National Academies Press: OpenBook
« Previous: Way Forward
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25423.
×

References

Beck, P. S. A., G. P. Juday, C. Alix, V. A. Barber, S. E. Winslow, E. E. Sousa, P. Heiser, J. D. Herriges, and S. J. Goetz. 2011. Changes in forest productivity across Alaska consistent with biome shift. Ecology Letters 14(4):373-379. DOI: 10.1111/j.1461-0248.2011.01598.x.

Bentz, B. J., C. J. Fettig, E. M. Hansen, J. Régnière, J. L. Hayes, J. A. Hicke, J. F. Negrón, R. G. Kelsey, and S. J. Seybold. 2010. Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience 60(8):602-613. DOI: 10.1525/bio.2010.60.8.6.

Bhatt, U. S., D. A. Walker, M. K. Raynolds, P. A. Bieniek, H. E. Epstein, J. C. Comiso, J. E. Pinzon, C. J. Tucker, and I. V. Polyakov. 2013. Recent declines in warming and vegetation greening trends over pan-Arctic tundra. Remote Sensing 5(9):4229-4254. DOI: 10.3390/rs5094229.

Blok, D., M. Heijmans, G. Schaepman-Strub, A. V. Kononov, T. C. Maximov, and F. Berendse. 2010. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Global Change Biology 16(4):1296-1305. DOI: 10.1111/j.1365-2486.2009.02110.x.

Bryant, J. P., K. Joly, F. S. Chapin III, D. L. DeAngelis, and K. Kielland. 2014. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra? Ecography 37(3):204-211. DOI: 10.1111/j.1600-0587.2013.00436.x.

Cahoon, S. M. P., P. F. Sullivan, A. H. Brownlee, R. R. Pattison, H.-E. Andersen, K. Legner, and T. N. Hollingsworth. 2018. Contrasting drivers and trends of coniferous and deciduous tree growth in interior Alaska. Ecology 99(6):1284-1295. DOI: 10.1002/ecy.2223.

Champagne, E., J. P. Tremblay, and S. D. Côté. 2012. Tolerance of an expanding subarctic shrub, Betula glandulosa, to simulated caribou browsing. PLoS One 7(12):e51940. DOI: 10.1371/journal.pone.0051940.

Davin, E. L., and N. de Noblet-Ducoudré. 2010. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. Journal of Climate 23(1):97-112. DOI: 10.1175/2009JCLI3102.1.

Devaraju, N., N. d. Noblet-Ducoudré, B. Quesada, and G. Bala. 2018. Quantifying the relative importance of direct and indirect biophysical effects of deforestation on surface temperature and teleconnections. Journal of Climate 31(10):3811-3829. DOI: 10.1175/jcli-d-17-0563.1.

Epstein, H., U. Bhatt, M. Raynolds, D. Walker, B. Forbes, G. Phoenix, J. Bjerke, H. Tømmervik, S.-R. Karlsen, R. Myneni, T. Park, S. Goetz, and G. Jia. 2018. Tundra Greenness [in Arctic Report Card 2018]. https://www.arctic.noaa.gov/Report-Card, accessed April 12, 2019.

Fauchald, P., T. Park, H. Tømmervik, R. Myneni, and V. H. Hausner. 2017. Arctic greening from warming promotes declines in caribou populations. Science Advances 3(4):e1601365. DOI: 10.1126/sciadv.1601365.

Forkel, M., N. Carvalhais, C. Rödenbeck, R. Keeling, M. Heimann, K. Thonicke, S. Zaehle, and M. Reichstein. 2016. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351(6274):696. DOI: 10.1126/science.aac4971.

Frankenberg, C., J. B. Fisher, J. Worden, G. Badgley, S. S. Saatchi, J.-E. Lee, G. C. Toon, A. Butz, M. Jung, A. Kuze, and T. Yokota. 2011. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters 38(17). DOI: 10.1029/2011GL048738.

Fu, Y. H., H. Zhao, S. Piao, M. Peaucelle, S. Peng, G. Zhou, P. Ciais, M. Huang, A. Menzel, J. Peñuelas, Y. Song, Y. Vitasse, Z. Zeng, and I. A. Janssens. 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526:104. DOI: 10.1038/nature15402.

Gauthier, S., F. Raulier, H. Ouzennou, and J.-P. Saucier. 2015. Strategic analysis of forest vulnerability to risk related to fire: An example from the coniferous boreal forest of Quebec. Canadian Journal of Forest Research 45(5):553-565. DOI: 10.1139/cjfr-2014-0125.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25423.
×

Girard, F., S. Payette, and R. Gagnon. 2008. Rapid expansion of lichen woodlands within the closed-crown boreal forest zone over the last 50 years caused by stand disturbances in eastern Canada. Journal of Biogeography 35(3):529-537. DOI: 10.1111/j.1365-2699.2007.01816.x.

Girardin, M. P., O. Bouriaud, E. H. Hogg, W. Kurz, N. E. Zimmermann, J. M. Metsaranta, R. de Jong, D. C. Frank, J. Esper, U. Büntgen, X. J. Guo, and J. Bhatti. 2016. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proceedings of the National Academy of Sciences of the United States of America 113(52):E8406-E8414. DOI: 10.1073/pnas.1610156113.

Goetz, S. J., A. G. Bunn, G. J. Fiske, and R. A. Houghton. 2005. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proceedings of the National Academy of Sciences of the United States of America 102(38):13521-13525. DOI: 10.1073/pnas.0506179102.

Graven, H. D., R. F. Keeling, S. C. Piper, P. K. Patra, B. B. Stephens, S. C. Wofsy, L. R. Welp, C. Sweeney, P. P. Tans, J. J. Kelley, B. C. Daube, E. A. Kort, G. W. Santoni, and J. D. Bent. 2013. Enhanced Seasonal Exchange of CO2 by Northern Ecosystems Since 1960. Science 341(6150):1085. DOI: 10.1126/science.1239207.

Guindon, L., P. Bernier, S. Gauthier, G. Stinson, P. Villemaire, and A. Beaudoin. 2018. Missing forest cover gains in boreal forests explained. Ecosphere 9(1):e02094. DOI: 10.1002/ecs2.2094.

Guindon, L., P. Villemaire, R. St-Amant, P. Y. Bernier, A. Beaudoin, F. Caron, M. Bonucelli, and H. Dorion. 2017. Canada Landsat Disturbance (CanLaD): A Canada-wide Landsat-based 30-m resolution product of fire and harvest detection and attribution since 1984. https://org/10.23687/add1346b-f632-4eb9-a83da662b38655ad, accessed March 11, 2019.

Hanes, C. C., X. Wang, P. Jain, M.-A. Parisien, J. M. Little, and M. D. Flannigan. 2018. Fire-regime changes in Canada over the last half century. Canadian Journal of Forest Research 49(3):256-269. DOI: 10.1139/cjfr-2018-0293.

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. High-resolution global maps of 21st-century forest cover change. Science 342(6160):850-853. DOI: 10.1126/science.1244693.

Hicke, J. A., C. D. Allen, A. R. Desai, M. C. Dietze, R. J. Hall, E. H. Hogg, D. M. Kashian, D. Moore, K. F. Raffa, R. N. Sturrock, and J. Vogelmann. 2012. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology 18(1):7-34. DOI: 10.1111/j.1365-2486.2011.02543.x.

Johnstone, J. F., F. S. Chapin, T. N. Hollingsworth, M. C. Mack, V. Romanovsky, and M. Turetsky. 2010. Fire, climate change, and forest resilience in interior Alaska. Canadian Journal of Forest Research 40(7):1302-1312. DOI: 10.1139/X10-061.

Ju, J., and J. G. Masek. 2016. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sensing of Environment 176:1-16. DOI: 10.1016/j.rse.2016.01.001.

Keeling, C. D., J. F. S. Chin, and T. P. Whorf. 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382(6587):146-149. DOI: 10.1038/382146a0.

Keenan, T. F., and W. J. Riley. 2018. Greening of the land surface in the world’s cold regions consistent with recent warming. Nature Climate Change 8(9):825-828. DOI: 10.1038/s41558-018-0258-y.

Lee, X., M. L. Goulden, D. Y. Hollinger, A. Barr, T. A. Black, G. Bohrer, R. Bracho, B. Drake, A. Goldstein, L. Gu, G. Katul, T. Kolb, B. E. Law, H. Margolis, T. Meyers, R. Monson, W. Munger, R. Oren, K. T. Paw U, A. D. Richardson, H. P. Schmid, R. Staebler, S. Wofsy, and L. Zhao. 2011. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479:384. DOI: 10.1038/nature10588.

Loranty, M. M., L. T. Berner, S. J. Goetz, Y. Jin, and J. T. Randerson. 2014. Vegetation controls on northern high latitude snow-albedo feedback: Observations and CMIP5 model simulations. Global Change Biology 20(2):594-606. DOI: 10.1111/gcb.12391.

Lucht, W., I. C. Prentice, R. B. Myneni, S. Sitch, P. Friedlingstein, W. Cramer, P. Bousquet, W. Buermann, and B. Smith. 2002. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687-1689.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25423.
×

Mack, M. C., M. S. Bret-Harte, T. N. Hollingsworth, R. R. Jandt, E. A. G. Schuur, G. R. Shaver, and D. L. Verbyla. 2011. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475:489. DOI: 10.1038/nature10283.

Meddens, A. J. H., J. A. Hicke, L. A. Vierling, and A. T. Hudak. 2013. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery. Remote Sensing of Environment 132:49-58. DOI: 10.1016/j.rse.2013.01.002.

Montesano, P. M., C. Neigh, G. Sun, L. Duncanson, J. Van Den Hoek, and K. J. Ranson. 2017. The use of sun elevation angle for stereogrammetric boreal forest height in open canopies. Remote Sensing of Environment 196:76-88. DOI: https://org/10.1016/j.rse.2017.04.024.

Myers-Smith, I. H., and D. S. Hik. 2013. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow–shrub interactions. 3(11):3683-3700. DOI: 10.1002/ece3.710.

Myers-Smith, I. H., M. M. Grabowski, H. J. D. Thomas, S. Angers-Blondin, G. N. Daskalova, A. D. Bjorkman, A. M. Cunliffe, J. J. Assmann, J. S. Boyle, E. McLeod, S. McLeod, R. Joe, P. Lennie, D. Arey, R. R. Gordon, and C. D. Eckert. 2019a. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecological Monographs e01351. DOI: 10.1002/ecm.1351.

Myers-Smith, I. H., J. T. Kerby, G. K. Phoenix, J. W. Bjerke, H. E. Epstein, J. Assmann, C. John, L. Andreu-Hayles, S. Angers-Blodin, P. S. A. Beck, L. T. Berner, U. S. Bhatt, A. D. Bjorkman, D. Blok, A. Bryn, C. T. Christiansen, J. H. C. Cornelissen, A. M. Cunliffe, S. C. Elmendorf, B. C. Forbes, S. J. Goetz, R. D. Hollister, R. d. Jong, M. Loranty, M. Macias-Fauria, K. Maseyk, S. Normand, J. Olofsson, T. C. Parker, F.-J. W. Parmentier, E. S. Post, G. Schaepman-Strub, F. Stordal, P. Sullivan, H. J. D. Thomas, H. Tømmervik, R. Treharne, C. E. Tweedie, D. A. Walker, M. Wilmking, and S. Wipf. 2019b. Complexity revealed in the greening of the Arctic. Nature Climate Change (in review). DOI: 10.32942/osf.io/mzyjk.

Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386(6626):698-702. DOI: 10.1038/386698a0.

Neigh, C. S. R., C. J. Tucker, and J. R. G. Townshend. 2008. North American vegetation dynamics observed with multi-resolution satellite data. Remote Sensing of Environment 112(4):1749-1772. DOI: 10.1016/j.rse.2007.08.018.

Neigh, C. S. R., J. G. Masek, and J. E. Nickeson. 2013. High-Resolution Satellite Data Open for Government Research. Eos, Transactions American Geophysical Union 94(13):121-123. DOI: 10.1002/2013EO130002.

Neigh, C. S. R., J. G. Masek, P. Bourget, B. D. Cook, C. Huang, and K. Rishmawi. 2014. Deciphering the Precision of Stereo IKONOS Canopy Height Models for US Forests with G-LiHT Airborne LiDAR. Remote Sensing 6:1762-1782. DOI: 10.3390/rs6031762.

Neigh, C. S. R., J. G. Masek, P. Bourget, K. Rishmawi, F. Zhao, C. Huang, B. D. Cook, and R. F. Nelson. 2016. Regional rates of young US forest growth estimated from annual Landsat disturbance history and IKONOS stereo imagery. Remote Sensing of Environment 173:282-293. DOI: https://org/10.1016/j.rse.2015.09.007.

Nemani, R. R., C. D. Keeling, H. Hashimoto, W. M. Jolly, S. C. Piper, C. J. Tucker, R. B. Myneni, and S. W. Running. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560-1563.

Overland, J. E., E. Hanna, I. Hanssen-Bauer, S.-J. Kim, J. E. Walsh, M. Wang, U. S. Bhatt, and R. L. Thoman. 2018. Surface air temperature [in Arctic Report Card 2018]. https://www.arctic.noaa.gov/Report-Card, accessed April 12, 2019.

Parazoo, N. C., A. Arneth, T. A. M. Pugh, B. Smith, N. Steiner, K. Luus, R. Commane, J. Benmergui, E. Stofferahn, J. Liu, C. Rödenbeck, R. Kawa, E. Euskirchen, D. Zona, K. Arndt, W. Oechel, and C. Miller. 2018. Spring photosynthetic onset and net CO2 uptake in Alaska triggered by landscape thawing. Global Change Biology 24(8):3416-3435. DOI: 10.1111/gcb.14283.

Payette, S., and A. Delwaide. 2018. Tamm review: The North-American lichen woodland. Forest Ecology and Management 417:167-183. DOI: 10.1016/j.foreco.2018.02.043.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25423.
×

Pearson, R. G., S. J. Phillips, M. M. Loranty, P. S. A. Beck, T. Damoulas, S. J. Knight, and S. J. Goetz. 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change 3(7):673-677. DOI: 10.1038/nclimate1858.

Piao, S., J. Tan, A. Chen, Y. H. Fu, P. Ciais, Q. Liu, I. A. Janssens, S. Vicca, Z. Zeng, S.-J. Jeong, Y. Li, R. B. Myneni, S. Peng, M. Shen, and J. Peñuelas. 2015. Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications 6:6911. DOI: 10.1038/ncomms7911.

Post, E., and M. C. Forchhammer. 2008. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363(1501):2369-2375. DOI: 10.1098/rstb.2007.2207.

Renard, S. M., S. Gauthier, N. J. Fenton, B. Lafleur, and Y. Bergeron. 2016. Prescribed burning after clearcut limits paludification in black spruce boreal forest. Forest Ecology and Management 359:147-155. DOI: 10.1016/j.foreco.2015.09.037.

Rickbeil, G. J. M., T. Hermosilla, N. C. Coops, J. C. White, M. A. Wulder, and T. C. Lantz. 2018. Changing northern vegetation conditions are influencing barren ground caribou (Rangifer tarandus groenlandicus) post-calving movement rates. Journal of Biogeography 45(3):702-712. DOI: 10.1111/jbi.13161.

Rogers, B. M., A. J. Soja, M. L. Goulden, and J. T. Randerson. 2015. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience 8:228. DOI: 10.1038/ngeo2352.

Running, S., Q. Mu, and M. Zhao. 2015. MOD17A3H MODIS/Terra Net Primary Production Yearly L4 Global 500 m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://lpdaac.usgs.gov/node/869, accessed March 11, 2019.

Sexton, J. O., X.-P. Song, M. Feng, P. Noojipady, A. Anand, C. Huang, D.-H. Kim, K. M. Collins, S. Channan, C. DiMiceli, and J. R. Townshend. 2013. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. International Journal of Digital Earth 6(5):427-448. DOI: 10.1080/17538947.2013.786146.

Shuman, J. K., H. H. Shugart, and T. L. O’Halloran. 2011. Sensitivity of Siberian larch forests to climate change. Global Change Biology 17(7):2370-2384. DOI: 10.1111/j.1365-2486.2011.02417.x.

Sulla-Menashe, D., C. E. Woodcock, and M. A. Friedl. 2018. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environmental Research Letters 13(1):014007. DOI: 10.1088/1748-9326/aa9b88.

Van Bogaert, R., S. Gauthier, F. Raulier, J.-P. Saucier, D. Boucher, A. Robitaille, and Y. Bergeron. 2015. Exploring forest productivity at an early age after fire: a case study at the northern limit of commercial forests in Quebec. Canadian Journal of Forest Research 45(5):579-593. DOI: 10.1139/cjfr-2014-0273.

Xu, L., R. B. Myneni, F. S. Chapin III, T. V. Callaghan, J. E. Pinzon, C. J. Tucker, Z. Zhu, J. Bi, P. Ciais, H. Tømmervik, E. S. Euskirchen, B. C. Forbes, S. L. Piao, B. T. Anderson, S. Ganguly, R. R. Nemani, S. J. Goetz, P. S. A. Beck, A. G. Bunn, C. Cao, and J. C. Stroeve. 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change 3:581. DOI: 10.1038/nclimate1836.

Yang, X., J. Tang, J. F. Mustard, J.-E. Lee, M. Rossini, J. Joiner, J. W. Munger, A. Kornfeld, and A. D. Richardson. 2015. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophysical Research Letters 42(8):2977-2987. DOI: 10.1002/2015GL063201.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25423.
×
Page 35
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25423.
×
Page 36
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25423.
×
Page 37
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/25423.
×
Page 38
Next: Appendix A: Statement of Task »
Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop Get This Book
×
 Understanding Northern Latitude Vegetation Greening and Browning: Proceedings of a Workshop
Buy Ebook | $14.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Vegetation change has been observed across Arctic and boreal regions. Studies have often documented large-scale greening trends, but they have also identified areas of browning or shifts between greening and browning over varying spatial extents and time periods. At the same time, though, there are large portions of these ecosystems that have not exhibited measurable trends in greening or browning. These findings have fueled many questions about the drivers of vegetation dynamics, how trends are measured, and potential implications of vegetation change at local to global scales.

In December 2018, the National Academies of Sciences, Engineering, and Medicine, convened a workshop to discuss opportunities to improve understanding of greening and browning trends and drivers and the implications of these vegetation changes. The discussions included a close look at many of the methodological approaches used to evaluate greening and browning, as well as exploration of newer technologies that may help advance the science. This publication summarizes the presentations and discussions from the workshop.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!