. Waldhoff, J. Wiener. (2014). Using and improving the social cost of carbon. Science, 346(6214), 189-1190.

Pueyo, S. (2012). Solution to the paradox of climate sensitivity. Climatic Change, 113(2), 163-179.

Rahmstorf, S. (2007). A semi-empirical approach to projecting future sea-level rise. Science, 315(5810), 368-370.

Rasmussen, D.J., Meinshausen, M., and Kopp, R.E. (2016). Probability-weighted ensembles of U.S. county-level climate projections for climate risk analysis. Journal of Applied Meteorology and Climatology, 55, 2301-2322.

Reilly, J., Edmonds, J., Gardner, R., and Brenkert, A. (1987). Monte Carlo analysis of the IEA/ ORAU Energy/Carbon Emissions Model. Energy Journal, 8(3), 1-29.

Reilly, J., and Richards, K. (1993). Climate change damage and the trace gas index issue. Environmental & Resource Economics, 3(1), 41-61.

Reilly, J.M., Hohmann, N., and Kane, S. (1994). Climate change and agricultural trade: Who benefits, who loses? Global Environmental Change, 4(1), 24-36.

Reilly, J., Paltsev, S., Felzer, B., Wang, X., Kicklighter, D., Melillo, J., Prinn, R., Sarofim, M., and Wang, C. (2007). Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone. Energy Policy, 35(11), 5370-5383.

Reilly, J., Melillo, J., Cai, Y., Kicklighter, D., Gurgel, A., Paltsev, S., Cronin, T., Sokolov, A., and Schlosser, A. (2012a). Using land to mitigate climate change: Hitting the target, recognizing the tradeoffs. Environmental Science and Technology, 46(11), 5672-5679.

Reilly, J., Paltsev, S., Strzepek, K., Selin, N., Cai, Y., Nam, H.-M., Monier, E., Dutkiewitz, S., Scott, J., Webster, M., and Sokolov, S. (2012b). Valuing Climate Impacts in Integrated Assessment Models: The MIT IGSM. Available: http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt219.pdf [October 2016].

Revesz, R.L., Howard, P.H., Arrow, K., Goulder, L.H, Kopp, R.E., Livermore, M.A., Oppenheimer, M., and Sterner, T. (2014). Global warming: Improve economic models of climate change, Nature, 508(7495), 173-175.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Riahi, K., Edmonds, J., O’Neill, B., van Vuuren, D., Kriegler, E., Fujimori, J.S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M. (2016). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153-168.

Richardson, M., Cowtan, K., Hawkins, E., and Stolpe, M.B. (2016). Reconciled climate response estimates from climate models and the energy budget of Earth. Nature Climate Change, 6, 931-935.

Ricke, K.L., and Caldeira, K. (2014). Maximum warming occurs about one decade after a carbon dioxide emission. Environmental Research Letters, 9(12), 124002.

Ringer, M.A., McAvaney, B.J., Andronova, N., Buja, L.E., Esch, M., Ingram, W.J., Li, B., Quaas, J., Roeckner, E., Senior, C.A., Soden, B.J., Volodin, E.M., Webb, M.J., and Williams, K.D. (2006). Global mean cloud feedbacks in idealized climate change experiments. Geophysical Research Letters, 33(7).

Rodolfo-Metalpa, R., Houlbrèque, F., Tambutté, É., Boisson, F., Baggini, C., Patti, F.P., Jeffree, R., Fine, M., Foggo, A., Gattuso, J.-P., and Hall-Spencer, J.M. (2011). Coral and mollusc resistance to ocean acidification adversely affected by warming. Nature Climate Change, 1, 308-312.

Roe, G.H., and Armour, K.C. (2011). How sensitive is climate sensitivity? Geophysical Research Letters, 38(14).

Roe, G.H., and Baker, M.B. (2007). Why is climate sensitivity so unpredictable? Science, 318(5850), 629-632.

Rose, S., Kriegler, E., Bibas, R., Calvin, K., Popp, A., van Vuuren, D.P., and Weyant, J. (2014a). Bioenergy in energy transformation and climate management. Climatic Change, 123(3-4), 477-493.

Rose, S., Turner, D., Blanford, G., Bistline, J., de la Chesnaye, F., and Wilson, T. (2014b). Understanding the Social Cost of Carbon: A Technical Assessment. Report 3002004657. Palo Alto, CA: Electric Power Research Institute.

Roson, R., and Sartori, M. (2010). The ENVironmental Impact and Sustainability Applied General Equilibrium (ENVISAGE) Model—Introducing Climate Change Impacts and Adaptation. Washington, DC: The World Bank.

Roson, R., and Sartori, M. (2016). Estimation of Climate Change Damage Functions for 140 Regions in the GTAP9 Database. Available: http://www.unive.it/media/allegato/DIP/Economia/Working_papers/Working_papers_2016/WP_DSE_roson_sartori_06_16.pdf [January 2017].

Roson, R., and van der Mensbrugghe, D. (2012). Climate change and economic growth: Impacts and interactions. International Journal of Sustainable Economy, 4(3), 270.

Rotmans, J. (1990). IMAGE: An Integrated Model to Assess the Greenhouse Effect. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Sanderson, B.M., Knutti, R., and Caldwell, P. (2015). Addressing interdependency in a multimodel ensemble by interpolation of model properties. Journal of Climate, 28, 5150-5170.

Sandsmark, M., and Vennemo, H. (2007). A portfolio approach to climate investments: CAPM and endogenous risk. Environmental and Resource Economics, 37(4), 681-695.

Schlenker, W., and Roberts, D.L. (2009). Nonlinear temperature effects indicate severe damages to U.S. corn yields under climate change. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15594-15598.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Schlosser, C.A., Gao, X., Strzepek, K., Sokolov, A., Forest, C.E., Awadalla, S., and Farmer, W. (2012). Quantifying the likelihood of regional climate change: A hybridized approach. Journal of Climate, 26(10), 3394-3414.

Schlosser, A., Strzepek, K., Gao, X., Fant, C., Blanc, E., Paltsev, S., Jacoby, H., Reilly, J., and Gueneau, A. (2014). The future of global water stress: An integrated assessment. Earth’s Future, 2(8), 341-361.

Schwinger, J., Tjiputra, J.F., Heinze, C., Bopp, L., Christian, J.R., Gehlen, M., Ilyina, T., Jones, C.D., Salas-Mélia, D., Segschneider, J., Séférian, R., and Totterdell, I. (2014). Nonlinearity of ocean carbon cycle feedbacks in CMIP5 earth system models. Journal of Climate, 27(11), 3869-3888.

Senior, C.A., and Mitchell, J.F. (2000). The time-dependence of climate sensitivity. Geophysical Research Letters, 27(17), 2685-2688.

Shindell, D.T. (2014). Inhomogeneous forcing and transient climate sensitivity. Nature Climate Change, 4, 274-277.

Slangen, A.B.A, Carson, M., Katsman, C.A., van de Wal, R.S.W., Köhl, A., Vermeersen, L.L.A., and Stammer, D. (2014). Projecting twenty-first century regional sea-level changes. Climatic Change, 124, 317-332.

Sohngen, B.L., Mendelsohn, R.O., and Sedjo, R.A. (2001). A global model of climate change impacts on timber markets. Journal of Agricultural and Resource Economics, 26(2), 326-343.

Solomon, S., Plattner, G., Knutti, R., and Friedlingstein, P., (2009). Irreversible climate change due to carbon dioxide emissions, Proceedings of the National Academy of Sciences of the United States of America, 106, 1704-1709.

Steinacher, M., Joos, F., Frolicher, T.L., Plattner, G.-K., and Doney, S.C. (2009). Imminent ocean acidification in the Arctic project with the NCAR global coupled carbon cycle-climate model. Biogeosciences, 6(4), 515-533.

Stern, N.H. (2007). The Economics of Climate Change: The Stern Review. Cambridge, U.K.: Cambridge University Press.

Sussman, F., Krishnan, N., Maher, K., Miller, R., Mack, C., Stewart, P., Shouse, K., and Perkins, W. (2014). Climate change adaptation cost in the U.S.: What do we know? Climate Policy, 14(2), 242-282.

Taheripour, F., Hertel, T.W., and Liu, J. (2013). The role of irrigation in determining the global land use impacts of biofuels. Energy, Sustainability and Society, 3(4), 1-18.

Tebaldi, C., and Arblaster, J.M. (2014). Pattern scaling: Its strengths and limitations, and an update on the latest model simulations. Climatic Change, 122(3), 459-471.

Tebaldi, C., and Knutti, R. (2007). The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857), 2053-2075.

Tokarska, K.B., Gillett, N.P., Weaver, A.J., Arora, V.K., and Eby, M. (2016). The climate response to five trillion tonnes of carbon. Nature Climate Change, 6, 851-855.

Tol, R.S.J. (2002a). Estimates of the damage costs of climate change—Part 1: Benchmark estimates. Environmental and Resource Economics, 21(1), 47-73.

Tol, R.S.J. (2002b). Estimates of the damage costs of climate change—Part II: Dynamic estimates. Environmental and Resource Economics, 21(2), 135-160.

Tol, R.S.J. (2009). The economic effects of climate change. Journal of Economic Perspectives, 23(2), 29-51.

Toya, H., and Skidmore, M. (2007). Economic development and the impact of natural disasters. Economics Letters, 94(1), 20-25.

Tsigas, M.E., Frisvold, G.B., and Kuhn, B. (1996). Global climate change in agriculture. In T.W. Hertel (Ed.), Global Trade Analysis: Modelling and Applications (pp. 280-304). New York: Cambridge University Press.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

United Nations. (2004). World Population to 2300. New York: United Nations. Available: http://www.un.org/en/development/desa/population/publications/pdf/trends/WorldPop2300final.pdf [October 2016].

United Nations. (2015a). World Population Prospects, The 2015 Revision: Key Conclusions and Advance Tables. New York: United Nations. Available: http://esa.un.org/unpd/wpp/publications/files/key_Conclusions_wpp_2015.pdf [October 2016].

United Nations. (2015b). World Population Prospects, The 2015 Revision: Methodology of the United Nations Population Estimates and Projections. New York: United Nations.

U.S. Environmental Protection Agency. (2009). Expert Elicitation Task Force White Paper. External Review Draft and Addendum: Selected Recent (2006-2008) Citations. Washington, DC: U.S. Environmental Protection Agency.

U.S. Environmental Protection Agency. (2011). The Benefits and Costs of the Clean Air Act from 1990 to 2020. Washington, DC: U.S. Environmental Protection Agency.

U.S. Environmental Protection Agency. (2015). Regulatory Impact Analysis for the Clean Power Plan Final Rule. Available: https://www.epa.gov/sites/production/files/2015-08/documents/cpp-final-rule-ria.pdf [October 2016].

U.S. Government Accountability Office. (2014). 2014 Regulatory Impact Analysis: Development of Social Cost of Carbon Estimates. Washington, DC: U.S. Government Accountability Office.

U.S. Office of Management and Budget. (1972). Circular A-94: Discount Rates to Be Used in Evaluating Time-Distributed Costs and Benefits (March 27). Washington, DC: Office of Management and Budget.

U.S. Office of Management and Budget. (2003). Circular A-4: Regulatory Analysis (September 17). Washington, DC: Office of Management and Budget.

van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., and Lamarque, J.-F. (2011). The representative concentration pathways: An overview. Climatic Change, 109, 1-4.

Vermeer, M., and Rahmstorf, S. (2009). Global sea level linked to global temperature. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21527-21532.

World Meteorological Organization. (2006). Summary Statement on Tropical Cyclones and Climate Change. Available: http://www.wmo.ch/pages/prog/arep/tmrp/documents/iwtc_summary.pdf [October 2016].

Waldhoff, S.T., Martinich, J., Sarofim, M., DeAngelo, B., McFarland, J., Jantarasami, L., Shouse, K., Crimmins, A., Ohrel, S., and Li, J. (2014). Overview of the special issue: A multi-model framework to achieve consistent evaluation of climate change impacts in the United States. Climatic Change, 131(1), 1-20.

Waldhoff, S.T., Martinich, J., Sarofim, M., DeAngelo, B., McFarland, J., Jantarasami, L., Shouse, K., Crimmins, A., Ohrel, S., and Li, J. (2015). Special issue on “A multi-model framework to achieve consistent evaluation of climate change impacts in the United States.” Climatic Change, 131(1), 1-20.

Warren, R. (2011). The role of interactions in a world implementing adaptation and mitigation solutions to climate change. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369(1934), 217-241.

Warren, R., Hope, C., Mastrandrea, M.D., Tol, R.S.J., Adger, N., and Lorenzoni, I. (2006). Spotlighting Impacts in Integrated Assessment. Tyndall Working Paper 91. Available: http://www.tyndall.ac.uk [October 2016].

Webster, M., Paltsev, S., Parsons, J., Reilly, J., and Jacoby, H. (2008). Uncertainty in Greenhouse Gas Emissions and Costs of Atmospheric Stabilization. Report No. 165. Cambridge, MA: Joint Program on the Science and Policy of Global Change. Available: http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt165.pdf [October 2016].

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

Webster, M., Sokolof, A., Reilly, J., Forest, C., Paltsev, S., Schlosser, A., Wang, C., Kicklighter, D., Sarofim, S., Melillo, J., Prinn, R., and Jacoby, H. (2012). Analysis of climate policy targets under uncertainty. Climatic Change, 112(3), 569-583.

Weitzman, M.L. (2004). Discounting a Distant Future Whose Technology Is Unknown. Available: http://www.sv.uio.no/econ/english/research/news-and-events/events/guestlectures-seminars/Thursday-seminar/2004/Thursday-spring04/weitzman-1.pdf [October 2016].

Weitzman, M.L. (2007). Subjective expectations and asset-return puzzles. American Economic Review, 97(4), 1102-1130.

Weitzman, M. (2011). Fat-tailed uncertainty in the economics of catastrophic climate change. Review of Environmental and Economic Policy, 5(2), 275-292.

Wilby, R.L., Dawson, C.W., and Barrow, E.M. (2002). SDSM: A decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software 17(2), 145-157.

Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S.J., Janetos, A., and Edmonds, J. (2009). Implications of limiting CO2 concentrations for land use and energy. Science, 324(5931), 1183-1186.

Yamamoto, A. Kawamiya, M., Ishida, A., Yamanaka, Y., and Watanabe, S. (2012). Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification. Biogeosciences, 9(6), 2365-2375.

Yohe, G.W., and M.E. Schlesinger. (1998). Sea-level change: The expected economic cost of protection or abandonment in the United States. Climatic Change, 38, 337-342.

Yokohata, T., Emori, S., Nozawa, T., Ogura, T., Kawamiya, M., Tsushima, Y., Suzuki, T., Yukimoto, S., Abe-Ouchi, A., Hasumi, H., Sumi, A., and Kimoto, M. (2008). Comparison of equilibrium and transient responses to CO2 increase in eight state-of-the-art climate models. Tellus Series A Dynamic Meteorology and Oceanography, 60(5), 946-961.

Yoshimori, M., Yokohata, T., and Abe-Ouchi, A. (2009). A comparison of climate feedback strength between CO2 doubling and LGM experiments. Journal of Climate, 22, 3374-3395.

Zaveri, E., Grogan, D.S., Fisher-Vanden, K., Frolking, S., Lammers, R.B., Wrenn, D.H., Prusevich, A., and Nicholas, R.E. (2016). Invisible water, visible impact: Groundwater use and Indian agriculture under climate change. Environmental Research Letters, 11(8), 084005.

Zhou, Y., Eom, J., and Clarke, L. (2013). The effect of global climate change, population distribution, and climate mitigation on building energy use in the U.S. and China. Climatic Change, 119(3), 979-992.

Zickfeld, K., and Herrington, T. (2015). The time lag between a carbon dioxide emission and maximum warming increases with the size of the emission. Environmental Research Letters, 10(3), 031001.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×

This page intentionally left blank.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 191
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 192
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 193
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 194
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 195
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 196
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 197
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 198
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 199
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 200
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 201
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 202
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 203
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 204
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 205
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 206
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 207
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 208
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 209
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 210
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 211
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2017. Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide. Washington, DC: The National Academies Press. doi: 10.17226/24651.
×
Page 212
Next: Appendix A: Biographical Sketches of Committee Members and Staff »
Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide Get This Book
×
Buy Paperback | $75.00 Buy Ebook | $59.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The social cost of carbon (SC-CO2) is an economic metric intended to provide a comprehensive estimate of the net damages - that is, the monetized value of the net impacts, both negative and positive - from the global climate change that results from a small (1-metric ton) increase in carbon-dioxide (CO2) emissions. Under Executive Orders regarding regulatory impact analysis and as required by a court ruling, the U.S. government has since 2008 used estimates of the SC-CO2 in federal rulemakings to value the costs and benefits associated with changes in CO2 emissions. In 2010, the Interagency Working Group on the Social Cost of Greenhouse Gases (IWG) developed a methodology for estimating the SC-CO2 across a range of assumptions about future socioeconomic and physical earth systems.

Valuing Climate Changes examines potential approaches, along with their relative merits and challenges, for a comprehensive update to the current methodology. This publication also recommends near- and longer-term research priorities to ensure that the SC- CO2 estimates reflect the best available science.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!