National Academies Press: OpenBook
« Previous: 6 Symposium Participants' Considerations for a Future Low Dose Radiation Research Program
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×

References

Abuodeh, Y., P. Venkat, and S. Kim. 2016. Systematic review of case reports on the abscopal effect. Current Problems in Cancer 40(1):25–37. https://doi.org/10.1016/j.currproblcancer.2015.10.001.

Ahn, Y.-S., R.M. Park, and D.-H. Koh. 2008. Cancer admission and mortality in workers exposed to ionizing radiation in Korea. Journal of Occupational and Environmental Medicine 50(7):791–803. https://doi.org/10.1097/JOM.0b013e318167751d.

Akiba, S., and S. Mizuno. 2012. The third analysis of cancer mortality among Japanese nuclear workers, 1991–2002: Estimation of excess relative risk per radiation dose. Journal of Radiological Protection 32(1):73–83. https://doi.org/10.1088/0952-4746/32/1/73.

Alp, M., V.K. Parihar, C.L. Limoli, and F.A. Cucinotta. 2015. Irradiation of neurons with high-energy charged particles: An in silico modeling approach. PLoS Computational Biology 11(8):e1004428. https://doi.org/10.1371/journal.pcbi.1004428.

Amundson, S.A., K.T. Do, and A.J. Fornace. 1999. Induction of stress genes by low doses of gamma rays. Radiation Research 152(3):225–231. https://doi.org/10.2307/3580321.

Bartocci, E., and P. Lió. 2016. Computational modeling, formal analysis, and tools for systems biology. PLoS Computational Biology 12(1):e1004591. https://doi.org/10.1371/journal.pcbi.1004591.

Bernal, A.J., D.C. Dolinoy, D. Huang, D.A. Skaar, C. Weinhouse, and R.L. Jirtle. 2013. Adaptive radiation-induced epigenetic alterations mitigated by antioxidants. FASEB Journal 27(2):665–671. https://doi.org/10.1096/fj.12-220350.

Bernier, M.O., H. Baysson, M.S. Pearce, M. Moissonnier, E. Cardis, M. Hauptmann, L. Struelens, J. Dabin, C. Johansen, N. Journy, D. Laurier, M. Blettner, L. Le Cornet, R. Pokora, P. Gradowska, J.M. Meulepas, K. Kjaerheim, T. Istad, H. Olerud, A. Sovik, M. Bosch de Basea, I. Thierry-Chef, M. Kaijser, A. Nordenskjöld, A. Berrington de González, R.W. Harbron, and A. Kesminiene. 2018. Cohort profile: The EPI-CT study: A European pooled epidemiological study to quantify the risk of radiation-induced cancer from paediatric CT. International Journal of Epidemiology 48(2):379–381. https://doi.org/10.1093/ije/dyy231.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×

Bogdándi, E.N., A. Balogh, N. Felgyinszki, T. Szatmári, E. Persa, G. Hildebrandt, G. Sáfrány, and K. Lumniczky. 2010. Effects of low dose radiation on the immune system of mice after total-body irradiation. Radiation Research 174(4):480–489. https://doi.org/10.1667/RR2160.1.

Boice, J.D., D. Preston, F.G. Davis, and R.R. Monson. 1991. Frequent chest x-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiation Research 125(2):214–222. https://doi.org/10.2307/3577890.

Boice, J.D., Jr., S.S. Cohen, M.T. Mumma, E.D. Ellis, K.F. Eckerman, R.W. Leggett, B.B. Boecker, A.B. Brill, and B.E. Henderson. 2011. Updated mortality analysis of radiation workers at Rocketdyne (Atomics International), 1948–2008. Radiation Research 176(2):244–258. https://doi.org/10.1667/RR2487.1.

Bosch de Basea, M., M.S. Pearce, A. Kesminiene, M.-O. Bernier, J. Dabin, H. Engels, M. Hauptmann, L. Krille, J.M. Meulepas, L. Struelens, S. Baatout, M. Kaijser, C. Maccia, A. Jahnen, I. Thierry-Chef, M. Blettner, C. Johansen, K. Kjaerheim, A. Nordenskjöld, H. Olerud, J.A. Salotti, T.V. Andersen, M. Vrijheid, and E. Cardis. 2015. EPI-CT: Design, challenges and epidemiological methods of an international study on cancer risk after paediatric and young adult CT. Journal of Radiological Protection 35(3):611–628. https://doi.org/10.1088/0952-4746/35/3/611.

Braga-Tanaka, I., S. Tanaka, A. Kohda, D. Takai, S. Nakamura, T. Ono, K. Tanaka, and J.-I. Komura. 2018. Experimental studies on the biological effects of chronic low dose-rate radiation exposure in mice: Overview of the studies at the Institute for Environmental Sciences. International Journal of Radiation Biology 94(5):423–433. https://doi.org/10.1080/09553002.2018.1451048.

Brenner, D.J., R. Doll, D.T. Goodhead, E.J. Hall, C.E. Land, J.B. Little, J.H. Lubin, D.L. Preston, R.J. Preston, J.S. Puskin, E. Ron, R.K. Sachs, J.M. Samet, R.B. Setlow, and M. Zaider. 2003. Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proceedings of the National Academy of Sciences of the United States of America 100(24):13761–13766. https://doi.org/10.1073/pnas.2235592100.

Brenner, A.V., M.D. Tronko, M. Hatch, T.I. Bogdanova, V.A. Oliynik, J.H. Lubin, L.B. Zablotska, V.P. Tereschenko, R.J. McConnell, G.A. Zamotaeva, P. O’Kane, A.C. Bouville, L.V. Chaykovskaya, E. Greenebaum, I.P. Paster, V.M. Shpak, and E. Ron. 2011. I-131 dose response for incident thyroid cancers in Ukraine related to the Chornobyl accident. Environmental Health Perspectives 119(7):933–939. https://doi.org/10.1289/ehp.1002674.

Brenner, A.V., D.L. Preston, R. Sakata, H. Sugiyama, A. Berrington de González, B. French, M. Utada, E.K. Cahoon, A. Sadakane, K. Ozasa, E.J. Grant, and K. Mabuchi. 2018. Incidence of breast cancer in the Life Span Study of atomic bomb survivors: 1958–2009. Radiation Research 190(4):433–444. https://doi.org/10.1667/RR15015.1.

Cahoon, E.K., D.L. Preston, D.A. Pierce, E. Grant, A.V. Brenner, K. Mabuchi, M. Utada, and K. Ozasa. 2017. Lung, laryngeal and other respiratory cancer incidence among Japanese atomic bomb survivors: An updated analysis from 1958 through 2009. Radiation Research 187(5):538–548. https://doi.org/10.1667/RR14583.1.

Cardis, E., M. Vrijheid, M. Blettner, E. Gilbert, M. Hakama, C. Hill, G. Howe, J. Kaldor, C.R. Muirhead, M. Schubauer-Berigan, T. Yoshimura, F. Bermann, G. Cowper, J. Fix, C. Hacker, B. Heinmiller, M. Marshall, I. Thierry-Chef, D. Utterback, Y.-O. Ahn, E. Amoros, P. Ashmore, A. Auvinen, J.-M. Bae, J.B. Solano, A. Biau, E. Combalot, P. Deboodt, A.D. Sacristan, M. Eklof, H. Engels, G. Engholm, G. Gulis, R. Habib, K. Holan, H. Hyvonen, A. Kerekes, J. Kurtinaitis, H. Malker, M. Martuzzi, A. Mastauskas, A. Monnet, M. Moser, M.S. Pearce, D.B. Richardson, F. Rodriguez-Artalejo, A. Rogel, H. Tardy, M. Telle-Lamberton, I. Turai, M. Usel, and K. Veress. 2005. Risk of cancer after low doses of ionising radiation: Retrospective cohort study in 15 countries. British Medical Journal 331(7508):77. https://doi.org/10.1136/bmj.38499.599861.E0.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×

Casasent, A.K., A. Schalck, R. Gao, E. Sei, A. Long, W. Pangburn, T. Casasent, F. Meric-Bernstam, M.E. Edgerton, and N.E. Navin. 2018. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 172(1–2):205–217. https://doi.org/10.1016/j.cell.2017.12.007.

Casero, D., K. Gill, V. Sridharan, I. Koturbash, G. Nelson, M. Hauer-Jensen, M. Boerma, J. Braun, and A.K. Cheema. 2017. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome. Microbiome 5(1):105. https://doi.org/10.1186/s40168-017-0325-z.

CDC (Centers for Disease Control and Prevention). 2018. Radiation Emergency Audience Research. Centers for Disease Control and Prevention. Last modified April 4, 2018. https://www.cdc.gov/nceh/radiation/emergencies/audience.htm (accessed October 8, 2019).

Cheng, Y., R.M. Glaeser, and E. Nogales. 2017. How cryo-EM became so hot. Cell 171(6):1229–1231. https://doi.org/10.1016/j.cell.2017.11.016.

Court-Brown, W.M., and R. Doll. 1957. Leukaemia and Aplastic Anaemia in Patients Irradiated for Ankylosing Spondylitis. Vol. 295. Medical Research Council Special Report Series. London: Her Majesty’s Stationery Office.

Cui, J., G. Yang, Z. Pan, Y. Zhao, X. Liang, W. Li, and L. Cai. 2017. Hormetic response to low dose radiation: Focus on the immune system and its clinical implications. International Journal of Molecular Sciences 18(2). https://doi.org/10.3390/ijms18020280.

Davis, F.G., L.Y. Krestinina, D. Preston, S. Epifanova, M. Degteva, and A.V. Akleyev. 2015. Solid cancer incidence in the Techa River Incidence Cohort: 1956–2007. Radiation Research 184(1):56–65. https://doi.org/10.1667/RR14023.1.

Davis, S., K.J. Kopecky, T.E. Hamilton, L. Onstad, and the Hanford Thyroid Disease Study Team. 2004. Thyroid neoplasia, autoimmune thyroiditis, and hypothyroidism in persons exposed to iodine 131 from the Hanford Nuclear Site. JAMA 292(21):2600–2613. https://doi.org/10.1001/jama.292.21.2600.

Demaria, S., N. Kawashima, A.M. Yang, M.L. Devitt, J.S. Babb, J.P. Allison, and S.C. Formenti. 2005. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clinical Cancer Research 11(2):728. http://clincancerres.aacrjournals.org/content/11/2/728.abstract (accessed December 9, 2019).

Dolinoy, D.C., J.R. Weidman, R.A. Waterland, and R.L. Jirtle. 2006. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environmental Health Perspectives 114(4):567–572. https://doi.org/10.1289/ehp.8700.

Earl, L.A., V. Falconieri, J.L. Milne, and S. Subramaniam. 2017. Cryo-EM: Beyond the microscope. Current Opinion in Structural Biology 46:71–78. https://doi.org/10.1016/j.sbi.2017.06.002.

EPA (Environmental Protection Agency). 1997. National Ambient Air Quality Standards for Particulate Matter. Federal Register 62(138). https://archive.epa.gov/ttn/pm/web/pdf/pmnaaqs.pdf (accessed December 9, 2019).

EPA. 2006. Guidance on Systematic Planning Using the Data Quality Objectives Process: EPA QA/G-4, edited by the Office of Environmental Information. Washington, DC: EPA. https://www.epa.gov/sites/production/files/2015-06/documents/g4-final.pdf (accessed December 9, 2019).

Formenti, S.C., and S. Demaria. 2013. Combining radiotherapy and cancer immunotherapy: A paradigm shift. Journal of the National Cancer Institute 105(4):256–265. https://doi.org/10.1093/jnci/djs629.

Formenti, S.C., N.-P. Rudqvist, E. Golden, B. Cooper, E. Wennerberg, C. Lhuillier, C. Vanpouille-Box, K. Friedman, L. Ferrari de Andrade, K.W. Wucherpfennig, A. Heguy, N. Imai, S. Gnjatic, R.O. Emerson, X.K. Zhou, T. Zhang, A. Chachoua, and S. Demaria. 2018. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nature Medicine 24(12):1845–1851. https://doi.org/10.1038/s41591-018-0232-2.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×

Fournier, L., O. Laurent, E. Samson, S. Caër-Lorho, P. Laroche, B. Le Guen, D. Laurier, and K. Leuraud. 2016. External radiation dose and cancer mortality among French nuclear workers: Considering potential confounding by internal radiation exposure. International Archives of Occupational and Environmental Health 89(8):1183–1191. https://doi.org/10.1007/s00420-016-1152-4.

Frieben, A. 1902. Demonstration eines Cancroid der rechten Handruckens, das sich nach langdauernder Einwirkung von Roentgenstrahlen entwickelt hat. Fortschritte auf dem Gebiete der Roentgenstrahlen 6:106–111.

GAO (Government Accountability Office). 2017. Low Dose Radiation: Interagency Collaboration on Planning Research Could Improve Information on Health Effects. Washington, DC: GAO. https://www.gao.gov/products/GAO-17-546 (accessed December 9, 2019).

Gilbert, E.S., and S. Marks. 1979. An analysis of the mortality of workers in a nuclear facility. Radiation Research 79(1):122–148. https://doi.org/10.2307/3575027.

Goltsev, Y., N. Samusik, J. Kennedy-Darling, S. Bhate, M. Hale, G. Vazquez, S. Black, and G.P. Nolan. 2018. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174(4):968–981. http://doi.org/10.1016/j.cell.2018.07.010.

Grant, E.J., A. Brenner, H. Sugiyama, R. Sakata, A. Sadakane, M. Utada, E.K. Cahoon, C.M. Milder, M. Soda, H.M. Cullings, D.L. Preston, K. Mabuchi, and K. Ozasa. 2017. Solid cancer incidence among the Life Span Study of atomic bomb survivors: 1958–2009. Radiation Research 187(5):513–537. https://doi.org/10.1667/RR14492.1.

Gunasekara, C.J., C.A. Scott, E. Laritsky, M.S. Baker, H. MacKay, J.D. Duryea, N.J. Kessler, G. Hellenthal, A.C. Wood, K.R. Hodges, M. Gandhi, A.B. Hair, M.J. Silver, S.E. Moore, A.M. Prentice, Y. Li, R. Chen, C. Coarfa, and R.A. Waterland. 2019. A genomic atlas of systemic interindividual epigenetic variation in humans. Genome Biology 20(1):105. https://doi.org/10.1186/s13059-019-1708-1.

Guo, Y., D. Li, S. Zhang, Y. Yang, J.J. Liu, X. Wang, C. Liu, D.E. Milkie, R.P. Moore, U.S. Tulu, D.P. Kiehart, J. Hu, J. Lippincott-Schwartz, E. Betzig, and D. Li. 2018. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175(5):1430–1442. https://doi.org/10.1016/j.cell.2018.09.057.

Haley, B., Q. Wang, B. Wanzer, S. Vogt, L. Finney, P.L. Yang, T. Paunesku, and G. Woloschak. 2011. Past and future work on radiobiology mega-studies: A case study at Argonne National Laboratory. Health Physics 100(6):613–621. https://doi.org/10.1097/HP.0b013e3181febad3.

Hall, J., P.A. Jeggo, C. West, M. Gomolka, R. Quintens, C. Badie, O. Laurent, A. Aerts, N. Anastasov, O. Azimzadeh, T. Azizova, S. Baatout, B. Baselet, M.A. Benotmane, E. Blanchardon, Y. Guéguen, S. Haghdoost, M. Harms-Ringhdahl, J. Hess, M. Kreuzer, D. Laurier, E. Macaeva, G. Manning, E. Pernot, J.-L. Ravanat, L. Sabatier, K. Tack, S. Tapio, H. Zitzelsberger, and E. Cardis. 2017. Ionizing radiation biomarkers in epidemiological studies—an update. Mutation Research/Reviews in Mutation Research 771:59–84. https://doi.org/10.1016/j.mrrev.2017.01.001.

Han, Y.-Y., A.O. Youk, H. Sasser, and E.O. Talbott. 2011. Cancer incidence among residents of the Three Mile Island accident area: 1982–1995. Environmental Research 111(8):1230–1235. https://doi.org/10.1016/j.envres.2011.08.005.

Howe, G.R. 1995. Lung cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian Fluoroscopy Cohort Study and a comparison with lung cancer mortality in the Atomic Bomb Survivors Study. Radiation Research 142(3):295–304. https://doi.org/10.2307/3579139.

Howe, G.R., and J. McLaughlin. 1996. Breast cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian Fluoroscopy Cohort Study and a comparison with breast cancer mortality in the Atomic Bomb Survivors Study. Radiation Research 145(6):694–707. https://doi.org/10.2307/3579360.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×

Hwang, S.-L., J.-S. Hwang, Y.-T. Yang, W.A. Hsieh, T.-C. Chang, H.-R. Guo, M.-H. Tsai, J.-L. Tang, I.-F. Lin, and W.P. Chang. 2008. Estimates of relative risks for cancers in a population after prolonged low dose-rate radiation exposure: A follow-up assessment from 1983 to 2005. Radiation Research 170(2):143–148. https://doi.org/10.1667/RR0732.1.

Jeong, M., Y.-W. Jin, K.H. Yang, Y.-O. Ahn, and C.-Y. Cha. 2010. Radiation exposure and cancer incidence in a cohort of nuclear power industry workers in the Republic of Korea, 1992–2005. Radiation and Environmental Biophysics 49(1):47–55. https://doi.org/10.1007/s00411-009-0247-7.

Jirtle, R.L., and M.K. Skinner. 2007. Environmental epigenomics and disease susceptibility. Nature Reviews Genetics 8(4):253–262.

Keating, T.J. 2001. Lessons from the recent history of the Health Effects Institute. Science, Technology, & Human Values 26(4):409–430. https://doi.org/10.1177/016224390102600402.

Kendall, G.M., M.P. Little, R. Wakeford, K.J. Bunch, J.C.H. Miles, T.J. Vincent, J.R. Meara, and M.F.G. Murphy. 2012. A record-based case–control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980–2006. Leukemia 27:3. https://doi.org/10.1038/leu.2012.151.

Kitahara, C.M., M.S. Linet, P. Rajaraman, E. Ntowe, and A. Berrington de González. 2015. A new era of low-dose radiation epidemiology. Current Environmental Health Reports 2(3):236–249. https://doi.org/10.1007/s40572-015-0055-y.

Kopecky, K. J., V. Stepanenko, N. Rivkind, P. Voilleque, L. Onstad, V. Shakhtarin, E. Parshkov, S. Kulikov, E. Lushnikov, A. Abrosimov, V. Troshin, G. Romanova, V. Doroschenko, A. Proshin, A. Tsyb, and S. Davis. 2006. Childhood thyroid cancer, radiation dose from Chernobyl, and dose uncertainties in Bryansk Oblast, Russia: A population-based case-control study. Radiation Research 166:367–374.

Krestinina, L.Y., F.G. Davis, S. Schonfeld, D.L. Preston, M. Degteva, S. Epifanova, and A.V. Akleyev. 2013. Leukaemia incidence in the Techa River cohort: 1953–2007. British Journal of Cancer 109:2886. https://doi.org/10.1038/bjc.2013.614.

Kreuzer, M., A. Auvinen, E. Cardis, M. Durante, M. Harms-Ringdahl, J.R. Jourdain, B.G. Madas, A. Ottolenghi, S. Pazzaglia, K.M. Prise, R. Quintens, L. Sabatier, and S. Bouffler. 2018. Multidisciplinary European Low Dose Initiative (MELODI): Strategic research agenda for low dose radiation risk research. Radiation and Environmental Biophysics 57(1):5–15. https://doi.org/10.1007/s00411-017-0726-1.

Kumar, S., S. Suman, A.J. Fornace, and K. Datta. 2018. Space radiation triggers persistent stress response, increases senescent signaling, and decreases cell migration in mouse intestine. Proceedings of the National Academy of Sciences of the United States of America 115(42):E9832. https://doi.org/10.1073/pnas.1807522115.

Laurier, D., D.B. Richardson, E. Cardis, R.D. Daniels, M. Gillies, J. O’Hagan, G.B. Hamra, R. Haylock, K. Leuraud, M. Moissonnier, M.K. Schubauer-Berigan, I. Thierry-Chef, and A. Kesminiene. 2016. The International Nuclear Workers Study (INWORKS): A collaborative epidemiological study to improve knowledge about health effects of protracted low dose exposure. Radiation Protection Dosimetry 173(1–3):21–25. https://doi.org/10.1093/rpd/ncw314.

Li, H.H., Y.W. Wang, R. Chen, B. Zhou, J.D. Ashwell, and A.J. Fornace, Jr. 2015. Ionizing radiation impairs T cell activation by affecting metabolic reprogramming. International Journal of Biological Sciences 11(7):726–736. https://doi.org/10.7150/ijbs.12009.

Lin, J.R., B. Izar, S. Wang, C. Yapp, S. Mei, P.M. Shah, S. Santagata, and P.K. Sorger. 2018. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLIFE 7:e31657. https://doi.org/10.7554/eLife.31657.

López, C.S., C. Bouchet-Marquis, C.P. Arthur, J.L. Riesterer, G. Heiss, G. Thibault, L. Pullan, S. Kwon, and J.W. Gray. 2017. A fully integrated, three-dimensional fluorescence to electron microscopy correlative workflow. Methods in Cell Biology 140:149–164. https://doi.org/10.1016/bs.mcb.2017.03.008.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×

Mao, J.-H., S.A. Langley, Y. Huang, M. Hang, K.E. Bouchard, S.E. Celniker, J.B. Brown, J.K. Jansson, G.H. Karpen, and A.M. Snijders. 2015. Identification of genetic factors that modify motor performance and body weight using collaborative cross mice. Scientific Reports 5:16247. https://doi.org/10.1038/srep16247.

Mathews, J.D., A.V. Forsythe, Z. Brady, M.W. Butler, S.K. Goergen, G.B. Byrnes, G.G. Giles, A.B. Wallace, P.R. Anderson, T.A. Guiver, P. McGale, T.M. Cain, J.G. Dowty, A.C. Bickerstaffe, and S.C. Darby. 2013. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: Data linkage study of 11 million Australians. British Medical Journal 346:f2360. https://doi.org/10.1136/bmj.f2360.

McLendon, R., A. Friedman, D. Bigner, E.G. Van Meir, D.J. Brat, et al., for The Cancer Genome Atlas Research Network. 2008. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068. https://doi.org/10.1038/nature07385.

Merzenich, H., G.P. Hammer, K. Tröltzsch, K. Ruecker, J. Buncke, F. Fehringer, and M. Blettner. 2014. Mortality risk in a historical cohort of nuclear power plant workers in Germany: Results from a second follow-up. Radiation and Environmental Biophysics 53(2):405–416. https://doi.org/10.1007/s00411-014-0523-z.

Ministro, A., P. de Oliveira, R.J. Nunes, A. dos Santos Rocha, A. Correia, T. Carvalho, J. Rino, P. Faísca, J.D. Becker, J. Goyri-O’Neill, F. Pina, E. Poli, B. Silva-Santos, F. Pinto, M. Mareel, K. Serre, and S. Constantino Rosa Santos. 2017. Low dose ionizing radiation induces therapeutic neovascularization in a pre-clinical model of hindlimb ischemia. Cardiovascular Research 113(7):783–794. https://doi.org/10.1093/cvr/cvx065.

Möckl, L., D.C. Lamb, and C. Bräuchle. 2014. Super-resolved fluorescence microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angewandte Chemie, International Edition in English 53(51):13972–13977. https://doi.org/10.1002/anie.201410265.

Muirhead, C.R., J.A. O’Hagan, R.G.E. Haylock, M.A. Phillipson, T. Willcock, G.L.C. Berridge, and W. Zhang. 2009. Mortality and cancer incidence following occupational radiation exposure: Third analysis of the national registry for radiation workers. British Journal of Cancer 100:206. https://doi.org/10.1038/sj.bjc.6604825.

Nair, R.R.K., B. Rajan, S. Akiba, P. Jayalekshmi, M.K. Nair, P. Gangadharan, T. Koga, H. Morishima, S. Nakamura, and T. Sugahara. 2009. Background radiation and cancer incidence in Kerala, India—Karanagappally Cohort Study. Health Physics 96(1):55–66. https://doi.org/10.1097/01.Hp.0000327646.54923.11.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2019. Long-Term Health Monitoring of Populations Following a Nuclear or Radiological Incident in the United States: Proceedings of a Workshop. Washington, DC: The National Academies Press. https://doi.org/10.17226/25443.

NCRP (National Council on Radiation Protection and Measurements). 2009. Ionizing Radiation Exposure of the Population of the United States. Bethesda, MD: NCRP.

NCRP. 2013. National Crisis: Where Are the Radiation Professionals? (WARP). National Council on Radiation Protection and Measeurements. https://ncrponline.org/wp-content/themes/ncrp/PDFs/WARP_Workshop_Summary.pdf (accessed December 9, 2019).

NCRP. 2018. Implications of Recent Epidemiologic Studies for the Linear Nonthreshold Model and Radiation Protection. Vol. 27. NCRP Commentary. Bethesda, MD: NCRP.

NCRP. 2019a. Medical Radiation Exposure of Patients in the United States. Report 184. Bethesda, MD: NCRP.

NCRP. 2019b. Radiation Exposure in Space and the Potential for Central Nervous System Effects: Phase II. Report No. 183. Bethesda, MD: NCRP.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×

Nikkilä, A., S. Erme, H. Arvela, O. Holmgren, J. Raitanen, O. Lohi, and A. Auvinen. 2016. Background radiation and childhood leukemia: A nationwide register-based case-control study. International Journal of Cancer 139(9):1975–1982. https://doi.org/10.1002/ijc.30264.

NRC (National Research Council). 1998. Research Priorities for Airborne Particulate Matter: I. Immediate Priorities and a Long-Range Research Portfolio. Washington, DC: National Academy Press. https://doi.org/10.17226/6131.

NRC. 1999. Research Priorities for Airborne Particulate Matter: II. Evaluating Research Progress and Updating the Portfolio. Washington, DC: National Academy Press. https://doi.org/10.17226/9646.

NRC. 2001. Research Priorities for Airborne Particulate Matter: III. Early Research Progress. Washington, DC: National Academy Press. https://doi.org/10.17226/10065.

NRC. 2004. Research Priorities for Airborne Particulate Matter: IV. Continuing Research Progress. Washington, DC: The National Academies Press. https://doi.org/10.17226/10957.

NRC. 2012. Analysis of Cancer Risks in Populations Near Nuclear Facilities: Phase 1. Washington, DC: The National Academies Press. https://doi.org/10.17226/13388.

NRC. 2014. Analysis of Cancer Risks in Populations Near Nuclear Facilities: Phase 2: Pilot Planning. Washington, DC: The National Academies Press. https://doi.org/10.17226/18968.

Pearce, M.S., J.A. Salotti, M.P. Little, K. McHugh, C. Lee, K.P. Kim, N.L. Howe, C.M. Ronckers, P. Rajaraman, A.W. Craft, L. Parker, and A. Berrington de González. 2012. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study. The Lancet 380(9840):499–505. https://doi.org/10.1016/S0140-6736(12)60815-0.

Perko, T., M. Van Oudheusden, C. Turcanu, C. Pölzl-Viol, D. Oughton, C. Schieber, T. Schneider, F. Zölzer, C. Mays, M. Martell, S. Baudé, I. Choffel de Witte, I. Prlic, M.C. Cantone, S. Salomaa, T. Duranova, S. Economides, and S. Molyneux-Hodgson. 2019. Towards a strategic research agenda for social sciences and humanities in radiological protection. Journal of Radiological Protection 39(3):766–784. https://doi.org/10.1088/1361-6498/ab0f89.

Pernot, E., J. Hall, S. Baatout, M.A. Benotmane, E. Blanchardon, S. Bouffler, H. El Saghire, M. Gomolka, A. Guertler, M. Harms-Ringdahl, P. Jeggo, M. Kreuzer, D. Laurier, C. Lindholm, R. Mkacher, R. Quintens, K. Rothkamm, L. Sabatier, S. Tapio, F. de Vathiere, and E. Cardis. 2012. Ionizing radiation biomarkers for potential use in epidemiological studies. Mutation Research 751:258–286. https://doi.org/10.1016/j.mrrev.2012.05.003.

Postow, M.A., M.K. Callahan, C.A. Barker, Y. Yamada, J. Yuan, S. Kitano, Z. Mu, T. Rasalan, M. Adamow, E. Ritter, C. Sedrak, A.A. Jungbluth, R. Chua, A.S. Yang, R.-A. Roman, S. Rosner, B. Benson, J.P. Allison, A.M. Lesokhin, S. Gnjatic, and J.D. Wolchok. 2012. Immunologic correlates of the abscopal effect in a patient with melanoma. New England Journal of Medicine 366(10):925–931. https://doi.org/10.1056/NEJMoa1112824.

Preston, D.L., E. Ron, S. Tokuoka, S. Funamoto, N. Nishi, M. Soda, K. Mabuchi, and K. Kodama. 2007. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiation Research 168(1):1–64. https://doi.org/10.1667/RR0763.1.

Preston, D.L., H. Cullings, A. Suyama, S. Funamoto, N. Nishi, M. Soda, K. Mabuchi, K. Kodama, F. Kasagi, and R.E. Shore. 2008. Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. Journal of the National Cancer Institute 100(6):428–436. https://doi.org/10.1093/jnci/djn045.

Preston, D.L., C.M. Kitahara, D.M. Freedman, A.J. Sigurdson, S.L. Simon, M.P. Little, E.K. Cahoon, P. Rajaraman, J.S. Miller, B.H. Alexander, M.M. Doody, and M.S. Linet. 2016. Breast cancer risk and protracted low-to-moderate dose occupational radiation exposure in the US Radiologic Technologists Cohort, 1983–2008. British Journal of Cancer 115:1105. https://doi.org/10.1038/bjc.2016.292.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×

Raber, J., J. Yamazaki, E.R.S. Torres, N. Kirchoff, K. Stagaman, T. Sharpton, M.S. Turker, and A. Kronenberg. 2019. Combined effects of three high-energy charged particle beams important for space flight on brain, behavioral and cognitive endpoints in B6D2F1 female and male mice. Frontiers in Physiology 10(179). https://doi.org/10.3389/fphys.2019.00179.

Richardson, D.B., E. Cardis, R.D. Daniels, M. Gillies, J.A. O’Hagan, G.B. Hamra, R. Haylock, D. Laurier, K. Leuraud, M. Moissonnier, M.K. Schubauer-Berigan, I. Thierry-Chef, and A. Kesminiene. 2015. Risk of cancer from occupational exposure to ionising radiation: Retrospective cohort study of workers in France, the United Kingdom, and the United States (INWORKS). British Medical Journal 351:h5359. https://doi.org/10.1136/bmj.h5359.

Ronckers, C.M., M.M. Doody, J.E. Lonstein, M. Stovall, and C.E. Land. 2008. Multiple diagnostic x-rays for spine deformities and risk of breast cancer. Cancer Epidemiology Biomarkers & Prevention 17(3):605. https://doi.org/10.1158/1055-9965.EPI-07-2628.

Sadakane, A., B. French, A.V. Brenner, D.L. Preston, H. Sugiyama, E.J. Grant, R. Sakata, M. Utada, E.K. Cahoon, K. Mabuchi, and K. Ozasa. 2019. Radiation and risk of liver, biliary tract, and pancreatic cancers among atomic bomb survivors in Hiroshima and Nagasaki: 1958–2009. Radiation Research 192(3):299–310. https://doi.org/10.1667/RR15341.1.

Salomaa, S., J.R. Jourdain, M. Kreuzer, T. Jung, and J. Repussard. 2017. Multidisciplinary European low dose initiative: An update of the MELODI program. International Journal of Radiation Biology 93:1035–1039. https://doi.org/10.1080/09553002.2017.1281463.

Schonfeld, S.J., L.Y. Krestinina, S. Epifanova, M.O. Degteva, A.V. Akleyev, and D.L. Preston. 2013. Solid cancer mortality in the Techa River cohort (1950–2007). Radiation Research 179(2):183–189. https://doi.org/10.1667/RR2932.1.

Schubauer-Berigan, M.K., R.D. Daniels, S.J. Bertke, C.-Y. Tseng, and D.B. Richardson. 2015. Cancer mortality through 2005 among a pooled cohort of U.S. nuclear workers exposed to external ionizing radiation. Radiation Research 183(6):620–631. https://doi.org/10.1667/RR13988.1.

Schwarzenbach, H., D.S.B. Hoon, and K. Pantel. 2011. Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer 11(6):426–437. https://doi.org/10.1038/nrc3066.

Seltser, R., and P.E. Sartwell. 1965. The influence of occupational exposure to radiation on the mortality of American radiologists and other medical specialists. American Journal of Epidemiology 81(1):2–22. https://doi.org/10.1093/oxfordjournals.aje.a120493.

Sergeeva, V.A., E.S. Ershova, N.N. Veiko, E.M. Malinovskaya, A.A. Kalyanov, L.V. Kameneva, S.V. Stukalov, O.A. Dolgikh, M.S. Konkova, A.V. Ermakov, V.P. Veiko, V.L. Izhevskaya, S.I. Kutsev, and S.V. Kostyuk. 2017. Low dose ionizing radiation affects mesenchymal stem cells via extracellular oxidized cell-free DNA: A possible mediator of bystander effect and adaptive response. Oxidative Medicine and Cellular Longevity 2017:22. https://doi.org/10.1155/2017/9515809.

Snijders, A.M., S.A. Langley, Y.-M. Kim, C.J. Brislawn, C. Noecker, E.M. Zink, S.J. Fansler, C.P. Casey, D.R. Miller, Y. Huang, G.H. Karpen, S.E. Celniker, J.B. Brown, E. Borenstein, J.K. Jansson, T.O. Metz, and J.-H. Mao. 2016. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nature Microbiology 2(2):16221. https://doi.org/10.1038/nmicrobiol.2016.221.

Sofia Vala, I., L.R. Martins, N. Imaizumi, R.J. Nunes, J. Rino, F. Kuonen, L.M. Carvalho, C. Rüegg, I.M. Grillo, J.T. Barata, M. Mareel, and S.C.R. Santos. 2010. Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS ONE 5(6):e11222. https://doi.org/10.1371/journal.pone.0011222.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×

Spitzer, M.H., Y. Carmi, N.E. Reticker-Flynn, S.S. Kwek, D. Madhireddy, M.M. Martins, P.F. Gherardini, T.R. Prestwood, J. Chabon, S.C. Bendall, L. Fong, G.P. Nolan, and E.G. Engleman. 2017. Systemic immunity is required for effective cancer immunotherapy. Cell 168(3):487–502. https://doi.org/10.1016/j.cell.2016.12.022.

Spycher, B.D., J.E. Lupatsch, M. Zwahlen, M. Röösli, F. Niggli, M.A. Grotzer, J. Rischewski, M. Egger, and C.E. Kuehni. 2015. Background ionizing radiation and the risk of childhood cancer: A census-based nationwide cohort study. Environmental Health Perspectives 123(6):622–628. https://doi.org/10.1289/ehp.1408548.

Stevens, W., D.C. Thomas, J.L. Lyon, J.E. Till, R.A. Kerber, S.L. Simon, R.D. Lloyd, N.A. Elghany, and S. Preston-Martin. 1990. Leukemia in Utah and radioactive fallout from the Nevada Test Site: A case-control study. JAMA 264(5):585–591. https://doi.org/10.1001/jama.1990.03450050043025.

Sugiyama, H., M. Misumi, A. Brenner, E.J. Grant, R. Sakata, A. Sadakane, M. Utada, D.L. Preston, K. Mabuchi, and K. Ozasa. 2019. Radiation risk of incident colorectal cancer by anatomical site among atomic bomb survivors: 1958–2009. International Journal of Cancer . https://doi.org/10.1002/ijc.32275.

Szatmári, T., D. Kis, E.N. Bogdándi, A. Benedek, S. Bright, D. Bowler, E. Persa, E. Kis, A. Balogh, L.N. Naszályi, M. Kadhim, G. Sáfrány, and K. Lumniczky. 2017. Extracellular vesicles mediate radiation-induced systemic bystander signals in the bone marrow and spleen. Frontiers in Immunology 8(347). https://doi.org/10.3389/fimmu.2017.00347.

Takahashi, S., K. Inoue, M. Suzuki, Y. Urushihara, Y. Kuwahara, G. Hayashi, S. Shiga, M. Fukumoto, Y. Kino, T. Sekine, Y. Abe, T. Fukuda, E. Isogai, H. Yamashiro, and M. Fukumoto. 2015. A comprehensive dose evaluation project concerning animals affected by the Fukushima Daiichi Nuclear Power Plant accident: Its set-up and progress. Journal of Radiation Research 56(Suppl 1):i36–i41. https://doi.org/10.1093/jrr/rrv069.

Tao, Z., S. Akiba, Y. Zha, Q. Sun, J. Zou, J. Li, Y. Liu, Y. Yuan, S. Tokonami, H. Morishoma, T. Koga, S. Nakamura, T. Sugahara, and L. Wei. 2012. Cancer and non-cancer mortality among inhabitants in the high background radiation area of Yangjiang, China (1979–1998). Health Physics 102(2):173–181. https://doi.org/10.1097/HP.0b013e31822c7f1e.

Thompson, D.E., K. Mabuchi, E. Ron, M. Soda, M. Tokunaga, S. Ochikubo, S. Sugimoto, T. Ikeda, M. Terasaki, S. Izumi, and D.L. Preston. 1994. Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958-1987. Radiation Research 137(2):S17–S67. https://doi.org/10.2307/3578892.

Tsujikawa, T., S. Kumar, R.N. Borkar, V. Azimi, G. Thibault, Y.H. Chang, A. Balter, R. Kawashima, G. Choe, D. Sauer, E. El Rassi, D.R. Clayburgh, M.F. Kulesz-Martin, E.R. Lutz, L. Zheng, E.M. Jaffee, P. Leyshock, A.A. Margolin, M. Mori, J.W. Gray, P.W. Flint, and L.M. Coussens. 2017. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Reports 19(1):203–217. https://doi.org/10.1016/j.celrep.2017.03.037.

U.S. Army Peacekeeping and Stability Operations Institute. 2013. Strategic lesson number 15: Radiological hazards during disaster relief operations. In Strategic Lessons in Peacekeeping and Stability Operations, Strategic Lessons Series 16–19. https://publications.armywarcollege.edu/pubs/1179.pdf (accessed December 9, 2019).

Utada, M., A.V. Brenner, D.L. Preston, J.B. Cologne, R. Sakata, H. Sugiyama, A. Sadakane, E.J. Grant, E.K. Cahoon, K. Ozasa, and K. Mabuchi. 2019. Radiation risks of uterine cancer in atomic bomb survivors: 1958–2009. JNCI Cancer Spectrum 2(4). https://doi.org/10.1093/jncics/pky081.

Vanpouille-Box, C., A. Alard, M.J. Aryankalayil, Y. Sarfraz, J.M. Diamond, R.J. Schneider, G. Inghirami, C.N. Coleman, S.C. Formenti, and S. Demaria. 2017. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nature Communications 8(1):15618. https://doi.org/10.1038/ncomms15618.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×

Wang, Y., L.A. Bannister, S. Sebastian, Y. Le, Y. Ismail, C. Didychuk, R.B. Richardson, F. Flegal, L.C. Paterson, P. Causey, A. Fawaz, H. Wyatt, N. Priest, and D. Klokov. 2019. Low dose radiobiology program at Canadian nuclear laboratories: Past, present, and future. International Journal of Radiation Biology 95(10):1361–1371. https://doi.org/10.1080/09553002.2018.1562252.

Wasserstein, R.L., and N.A. Lazar. 2016. The ASA statement on p-values: Context, process, and purpose. The American Statistician 70(2):129–133. https://doi.org/10.1080/00031305.2016.1154108.

Wing, S., C.M. Shy, J.L. Wood, S. Wolf, D.L. Cragle, and E.L. Frome. 1991. Mortality among workers at Oak Ridge National Laboratory: Evidence of radiation effects in follow-up through 1984. JAMA 265(11):1397–1402. https://doi.org/10.1001/jama.1991.03460110063025.

Zablotska, L.B., E. Ron, A.V. Rozhko, M. Hatch, O.N. Polyanskaya, A.V. Brenner, J. Lubin, G.N. Romanov, R.J. McConnell, P. O’Kane, V.V. Evseenko, V.V. Drozdovitch, N. Luckyanov, V.F. Minenko, A. Bouville, and V.B. Masyakin. 2010. Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. British Journal of Cancer 104:181. https://doi.org/10.1038/sj.bjc.6605967.

Zablotska, L.B., R.S.D. Lane, and P.A. Thompson. 2014. A reanalysis of cancer mortality in Canadian nuclear workers (1956–1994) based on revised exposure and cohort data. British Journal of Cancer 110(1):214–223. https://doi.org/10.1038/bjc.2013.592.

Zander, A., T. Paunesku, and G. Woloschak. 2019. Radiation databases and archives—examples and comparisons. International Journal of Radiation Biology 95(10):1378–1389. https://doi.org/10.1080/09553002.2019.1572249.

Zhao, Y., S. Chen, A.C. Swensen, W.J. Qian, and E. Gouaux. 2019. Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science 364(6438):355–362. https://doi.org/10.1126/science.aaw8250.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×
Page 79
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×
Page 80
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×
Page 81
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×
Page 82
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×
Page 83
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×
Page 84
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×
Page 85
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×
Page 86
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×
Page 87
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2019. The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium. Washington, DC: The National Academies Press. doi: 10.17226/25578.
×
Page 88
Next: Appendix A: Agenda »
The Future of Low Dose Radiation Research in the United States: Proceedings of a Symposium Get This Book
×
Buy Paperback | $75.00 Buy Ebook | $59.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Exposures at low doses of radiation, generally taken to mean doses below 100 millisieverts, are of primary interest for setting standards for protecting individuals against the adverse effects of ionizing radiation. However, there are considerable uncertainties associated with current best estimates of risks and gaps in knowledge on critical scientific issues that relate to low dose radiation.

The Nuclear and Radiation Studies Board of the National Academies hosted the symposium on The Future of Low Dose Radiation Research in the United States on May 8 and 9, 2019. The goal of the symposium was to provide an open forum for a national discussion on the need for a long-term strategy to guide a low dose radiation research program in the United States. The symposium featured presentations on low dose radiation programs around the world, panel discussions with representatives from governmental and nongovernmental organizations about the need for a low dose radiation research program, reviews of low dose radiation research in epidemiology and radiation biology including new directions, and lessons to be learned from setting up large research programs in non-radiation research fields. This publication summarizes the presentation and discussion of the symposium.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!