3
Results
LITERATURE SEARCH RESULTS
The objective of this evidence scan was to assess the status of evidence on the nutrient content of human milk and on the volume of milk, both of which are needed to understand nutrient consumption by healthy breastfed infants. The results of the scan are intended to be used to update the U.S. Department of Agriculture’s National Nutrient Database for Standard Reference (USDA SR Database) and support future comprehensive systematic reviews to update specific Dietary Reference Intake (DRI) nutrients relevant to the nutrient requirements of infants from birth through 12 months of age in the United States and Canada. This approach took the following five key steps:
- Develop an analytic framework on the basis of appropriate markers of adequate intake of both nutrients and milk volume.
- Consult subject-matter experts on nutrients needed to support normal growth and development of infants.
- Use an analytic framework to develop and carry out a literature scan with relevant key words.
- Review abstracts and publications for relevance relative to prespecified criteria.
- Reach a consensus on the relevance of the evidence to updating the USDA SR Database and supporting the DRI process.
The results from the evidence scan are presented in Figure 3-1. The December 2019 searches produced 15,152 records on nutrient composition and 14,807 records on milk volume. The January 2020 searches produced 8,113 articles on nutrient composition and 4,690 articles on milk volume. Combined, the two search sets retrieved 42,762 articles on nutrient composition and milk volume. After removing 8,978 duplicate records from the December search and 2,268 duplicate records from the January search, there remained 31,516 unique citations. During title and abstract screening, 30,236 records were excluded, leaving 1,190 for full-text screening. The committee excluded 792 records during the first round of full-text screening and 272 during the second round (see Chapter 4 for a discussion of exclusion reasons). The final number of reports remaining for inclusion was 126.

In the process of review and abstraction of the identified studies the committee found no eligible studies on fluoride, vitamin B12, or niacin, and no eligible studies on total carbohydrate (although there were studies on lactose). Additionally, only one to two studies were found for biotin, molybdenum, pantothenic acid, riboflavin, thiamin, and vitamins C, D, and K. This is a result of both the small number of participants studied in any category of infant age as well as the need to use newer methods to analyze milk composition for DRI nutrients. Figure 3-2 compares the number of studies identified by nutrient, and Figure 3-3 shows the number of dyads for each nutrient in the combined results.


Included Studies
Using a Web-based spreadsheet (Google) (see Appendix E), the committee evaluated each of the 398 potentially relevant articles in its entirety. From the initial list, 94 articles relevant to the nutrient content in human milk, 24 relevant to milk volume, and 8 articles relevant to both nutrient content and milk volume combined were determined to be relevant to the committee’s criteria. A description of the selected articles is provided in Tables 3-1, 3-2, and 3-3. The committee notes that only three articles in the latter two tables met the committee’s general inclusion criteria and also contained data on the milk volumes produced by mothers of infants 6 to 12 months old. These mothers were not exclusively breastfeeding and, thus, these data did not meet the specific inclusion criteria, which required this behavior (see Notes to Tables 3-2 and 3-3). In response to the committee’s task, these tables represent the sum of the committee’s evidence-scan results.
TABLE 3-1 Assessment of Included Studies of Nutrient Composition in Human Milk on the Basis of Prespecified Criteria (Data Include Infants Who May or May Not Have Been Exclusively Breastfed)
Study Authors, Year | Study Type | Study Populationa | Nutrient(s) | Nutrient Analysis Methodology | Outcome (mean ± SD)b | Additional Comments |
---|---|---|---|---|---|---|
Denic et al., 2019 | Prospective cohort | 43 Serbian dyads, 0–1 mo pp | Vitamin A | HPLC | Women age ≥ 35 years | This article reported additional nutrients (total lipids) that did not meet the inclusion criteria |
0.48 ± 0.08 μg/mL (1 mo pp) | ||||||
Women age < 35 years | ||||||
0.46 ± 0.11 μg/mL (1 mo pp) | ||||||
Minato et al., 2019 | Prospective cohort | Japanese dyads, 82 at 1 mo pp, 48 at 3 mo pp | Calcium | Multitype emission spectrometer | 29.8 (26.7, 33.3) mg/dL (1 mo pp) | This article reported additional nutrients (total lipids, total proteins, total carbohydrates) that did not meet the inclusion criteria |
28.7 (25.9, 31.9) mg/dL (3 mo pp) | ||||||
Phosphorus | Multitype emission spectrometer | 16.6 (14.6, 18.3) mg/dL (1 mo pp) | Values are expressed as: median (25%, 75%) | |||
13.4 (11.6, 14.4) mg/dL (3 mo pp) | ||||||
Wong et al., 2019 | Cross-sectional | 49 Chinese dyads, 2–12 mo pp | Fatty acids | Solvent extraction – GC | 2–6 mo pp (%wt/wt of all fatty acids) | |
17.89 ± 4.09 (linoleic acid) | ||||||
2.20 ± 1.02 (α-linolenic acid) | ||||||
0.36 ± 0.31 (EPA) | ||||||
0.86 ± 0.66 (DHA) | ||||||
7–12 mo pp (%wt/wt of all fatty acids) | ||||||
16.83 ± 3.63 (linoleic acid) | ||||||
2.01 ± 0.66 (α-linolenic acid) | ||||||
0.26 ± 0.28 (EPA) | ||||||
0.91 ± 0.88 (DHA) | ||||||
Total lipid | Solvent | 39.13 ± 14.69 g/L (2–6 mo pp) | ||||
extraction – GC | 36.76 ± 9.76 g/L (7–12 mo pp) |
Butts et al., 2018 | Cross-sectional | 78 New Zealand mothers of Asian, Māori, Pacific Island, or European ethnicity, 6–8 wk pp | Calcium | ICP-MS | 27.5 ± 1.3 mg/100 g (Asian) |
Sample included women classified as overweight and obese (BMI range 20–39) Values are expressed as: mean ± standard error This article reported additional nutrients (selenium, zinc, fatty acids, total lipid, total protein, carbohydrate) that did not meet the inclusion criteria |
29.1 ± 1.0 mg/100 g (Māori and Pacific Island) | ||||||
30.9 ± 0.7 mg/100 g (New Zealand European) | ||||||
Magnesium | ICP-MS | 3.08 ± 0.08 mg/100 g (Asian) | ||||
3.01 ± 0.11 mg/100 g (Māori and Pacific Island) | ||||||
10.19 ± 6.20 mg/100 g (New Zealand European) | ||||||
Taravati Javad et al., 2018 | Cross-sectional | 100 Iranian dyads, 1–12 mo pp | Zinc | ICP-MS | 1.38 ± 1.1 μg/mL | |
Copper | ICP-MS | 0.35 ± 0.1 μg/mL | ||||
Magnesium | ICP-MS | 34.58 ± 9.5 μg/mL | ||||
Iron | ICP-MS | 0.75 ± 1.4 μg/mL | ||||
Calcium | ICP-MS | 255 ± 68.8 μg/mL | ||||
Sodium | ICP-MS | 155.72 ± 111.5 μg/mL | ||||
Wang et al., 2018 | Prospective cohort | 106 Chinese dyads, 0–12 wk pp | Iodine | ICP-MS | 221.7 ± 103.5 μg/L (4 wk pp) | |
175.2 ± 76.2 μg/L (8 wk pp) | ||||||
148.1 ± 66.2 μg/L (12 wk pp) | ||||||
Wiedeman et al., 2018 | Cross-sectional | 301 Canadian dyads, 8 wk pp | Choline | LC-MS/MS | 1106 (1071, 1140) μmol/L (water-soluble choline) | Values are expressed as: mean (95% CI) |
(water-soluble choline = sum of free choline, phosphocholine, and glycerophosphocholine) | ||||||
Dold et al., 2017 | Cross-sectional | 386 Chinese dyads, 109 Croatian dyads; 2–26 wk pp | Iodine | MC-ICP-MS | 132 (91, 182) μg/d (China) | Values are expressed as: median (IQR) |
97 (72, 146) μg/d (Croatia) |
Doneray et al., 2017 | Prospective cohort | 37 Turkish dyads, measured at 8–12 d pp and 25–30 d pp | Zinc | AAS | 8–12 d pp | Milk samples were obtained before (foremilk) and after (hindmilk) a feeding period from the same women |
641.1 ± 500.1 μg/dL (foremilk) | ||||||
455.2 ± 215.1 μg/dL (hindmilk) | ||||||
25–30 d pp | ||||||
575.1 ± 275.1 μg/dL (foremilk) | ||||||
336.1 ± 235.1 μg/dL (hindmilk) | ||||||
Goran et al., 2017 | Prospective cohort | 25 dyads, 1–6 mo pp | Lactose | LC-MS/MS | 7.8 ± 0.8 g/dL (1 mo pp) | |
7.5 ± 0.7 g/dL (6 mo pp) | ||||||
Huynh et al., 2017b | Cross-sectional | 538 Australian dyads, 3 mo pp | Iodine | ICP-MS | 127 (84–184) μg/L | Values are expressed as: median (IQR) |
Kim et al., 2017 | Cross-sectional | 165 South Korean mothers from 8 metropolitan cities, 1–11 mo pp | Sodium | ICP-OES | 11.71 ± 6.02 mg/dL |
Approximately half of the women were taking dietary supplements; data presented in this table are for nonsupplement users This article reported additional nutrients (lactose, total protein, total fat, retinol, vitamin E, iron, zinc, copper, manganese) that did not meet the inclusion criteria |
Potassium | ICP-OES | 38.58 ± 8.91 mg/dL | ||||
Calcium | ICP-OES | 27.24 ± 5.62 mg/dL | ||||
Phosphorus | ICP-OES | 13.44 ± 3.21 mg/dL | ||||
Magnesium | ICP-OES | 3.01 ± 0.63 mg/dL | ||||
Perrin et al., 2017 | Prospective cohort | 19 dyads, 11–12 mo pp | Lactose | HPLC | 5.7 ± 0.7 g/dL (11 mo pp) | This article reported additional nutrients (total lipid, total protein, iron, zinc) and milk volume that did not meet the inclusion criteria |
6.0 ± 0.8 g/dL (12 mo pp) | ||||||
Calcium | ICP-OES | 200 ± 29 μg/mL (11 mo pp) | ||||
200 ± 25 μg/mL (12 mo pp) | ||||||
Sodium | ICP-OES | 70 ± 19 μg/mL (11 mo pp) | ||||
70 ± 24 μg/mL (12 mo pp) | ||||||
Potassium | ICP-OES | 370 ± 51 μg/mL (11 mo pp) | ||||
380 ± 69 μg/mL (12 mo pp) |
Sunaric et al., 2017 | Cross-sectional | 67 Serbian dyads, 0–10 mo pp | Riboflavin | HPLC | 0.228 ± 0.035 μg/mL (8–14 d pp) | This article reported additional nutrients (total fat, total protein, vitamin E, calcium, magnesium, sodium, potassium, chloride) that did not meet the inclusion criteria |
0.453 ± 0.05 μg/mL (15–300 d pp) | ||||||
Thiamin | HPLC | 0.094 ± 0.012 μg/mL (8–14 d pp) | ||||
0.248 ± 0.05 μg/mL (15–300 d pp) | ||||||
Vitamin C | HPLC | 22.6 ± 3.7 μg/mL (8–14 d pp) | ||||
35.4 ± 5.2 μg/mL (15–300 d pp) | ||||||
Xue et al., 2017 | Cross-sectional | 509 Chinese dyads, 0–240 d pp | Vitamin E | Ultra HPLC | 239 (145–396) μg/mL (12–30 d pp) | |
206 (126–345) μg/mL (31–60 d pp) | ||||||
212 (112–300) μg/mL (61–120 d pp) | ||||||
211 (135–326) μg/mL (121–240 d pp) | ||||||
Martysiak-Zurowska et al., 2016 | Cross-sectional | 16 Polish dyads, 15–90 d pp | Vitamin C | HPLC | 43.4 ± 17.1 mg/L (15 d pp) | |
56.3 ± 12.9 mg/L (30 d pp) | ||||||
55.2 ± 15.7 mg/L (90 d pp) | ||||||
Panagos et al., 2016 | Case-control | 21 dyads, 4–10 wk pp | Vitamin A | HPLC | 4.6 ± 1.7 μg/dL | Study also reported data for obese women |
Vitamin E | HPLC | 378 ± 171.7 μg/dL | This article reported additional nutrients (total fat, total protein, lactose, vitamin B12) that did not meet the inclusion criteria | |||
Vitamin D | Extraction by radioimmunoassay procedure | 1.3 ± 0.6 ng/mL | ||||
Folate | L. casei microbial assay | 46.4 ± 42.2 ng/mL | ||||
Fatty acids | Modified Folch method | 16.6 ± 3.4 mol% (linoleic acid) | ||||
1.7 ± 0.6 mol% (α-linolenic acid) |
0.8 ± 0.04 mol% (EPA) | ||||||
0.3 ± 0.1 mol% (DHA) | ||||||
Dumrongwongsiri et al., 2015 | Cross-sectional | 34 Thai dyads, 4–6 mo pp | Zinc | ICP-MS | 1.57 (0.5, 3.2) mg/L | Values are expressed as: median (min, max) |
Mahdavi et al., 2015 | RCT | 27 Iranian dyads, 90–120 d pp | Zinc | Flame AAS | 2.34 ± 0.79 mg/L (preintervention) |
Study also reports values for women who received synbiotic supplements |
1.74 ± 0.79 mg/L (postintervention) |
||||||
Copper | Flame AAS | 0.39 ± 0.23 mg/L (preintervention) |
Values are expressed as: mean ± SEM | |||
0.23 ± 0.27 mg/L (postintervention) |
||||||
Iron | Flame AAS | 0.36 ± 0.28 mg/L (preintervention) |
||||
0.18 ± 0.20 mg/L (postintervention) |
||||||
Magnesium | Flame AAS | 16.92 ± 0.75 mg/L (preintervention) |
||||
16.22 ± 0.71 mg/L (postintervention) |
||||||
Calcium | Flame AAS | 195 ± 17.4 mg/L (preintervention) |
||||
174.9 ± 16.6 mg/L (postintervention) |
Matos et al., 2014 | Prospective cohort | 31 Portuguese dyads, 1–16 wk pp | Chromium | ICP-MS | 49.74 ± 20.98 μg/kg (4 wk pp) | |
37.93 ± 13.66 μg/kg (8 wk pp) | ||||||
35.11 ± 15.55 μg/kg (12 wk pp) | ||||||
34.94 ± 9.55 μg/kg (16 wk pp) | ||||||
Molybdenu m | ICP-MS | 3.06 ± 3.73 μg/kg (4 wk pp) | ||||
2.69 ± 2.52 μg/kg (8 wk pp) | ||||||
3.87 ± 3.00 μg/kg (12 wk pp) | ||||||
3.30 ± 2.64 μg/kg (16 wk pp) | ||||||
Ozarda et al., 2014 | Prospective cohort | 53 Turkish dyads, 1–180 d pp | Choline | HPLC-EC | Total choline | Values are expressed as: median (IQR) |
1532 (1250–1695) μmol/L (22–180 d pp) | ||||||
Stimming et al., 2014 | Cross-sectional | 118 dyads, 8 wk pp | Vitamin E | HPLC | 569.3 ± 322.3 μg/100 mL (α-tocopherol) | This article reported additional nutrients (fatty acids) that did not meet the inclusion criteria |
640.0 ± 354.3 μg/100 mL (total vitamin E) | ||||||
Zhao et al., 2014 | Cross-sectional | 444 Chinese dyads | Sodium | ICP-MS | 25.9 ± 26.2 mg/100 g (12–30 d pp) | This article reported additional nutrients (copper, iodine, iron, zinc, selenium) that did not meet the inclusion criteria |
14.3 ± 6.8 mg/100 g (31–60 d pp) | ||||||
13.3 ± 6.9 mg/100 g (61–120 d pp) | ||||||
12.1 ± 9.3 mg/100 g (121–240 d pp) | ||||||
Calcium | ICP-MS | 293.6 ± 46.7 mg/kg (12–30 d pp) | ||||
309.6 ± 43.1 mg/kg (31–60 d pp) | ||||||
287.4 ± 40.0 mg/kg (61–120 d pp) | ||||||
267.4 ± 43.8 mg/kg (121–240 d pp) |
Phosphorus | ICP-MS | 148.0 ± 25.0 mg/kg (12–30 d pp) | ||||
136.4 ± 19.3 mg/kg (31–60 d pp) | ||||||
118.0 ± 11.4 mg/kg (61–120 d pp) | ||||||
113.4 ± 19.3 mg/kg (121–240 d pp) | ||||||
Potassium | ICP-MS | 601.3 ± 79.6 mg/kg (12–30 d pp) | ||||
537.6 ± 63.5 mg/kg (31–60 d pp) | ||||||
489.1 ± 61.4 mg/kg (61–120 d pp) | ||||||
459.1 ± 48.3 mg/kg (121–240 d pp) | ||||||
Magnesium | ICP-MS | 33.1 ± 5.6 mg/kg (12–30 d pp) | ||||
32.8 ± 5.1 mg/kg (31–60 d pp) | ||||||
35.8 ± 3.9 mg/kg (61–120 d pp) | ||||||
35.9 ± 6.6 mg/kg (121–240 d pp) | ||||||
Jozwik et al., 2013 | Prospective cohort | 13 Polish and American dyads, 1–10 d pp | Lactose | HPLC | 171.2 ± 6.1 mmol (d 8 pp) | Data are reported as: mean ± SEM |
169.2 ± 6.6 mmol (d 9 pp) | ||||||
170.1 ± 4.8 mmol (d 10 pp) | ||||||
Martysiak-Zurowska et al., 2013 | Cross-sectional | 48 lactating Polish dyads | Vitamin E | NP-HPLC with UV detection | 4.59 ± 0.93 TE mg/L (d 14 pp) |
Some women were taking vitamin supplements at time of sampling; milk vitamin E concentrations did not differ significantly between supplement users and nonusers (3.46 ± 1.36 versus 3.35 ± 1.25 TE mg/L) No statement about the health of the mother or infant |
3.00 ± 0.85 TE mg/L (d 30 pp) | ||||||
2.13 ± 0.67 TE mg/L (d 90 pp) | ||||||
Total lipid | Solvent extraction – HPLC | 3.23 ± 0.44% (d 14 pp) | ||||
3.68 ± 0.52% (d 30 pp) | ||||||
3.87 ± 0.40% (d 90 pp) |
Severi et al., 2013 | Cross-sectional | 123 Uruguayan dyads, 4 mo pp | Zinc | Flame AAS | 1.20 (1.10–1.46) mg/L (4 mo pp) | Values are expressed as: median (CI 95%) |
Szlagatys-Sidorkiewicz et al., 2013 | Cross-sectional | 136 Polish dyads, 17–30 d pp | Total lipid | Solvent extraction – HRGC | 3.0 ± 1.54 (per 100 g of milk) | Also reported data for women who smoked |
Fatty acids | Solvent extraction – HRGC | Weight % per 100 g fatty acids | ||||
10.00 ± 1.91 (linoleic acid) | ||||||
1.17 ± 0.47 (α-linolenic acid) | ||||||
0.07 ± 0.10 (EPA) | ||||||
0.33 ± 0.10 (DHA) | ||||||
Urzica et al., 2013 | RCT | Romanian dyads, 2–4 mo pp; 15 controls; 17 and 19 in two treatment groups | Magnesium | AAS | Baseline | |
1.05 ± 0.10 mmol/L (control) | ||||||
1.16 ± 0.11 mmol/L (group 1) | ||||||
0.97 ± 0.16 mmol/L (group 2) | ||||||
Postintervention | ||||||
1.11 ± 0.015 mmol/L (control) | ||||||
Yagi et al., 2013 | Cross-sectional | 20 Japanese dyads, 60–188 d pp | Vitamin B6 | HPLC | 101 ± 0.32 μmol/L | |
Qian et al., 2012 | Cross-sectional | 750 Chinese dyads, 42 d pp | Zinc | AAS | 36.29 ± 7.72 μmol/L | |
Szlagatys-Sidorkiewicz et al., 2012 | Prospective cohort | 49 Polish dyads, 3–32 d pp | Vitamin A | HPLC | 84.70 (51.45–134.68) μg/L (d 30–32 pp) |
Mother–infant dyads reported taking vitamin supplements; study authors reported no significant difference in mean breast milk concentrations between supplemented and nonsupplemented women Values are expressed as: median (IQR) |
Vitamin E | HPLC | 1.10 (0.74–3.94) mg/L (d 30–32 pp) |
Fischer et al., 2010 | Case-control | 48 dyads, 45 d pp | Choline | Liquid chromatography -electrospray ionization isotope dilution mass spectrometry | 83 ± 8 nmol/mL free choline | Values are expressed as: mean ± SE |
Mahdavi et al., 2010 | Cross-sectional | 182 Iranian dyads, 90–120 d pp | Zinc | AAS | 1.93 ± 0.5 mg/L (urban) | |
1.77 ± 0.5 mg/L (rural) | ||||||
1.85 ± 0.5 mg/L (total) | ||||||
Iron | AAS | 0.81 ± 0.2 mg/L (urban | ||||
0.9 ± 0.3 mg/L (rural) | ||||||
0.85 ± 0.2 mg/L (total) | ||||||
Copper | AAS | 0.58 ± 0.4 mg/L (urban | ||||
0.49 ± 0.2 mg/L (rural) | ||||||
0.53 ± 0.3 mg/L (total) | ||||||
Qian et al., 2010 | Cross-sectional | 60 Chinese dyads, 8–10 d pp | Calcium | AAS | 30 (27, 31) mg/dL (group 1) | Groups 1–3 were urban populations; group 4 was a suburban population |
29 (28, 30) mg/dL (group 2) | ||||||
28 (27, 29) mg/dL (group 3) | ||||||
27 (25, 28) mg/dL (group 4) | ||||||
This article reported additional nutrients (total lipid, total protein, lactose, iron, copper, zinc) that did not meet the inclusion criteria | ||||||
Manganese | AAS | 1.9 (1.6, 2.1) mg/dL (group 1) | ||||
1.9 (1.7, 2.1) mg/dL (group 2) | ||||||
1.8 (1.6, 2.1) mg/dL (group 3) | ||||||
0.7 (0.5, 1.3) mg/dL (group 4) | ||||||
Phosphorus | AAS | 17 (16, 18) mg/dL (group 1) | ||||
16 (14, 17) mg/dL (group 2) | Values are expressed as: median (IQR) | |||||
16 (15, 17) mg/dL (group 3) | ||||||
13 (12, 14) mg/dL (group 4) | ||||||
Potassium | AAS | 62 (53, 69) mg/dL (group 1) | ||||
61 (56, 68) mg/dL (group 2) | ||||||
63 (59, 68) mg/dL (group 3) |
47 (43, 48) mg/dL (group 4) | ||||||
Sodium | AAS | 30 (21, 36) mg/dL (group 1) | ||||
26 (18, 37) mg/dL (group 2) | ||||||
24 (19, 30) mg/dL (group 3) | ||||||
12 (9, 16) mg/dL (group 4) | ||||||
Han et al., 2009 | Prospective cohort | 20 Korean dyads, 0–6 mo pp | Folate | Microbiological assay | 365 ± 207 nmol/L (2 mo pp) | |
201 ± 86 nmol/L (6 mo pp) | ||||||
Hannan et al., 2009 | Prospective cohort | 31 dyads (WIC participants), measured at 30–45 d pp and 75–90 d pp | Zinc | AAS | 2.1 ± 1.4 mg/L (30–45 d pp) | This article reported additional nutrients (selenium, iodine) that did not meet the inclusion criteria |
2.0 ± 1.7 mg/L (75–90 d pp) | ||||||
Iron | AAS | 0.5 ± 1.0 mg/L (30–45 d pp) | ||||
0.4 ± 0.3 mg/L (75–90 d pp) | ||||||
Houghton et al., 2009 | Randomized placebo controlled intervention | 23 Canadian dyads, 1–16 wk pp | Folate | L. rhamnoses | 193 ± 62 nmol/L (wk 4 pp) | |
207 ± 76 nmol/L (wk 8 pp) | ||||||
183 ± 57 nmol/L (wk 16 pp) | ||||||
Matos et al., 2009 | Prospective cohort | 31 Portuguese dyads, 1–16 wk pp | Copper | ICP-MS | 379.6 ± 93.7 μg/kg (4 wk pp) | The study authors note that results are expressed as µg/kg milk, which is roughly equivalent to µg/L milk |
292.4 ± 77.0 μg/kg (8 wk pp) | ||||||
259.5 ± 94.6 μg/kg (12 wk pp) | ||||||
240.7 ± 98.0 μg/kg (16 wk pp) | ||||||
Zinc | ICP-MS | 2160.6 ± 589.4 μg/kg (4 wk pp) | ||||
1491.4 ± 619.5 μg/kg (8 wk pp) | ||||||
1084.2 ± 537.2 μg/kg (12 wk pp) | ||||||
1014.1 ± 461.5 μg/kg (16 wk pp) | ||||||
Manganese | ICP-MS | 3.65 ± 1.99 μg/kg (4 wk pp) | ||||
2.29 ± 1.13 μg/kg (8 wk pp) | ||||||
2.86 ± 1.67 μg/kg (12 wk pp) | ||||||
2.44 ± 1.49 μg/kg (16 wk pp) | ||||||
Selenium | ICP-MS | 25.47 ± 7.10 μg/kg (4 wk pp) |
19.95 ± 6.76 μg/kg (8 wk pp) | ||||||
20.16 ± 5.38 μg/kg (12 wk pp) | ||||||
19.49 ± 3.58 μg/kg (16 wk pp) | ||||||
Zimmerman et al., 2009 | Prospective cohort | 48 Israeli dyads, 1–6 mo pp | Lactose | HPLC | 192.2 ± 10.52 μmol/L (prefast) | This article reported additional nutrients (protein, calcium, phosphorus) that did not meet the inclusion criteria |
Sodium | AAS | 0.0138 ± 0.003 mmol/L (prefast) | ||||
Shehadeh et al., 2006 | Cross-sectional | 41 Israeli dyads, 3 mo pp | Calcium | AAS | 25.8 ± 3.9 mg/dL | This article reported additional nutrients (total fat, total protein, carbohydrates) that did not meet the inclusion criteria |
Sodium | AAS | 16.2 ± 3.9 mEq/dL | ||||
Hunt et al., 2005 | Prospective cohort | 45 dyads, 1–4 mo pp | Calcium | ICAP-ES | 281 ± 11.5 mg/L (1 mo pp) | Values are expressed as: mean ± SEM |
268 ± 11.5 mg/L (4 mo pp) | ||||||
Magnesium | ICAP-ES | 28.6 ± 2.2 mg/L (1 mo pp) | This article reported additional nutrients (boron) that did not meet the inclusion criteria | |||
33.0 ± 2.2 mg/L (4 mo pp) | ||||||
Zinc | ICAP-ES | 2.3 ± 0.26 mg/L (1 mo pp) | ||||
1.0 ± 0.26 mg/L (4 mo pp) | ||||||
Ilcol et al., 2005 | Cross-sectional | 12 Turkish women, 0–180 d pp | Choline | Enzymatic radiochemical method | 19.2 ± 0.9 μmol/L (12–28 d pp) | |
18.0 ± 0.6 μmol/L (75–90 d pp) | ||||||
16.2 ± 0.7 μmol/L (165–180 d pp) | ||||||
Meneses et al., 2005 | Cross-sectional | 49 Brazilian dyads, 30–120 d pp | Vitamin A | HPLC | 1.4 ± 0.1 μmol/L | Values are expressed as: mean ± SEM |
Domellof et al., 2004 | Cross-sectional | 86 Swedish dyads, 9 mo pp | Iron | AAS | 0.29 ± 0.21 mg/L | |
Zinc | AAS | 0.46 ± 0.26 mg/L | ||||
Copper | AAS | 0.12 ± 0.22 mg/L |
Schweigert et al., 2004 | Prospective cohort | 21 German dyads, 4–19 d pp | Vitamin E | HPLC | 13.2 ± 5.1 μmol/L (d 19 pp) | |
Vitamin A | HPLC | 2.90 ± 1.12 μmol/L (d 19 pp) | ||||
Canfield et al., 2003 | Cross-sectional | 411 dyads from various countries; 1–12 mo pp | Vitamin A | HPLC | 1.086 ± 0.055 μmol/L (Australia) | Values are expressed as: mean ± SEM |
1.188 ± 0.066 μmol/L (Canada) | ||||||
1.242 ± 0.085 μmol/L (Chile) | ||||||
1.043 ± 0.088 μmol/L (China) | ||||||
1.230 ± 0.063 μmol/L (Japan) | ||||||
1.321 ± 0.087 μmol/L (Mexico) | ||||||
1.052 ± 0.050 μmol/L (United Kingdom) | ||||||
1.227 ± 0.087 μmol/L (United States) | ||||||
Carratu et al., 2003 | Cross-sectional | 195 Italian dyads, 1 mo pp | Total protein | Kjeldahl with correction for NPN by acid precipitation | 12.6 ± 2.0 g/L | This paper also reported milk volume, but methods did not meet the inclusion criteria |
Gossage et al., 2002 | Randomized, placebo controlled trial | 21 dyads, 4–32 d pp | Vitamin A | HPLC | 2079 ± 207 μmol/L (d 32 pp) | Study reported no significant effect of B-carotene supplementation on milk retinol values; so placebo and supplement group values were combined |
Kantola and Vartiainen, 2001 | Cross-sectional | 256 Finnish dyads, 4 wk pp | Selenium | ETA-AAS | 16.4 ± 3.2 μg/L (1987) | Two separate groups of women were measured at different times: 1987 and 1993–1995 |
18.9 ± 3.0 μg/L (1993–1995) | ||||||
Copper | ETA-AAS | 0.52 ± 0.11 mg/L (1987) | ||||
0.43 ± 0.10 mg/L (1993–1995) | ||||||
Zinc | Flame AAS | 3.0 ± 1.0 mg/L (1987) | ||||
1.4 ± 0.7 mg/L (1993–1995) |
Silvestre et al., 2001 | Prospective cohort | 22 Spanish dyads, 0–90 d pp | Copper | Flame AAS | 0.43 ± 0.07 mg/L (2nd wk pp) | |
0.34 ± 0.07 mg/L (d 30 pp) | ||||||
0.27 ± 0.07 mg/L (d 60 pp) | ||||||
0.19 ± 0.10 mg/L (d 90 pp) | ||||||
Iron | Flame AAS | 0.50 ± 0.19 mg/L (d 2 and 4 pp) | ||||
0.39 ± 0.19 mg/L (d 30 pp) | ||||||
0.43 ± 0.15 mg/L (d 60 pp) | ||||||
0.40 ± 0.17 mg/L (d 90 pp) | ||||||
Zinc | Flame AAS | 3.31 ± 1.06 mg/L (d 2 and 4 pp) | ||||
2.41 ± 0.90 mg/L (d 30 pp) | ||||||
1.40 ± 0.65 mg/L (d 60 pp) | ||||||
1.05 ± 0.71 mg/L (d 90 pp) | ||||||
Wasowicz et al., 2001 | Cross-sectional | 131 Polish dyads, 1–30 d pp | Zinc | ICP-AES | 1.42 ± 0.7 mg/L (10–30 d pp) | This article reported additional nutrients (selenium) that did not meet the inclusion criteria |
Copper | ICP-AES | 0.27 ± 0.9 mg/L (10–30 d pp) | ||||
Bocca et al., 2000 | Cross-sectional | 60 Italian dyads, 1 mo pp | Calcium | UN-ICP-AES | 307 ± 11.8 μg/mL | |
Copper | UN-ICP-AES | 0.37 ± 0.03 μg/mL | ||||
Iron | UN-ICP-AES | 0.65 ± 0.04 μg/mL | ||||
Magnesium | UN-ICP-AES | 23.0 ± 0.51 μg/mL | ||||
Manganese | UN-ICP-AES | 0.03 ± 0.002 μg/mL | ||||
Zinc | UN-ICP-AES | 2.72 ± 0.07 μg/mL | ||||
Mataloun and Leone, 2000 | Prospective case-control | 41 Brazilian dyads, 3–30 d pp | Calcium | AAS | 9.58 ± 2.01 mmol/L (15 d pp) | |
10.26 ± 1.83 mmol/L (30 d pp) | ||||||
Phosphorus | Colorimetric method | 4.03 ± 1.00 (15 d pp) | ||||
Li et al., 1999 | Prospective cohort | 38 Austrian dyads, 0–10 mo pp | Selenium | AAS | 12.2 ± 2.4 μg/L (15–60 d pp) | |
Mackey and Picciano, 1999 | Randomized, double-blind, longitudinal | 21 dyads, 3–6 mo pp | Folate | L. casei | 224.4 ± 11.6 nmol/L (3 mo pp) | This article reported milk volume that did not meet the inclusion criteria |
187.0 ± 11.9 nmol/L (6 mo pp) |
supplementation trial | ||||||
Tamari and Kim, 1999 | Prospective cohort | 51 Korean dyads, 0–90 d pp | Selenium | AAS | 13.1 ± 5.8 μg/kg (15–90 d pp) | |
Fly et al., 1998 | Case-control | 14 dyads, 2–8 mo pp | Calcium | ICP-AES | 7.77 ± 0.30 mmol/L (d of rest period) | Values are for baseline mineral concentrations for each treatment day |
7.95 ± 0.31 mmol/L (d of exercise test) | ||||||
Values are expressed as: mean ± SE This article reported additional nutrients (phosphorus) that did not meet the inclusion criteria |
||||||
Magnesium | ICP-AES | 1.52 ± 0.072 mmol/L (d of rest period) | ||||
1.54 ± 0.068 mmol/L (d of exercise test) | ||||||
Sodium | ICP-AES | 5.00 ± 0.48 mmol/L (d of rest period) | ||||
4.73 ± 0.22 mmol/L (d of exercise test) | ||||||
Potassium | ICP-AES | 11.79 ± 0.62 mmol/L (d of rest period) | ||||
11.42 ± 0.40 mmol/L (d of exercise test) | ||||||
Lin et al., 1998 | Prospective cohort | 211 Taiwanese dyads, 0–12 mo pp | Calcium | ICP-AES | 264 ± 12 μg/mL (11–30 d pp) | This article reported additional nutrients (iron) that did not meet the inclusion criteria |
224 ± 9 μg/mL (1–3 mo pp) | ||||||
225 ± 13 μg/mL (3–6 mo pp) | ||||||
150 ± 26 μg/mL (6–12 mo pp) | ||||||
Magnesium | ICP-AES | 24.7 ± 1.0 μg/mL (11–30 d pp) | Values are expressed as: mean ± SE | |||
26.3 ± 1.3 μg/mL (1–3 mo pp) | ||||||
24.9 ± 2.0 μg/mL (3–6 mo pp) | ||||||
18.4 ± 2.0 μg/mL (6–12 mo pp) | ||||||
Copper | ICP-AES | 0.39 ± 0.02 μg/mL (11–30 d pp) | ||||
0.28 ± 0.02 μg/mL (1–3 mo pp) |
0.20 ± 0.02 μg/mL (3–6 mo pp) | ||||||
0.09 ± 0.02 μg/mL (6–12 mo pp) | ||||||
Zinc | ICP-AES | 2.23 ± 0.19 μg/mL (11–30 d pp) | ||||
1.41 ± 0.20 μg/mL (1–3 mo pp) | ||||||
0.77 ± 0.13 μg/mL (3–6 mo pp) | ||||||
0.55 ± 0.17 μg/mL (6–12 mo pp) | ||||||
Rodriguez-Rodriguez et al., 1998 | Cross-sectional | 12 Canary Islander dyads, 2–6 mo pp | Selenium | Fluorometric | 15.69 ± 4.07 μg/L | |
Greer et al., 1997 | Randomized, double-blind, placebo-controlled trial | 11 dyads, 0–12 wk pp | Vitamin K | HPLC-FLD | 1.17 ± 0.70 ng/mL (2 wk pp) | |
1.14 ± 0.46 ng/mL (6 wk pp) | ||||||
1.17 ± 0.40 ng/mL (12 wk pp) | ||||||
Ortega et al., 1997 | Prospective cohort | 32 Spanish dyads, 13–40 d pp | Zinc | AAS | 51.0 ± 9.2 μmol/L (13–14 d pp) | Values are for women with zinc intakes ≥ 50% of recommended intakes |
33.1 ± 8.0 μmol/L (40 d pp) | ||||||
Wack et al., 1997 | Prospective cohort | 30 dyads, 0–360+ d pp | Sodium | ICAP-ES | 129 ± 61 mg/L (61–120 d pp) | |
136 ± 76 mg/L (121–180 d pp) | ||||||
139 ± 142 mg/L (181–240 d pp) | ||||||
124 ± 65 mg/L (241–300 d pp) | ||||||
122 ± 123 mg/L (301–360 d pp) | ||||||
Potassium | ICAP-ES | 490 ± 85 mg/L (61–120 d pp) | ||||
485 ± 66 mg/L (121–180 d pp) | ||||||
473 ± 63 mg/L (181–240 d pp) | ||||||
470 ± 72 mg/L (241–300 d pp) | ||||||
445 ± 53 mg/L (301–360 d pp) | ||||||
Lactose | HPLC | 70 ± 4 g/L (61–120 d pp) | ||||
70 ± 3 g/L (121–180 d pp) | ||||||
71 ± 4 g/L (181–240 d pp) | ||||||
70 ± 4 g/L (241–300 d pp) | ||||||
71 ± 4 g/L (301–360 d pp) |
Chloride | Potentiometric method | 402 ± 97 mg/L (61–120 d pp) | ||||
339 ± 161 mg/L (121–180 d pp) | ||||||
460 ± 232 mg/L (181–240 d pp) | ||||||
420 ± 133 mg/L (241–300 d pp) | ||||||
384 ± 197 mg/L (301–360 d pp) | ||||||
Huisman et al., 1996 | Prospective cohort | Dutch dyads, 99 measured at 14 and 42 d pp, 25 measured at 89 d pp | Lactose | Capillary gas chromatography | 59.0 ± 3.5 g/L (d 14 pp) | This article reported additional nutrients (fatty acids) that did not meet the inclusion criteria |
60.9 ± 3.0 g/L (d 42 pp) | ||||||
63.4 ± 3.4 g/L (d 89 pp) | ||||||
Coppa et al., 1993 | 46 Italian dyads, 4–120 d pp | Lactose | HPLC | 62.5 ± 5.74 g/L (d 10 pp) | This article reported additional nutrients (total carbohydrates) that did not meet the inclusion criteria | |
64.1 ± 6.45 g/L (d 30 pp) | ||||||
66.2 ± 6.88 g/L (d 60 pp) | ||||||
66.3 ± 7.08 g/L (d 90 pp) | ||||||
68.9 ± 8.16 g/L (d 120 pp) | ||||||
Ohtake and Tamura, 1993 | Prospective cohort | 80 Japanese dyads, 2–201 d pp | Zinc | AAS | 1.76 ± 0.90 μg/mL (15–84 d pp) | |
0.76 ± 0.25 μg/mL (85–201 d pp) | ||||||
Copper | AAS | 0.29 ± 0.12 μg/mL (15–84 d pp) | ||||
0.19 ± 0.08 μg/mL (85–201 d pp) | ||||||
Dagnelie et al., 1992 | Case-control | 10 Dutch dyads, 2–3 mo pp | Calcium | AAS | 29.80 ± 3.87 mg/100 g | This article reported additional nutrients (lactose, total protein, total lipid, vitamin B12) that did not meet the inclusion criteria |
Magnesium | AAS | 3.58 ± 0.50 mg/100 g | ||||
Zinc | AAS | 0.19 ± 0.10 mg/100 g | ||||
Hirano et al., 1992 | Prospective cohort | 38 Japanese dyads, 0–24 d pp | Biotin | L. plantarum | Free-form biotin | |
3.8 ± 1.2 ng/mL (15–24 d pp) | ||||||
Total biotin | ||||||
5.2 ± 2.1 ng/mL (15–24 d pp) | ||||||
Canfield et al., 1991 | Cross-sectional | 45 dyads, 0–6 mo pp | Vitamin K | HPLC | 6.98 ± 6.36 nmol/L (1 mo pp) | |
5.14 ± 4.52 nmol/L (3 mo pp) | ||||||
5.76 ± 4.48 nmol/L (6 mo pp) |
Nommsen et al., 1991 | Prospective cohort | 73 dyads, 0–12 mo pp | Total lipid | Modified Folch extraction | 36.2 ± 7.0 g/L (3 mo pp) | This article reported additional nutrients (total protein, lactose) and milk volume that did not meet the inclusion criteria |
37.7 ± 9.6 g/L (6 mo pp) | ||||||
38.1 ± 8.0 g/L (9 mo pp) | ||||||
37.2 ± 11.3 g/L (12 mo pp) | ||||||
Andon et al., 1989 | Cross-sectional | 30 healthy, lactating dyads, measured at 60 d pp | Vitamin B6 | Saccharomyces uvarum method | 733 ± 195 nmol/L |
Women were not consuming vitamin supplements Foremilk samples |
Casey et al., 1989 | Prospective cohort | 13 dyads, 0–18 mo pp | Zinc | Flame AAS | 59.8 ± 14.3 μmol/L (d 14 pp) | |
54.9 ± 15.0 μmol/L (d 21 pp) | ||||||
45.8 ± 12.2 μmol/L (d 28 pp) | ||||||
42.2 ± 10.4 μmol/L (d 38 pp) | ||||||
33.4 ± 9.8 μmol/L (d 49 pp) | ||||||
27.4 ± 10.2 μmol/L (d 60 pp) | ||||||
22.8 ± 8.6 μmol/L (d 90 pp) | ||||||
19.6 ± 9.3 μmol/L (d 120 pp) | ||||||
18.5 ± 7.9 μmol/L (d 150 pp) | ||||||
16.8 ± 9.2 μmol/L (d 180 pp) | ||||||
14.1 ± 7.0 μmol/L (d 210 pp) | ||||||
11.4 ± 3.2 μmol/L (d 240 pp) | ||||||
11.8 ± 6.0 μmol/L (d 270 pp) | ||||||
8.1 ± 5.0 μmol/L (d 330 pp) | ||||||
8.3 ± 4.6 μmol/L (d 360 pp) | ||||||
Copper | Graphite furnace AAS | 7.6 ± 1.2 μmol/L (d 14 pp) | ||||
6.7 ± 1.3 μmol/L (d 21 pp) | ||||||
6.1 ± 0.7 μmol/L (d 28 pp) | ||||||
5.8 ± 1.0 μmol/L (d 35 pp) | ||||||
5.1 ± 0.9 μmol/L (d 49 pp) | ||||||
4.7 ± 0.7 μmol/L (d 60 pp) | ||||||
4.2 ± 0.8 μmol/L (d 90 pp) | ||||||
3.5 ± 1.0 μmol/L (d 120 pp) | ||||||
3.5 ± 0.8 μmol/L (d 150 pp) | ||||||
2.8 ± 0.9 μmol/L (d 180 pp) |
2.6 ± 1.0 μmol/L (d 210 pp) | ||||||
3.0 ± 0.8 μmol/L (d 240 pp) | ||||||
2.8 ± 0.9 μmol/L (d 270 pp) | ||||||
2.4 ± 0.8 μmol/L (d 330 pp) | ||||||
2.7 ± 1.7 μmol/L (d 360 pp) | ||||||
Manganese | Graphite furnace AAS | 70 ± 48 nmol/L (d 14 pp) | ||||
64 ± 33 nmol/L (d 21 pp) | ||||||
68 ± 25 nmol/L (d 28 pp) | ||||||
60 ± 27 nmol/L (d 35 pp) | ||||||
46 ± 13 nmol/L (d 49 pp) | ||||||
36 ± 10 nmol/L (d 90 pp) | ||||||
35 ± 11 nmol/L (d 120 pp) | ||||||
41 ± 20 nmol/L (d 150 pp) | ||||||
39 ± 14 nmol/L (d 180 pp) | ||||||
40 ± 24 nmol/L (d 210 pp) | ||||||
45 ± 16 nmol/L (d 240 pp) | ||||||
Clark et al., 1989 | Cross-sectional | 25 milk samples from dyads 2–32 wk pp | Total lipid | Solvent extraction by modified Folch method | 4.3 ± 1.6 g/dL |
Study did not report the number of dyads This article reported additional nutrients (fatty acids) that did not meet the inclusion criteria |
Deelstra et al., 1988 | Prospective cohort | 10 Belgian dyads, 0–60 d pp | Chromium | AAS | 0.14 ± 0.05 ng/mL (30–60 d pp) | |
Ferris et al., 1988 | Prospective cohort | 12 dyads, 2–16 wk pp | Total lipid | Modified Folch extraction | 3.98 ± 0.99 g/100 mL (2 wk pp) | This article reported additional nutrients (total protein, lactose) that did not meet the inclusion criteria |
4.41 ± 1.07 g/100 mL (6 wk pp) | ||||||
4.87 ± 1.19 g/100 mL (12 wk pp) | ||||||
5.50 ± 1.09 g/100 mL (16 wk pp) | ||||||
Butte et al., 1987 | Prospective cohort | 45 dyads, 0–4 mo pp | Calcium | AAS | 297 ± 37 μg/g (1 mo pp) | This article reported additional nutrients |
301 ± 35 μg/g (2 mo pp) | ||||||
292 ± 35 μg/g (3 mo pp) |
285 ± 31 μg/g (4 mo pp) | (phosphorus) that did not meet the inclusion criteria | |||||
Magnesium | AAS | 27 ± 4 μg/g (1 mo pp) | ||||
30 ± 5 μg/g (2 mo pp) | This article also reported milk volume that was originally reported in Butte et al. (1984b) | |||||
32 ± 6 μg/g (3 mo pp) | ||||||
34 ± 6 μg/g (4 mo pp) | ||||||
Zinc | AAS | 2.3 ± 0.8 μg/g (1 mo pp) | ||||
1.5 ± 0.6 μg/g (2 mo pp) | ||||||
1.1 ± 0.5 μg/g (3 mo pp) | ||||||
1.0 ± 0.5 μg/g (4 mo pp) | ||||||
Sodium | AAS | 135 ± 33 μg/g (1 mo pp) | ||||
106 ± 21 μg/g (2 mo pp) | ||||||
107 ± 38 μg/g (3 mo pp) | ||||||
100 ± 28 μg/g (4 mo pp) | ||||||
Potassium | AAS | 466 ± 62 μg/g (1 mo pp) | ||||
451 ± 60 μg/g (2 mo pp) | ||||||
437 ± 54 μg/g (3 mo pp) | ||||||
416 ± 45 μg/g (4 mo pp) | ||||||
Iron | AAS | 0.242 ± 0.111 μg/g (1 mo pp) | ||||
0.203 ± 0.083 μg/g (2 mo pp) | ||||||
0.182 ± 0.077 μg/g (3 mo pp) | ||||||
0.160 ± 0.069 μg/g (4 mo pp) | ||||||
Copper | AAS | 0.363 ± 0.058 μg/g (1 mo pp) | ||||
0.318 ± 0.071 μg/g (2 mo pp) | ||||||
0.281 ± 0.065 μg/g (3 mo pp) | ||||||
0.268 ± 0.067 μg/g (4 mo pp) | ||||||
Casey and Neville, 1987 | Prospective cohort | 13 dyads, 0–38 d pp | Molybdenum | Graphite furnace AAS | 4.5 ± 2.9 ng/mL (d 14 pp) |
Udipi et al., 1987 | Prospective cohort | 27 dyads, 2–52 wk pp | Folate | L. casei | 0.5 mo pp | 21 of the women were taking daily supplemental folic acid |
37 ± 6 μg/L (0400–0600 hr) | ||||||
25 ± 4 μg/L (0600–0800 hr) | ||||||
67 ± 19 μg/L (1000–1200 hr) | ||||||
52 ± 21 μg/L (1200–1400 hr) | This article reported milk volume that did not meet the inclusion criteria | |||||
48 ± 9 μg/L (1400–1600 hr) | ||||||
34 ± 4 μg/L (1800–2000 hr) | ||||||
45 ± 9 μg/L (2200–2400 hr) | ||||||
Values are expressed as: mean ± SE | ||||||
1 mo pp | ||||||
32 ± 6 μg/L (0400–0600 hr) | ||||||
42 ± 6 μg/L (0600–0800 hr) | ||||||
48 ± 6 μg/L (1000–1200 hr) | ||||||
58 ± 11 μg/L (1200–1400 hr) | ||||||
58 ± 7 μg/L (1400–1600 hr) | ||||||
47 ± 12 μg/L (1800–2000 hr) | ||||||
54 ± 5 μg/L (2200–2400 hr) | ||||||
2 mo pp | ||||||
22 ± 7 μg/L (0400–0600 hr) | ||||||
44 ± 8 μg/L (0600–0800 hr) | ||||||
65 ± 10 μg/L (1000–1200 hr) | ||||||
88 ± 25 μg/L (1200–1400 hr) | ||||||
76 ± 12 μg/L (1400–1600 hr) | ||||||
64 ± 8 μg/L (1800–2000 hr) | ||||||
84 ± 15 μg/L (2200–2400 hr) | ||||||
3 mo pp | ||||||
52 ± 11 μg/L (0400–0600 hr) | ||||||
42 ± 10 μg/L (0600–0800 hr) | ||||||
64 ± 12 μg/L (1000–1200 hr) | ||||||
97 ± 16 μg/L (1200–1400 hr) | ||||||
98 ± 32 μg/L (1400–1600 hr) | ||||||
88 ± 17 μg/L (1800–2000 hr) | ||||||
59 ± 1 μg/L (2200–2400 hr) | ||||||
4 mo pp | ||||||
22 ± 2 μg/L (0400–0600 hr) | ||||||
47 ± 10 μg/L (0600–0800 hr) | ||||||
82 ± 14 μg/L (1000–1200 hr) | ||||||
73 ± 13 μg/L (1200–1400 hr) | ||||||
101 ± 23 μg/L (1400–1600 hr) | ||||||
90 ± 16 μg/L (1800–2000 hr) | ||||||
49 ± 23 μg/L (2200–2400 hr) | ||||||
5 mo pp | ||||||
46 ± 16 μg/L (0400–0600 hr) | ||||||
43 ± 6 μg/L (0600–0800 hr) | ||||||
78 ± 16 μg/L (1000–1200 hr) | ||||||
62 ± 11 μg/L (1200–1400 hr) | ||||||
126 ± 28 μg/L (1400–1600 hr) | ||||||
90 ± 12 μg/L (1800–2000 hr) | ||||||
75 ± 16 μg/L (2200–2400 hr) | ||||||
6 mo pp | ||||||
51 ± 19 μg/L (0400–0600 hr) | ||||||
55 ± 11 μg/L (0600–0800 hr) | ||||||
103 ± 15 μg/L (1000–1200 hr) | ||||||
107 ± 31 μg/L (1200–1400 hr) | ||||||
92 ± 17 μg/L (1400–1600 hr) | ||||||
88 ± 26 μg/L (1800–2000 hr) | ||||||
39 ± 7 μg/L (2200–2400 hr) | ||||||
8 mo pp | ||||||
35 ± 9 μg/L (0400–0600 hr) | ||||||
36 ± 6 μg/L (0600–0800 hr) | ||||||
62 ± 13 μg/L (1000–1200 hr) | ||||||
79 ± 22 μg/L (1200–1400 hr) | ||||||
79 ± 37 μg/L (1800–2000 hr) | ||||||
45 ± 9 μg/L (2200–2400 hr) |
Morriss et al., 1986 | Cross-sectional | 52 dyads, 2–180 d pp | Sodium | Flame photometry | 7.3 ± 0.5 mEq/L (d 14–21 pp) |
This article reported additional nutrients (calcium, magnesium, lactose) that did not meet the inclusion criteria Data are reported as: mean ± SE |
4.8 ± 1.0 mEq/L (d 120–180 pp) | ||||||
Potassium | Flame photometry | 17.1 ± 0.6 mEq/L (d 14–21 pp) | ||||
12.8 ± 0.5 mEq/L (d 120–180 pp) | ||||||
Chloride | Colorimetric-amperometric titration | 11.8 ± 0.6 mEq/L (d 14–21 pp) | ||||
10.5 ± 1.0 mEq/L (d 120–180 pp) | ||||||
Phosphorus | Colorimetric method | 5.6 ± 0.3 mEq/L (d 14–21 pp) | ||||
3.9 ± 0.2 mEq/L (d 120–180 pp) | ||||||
Chappell et al., 1985 | Prospective cohort | 12 Canadian dyads, 1–5 wk pp | Vitamin A | HPLC | 62 ± 3 μg/100 mL (37 d pp) | This article reported additional nutrients (vitamin E) that did not meet the inclusion criteria |
Krebs et al., 1985a | Prospective cohort | 16 dyads, 1–12 mo pp | Zinc | Flame AAS | All mo pp | |
1.59 ± 1.17 μg/mL (foremilk) | ||||||
1.60 ± 1.21 μg/mL (midmilk) | ||||||
1.57 ± 1.30 μg/mL (hindmilk) | ||||||
1st mo pp | ||||||
3.02 ± 1.17 μg/mL (foremilk) | ||||||
3.05 ± 1.22 μg/mL (midmilk) | ||||||
2.92 ± 1.20 μg/mL (hindmilk) | ||||||
2nd mo pp | ||||||
1.85 ± 0.97 μg/mL (foremilk) | ||||||
1.88 ± 0.99 μg/mL (midmilk) | ||||||
1.81 ± 1.06 μg/mL (hindmilk) | ||||||
Krebs et al., 1985b | Case-control | 39 dyads, 1–12 mo pp | Zinc | Flame AAS | 2.65 ± 0.81 μg/mL (1 mo pp) | Study also reports values for women who received dietary zinc supplements |
0.67 ± 0.40 μg/mL (9 mo pp) |
Morrison and Driskell, 1985 | Cross-sectional | 21 dyads, 3–7 mo pp | Vitamin B6 | HPLC with fluorometric detection | 770 ± 341 pmol/mL | |
Vitamin B6 | S. uvarum | 955 ± 98 pmol/mL | ||||
Butte et al., 1984c | Prospective cohort | 13 dyads, 2–12 wk pp | Sodium | AAS | 220.0 ± 77 mg/L (2 wk pp) | This article reported additional nutrients (total lipid, total protein, phosphorus) and milk volume that did not meet the inclusion criteria |
184.0 ± 54 mg/L (4 wk pp) | ||||||
173.0 ± 65 mg/L (6 wk pp) | ||||||
153.0 ± 47 mg/L (8 wk pp) | ||||||
150.0 ± 49 mg/L (10 wk pp) | ||||||
130.0 ± 41 mg/L (12 wk pp) | ||||||
Calcium | AAS | 255.0 ± 53 mg/L (2 wk pp) | ||||
254.0 ± 52 mg/L (4 wk pp) | ||||||
267.0 ± 24 mg/L (6 wk pp) | ||||||
258.0 ± 22 mg/L (8 wk pp) | ||||||
270.0 ± 25 mg/L (10 wk pp) | ||||||
260.0 ± 26 mg/L (12 wk pp) | ||||||
Magnesium | AAS | 33.0 ± 8 mg/L (2 wk pp) | ||||
31.0 ± 6 mg/L (4 wk pp) | ||||||
35.0 ± 9 mg/L (6 wk pp) | ||||||
36.0 ± 9 mg/L (8 wk pp) | ||||||
38.0 ± 9 mg/L (10 wk pp) | ||||||
39.0 ± 10 mg/L (12 wk pp) | ||||||
Zinc | AAS | 3.4 ± 0.8 mg/L (2 wk pp) | ||||
2.9 ± 0.9 mg/L (4 wk pp) | ||||||
2.1 ± 0.9 mg/L (6 wk pp) | ||||||
1.9 ± 0.6 mg/L (8 wk pp) | ||||||
1.8 ± 1.0 mg/L (10 wk pp) | ||||||
1.4 ± 0.7 mg/L (12 wk pp) | ||||||
Casey et al., 1984 | Prospective cohort | 45 dyads, 0–48 wk pp | Chromium | Graphite furnace AAS | 0.28 ± 0.11 ng/mL (1–3 mo pp) | |
0.26 ± 0.12 mg/mL (4–6 mo pp) | ||||||
0.46 ± 0.41 ng/mL (7+ mo pp) |
Dewey et al., 1984 | Prospective cohort | 46 dyads, 7–11 mo pp | Potassium | Flame AAS | 389 ± 41 μg/mL | Values given are for women with full lactation (volume > 500 mg/d) |
Sodium | Flame AAS | 84 ± 42 μg/mL | ||||
Copper | Flame AAS | 0.17 ± 0.05 μg/mL | ||||
Calcium | Flame AAS | 236 ± 29 μg/mL | ||||
Magnesium | Flame AAS | 31.9 ± 4.8 μg/mL | This article reported additional nutrients (lactose, total protein, total lipid) and milk volume that did not meet the inclusion criteria | |||
Iron | Flame AAS | 0.18 ± 0.10 μg/mL | ||||
Zinc | Flame AAS | 0.42 ± 0.22 μg/mL | ||||
Song et al., 1984 | Prospective cohort | 26 dyads, 2–12 wk pp | Pantothenic acid | Radio-immunoassay | 2.73 ± 0.61 μg/mL foremilk (2 wk pp) | |
2.40 ± 0.58 μg/mL hindmilk (2 wk pp) | ||||||
2.54 ± 0.72 μg/mL foremilk (12 wk pp) | ||||||
2.55 ± 0.73 μg/mL hindmilk (12 wk pp) | ||||||
Feeley et al., 1983a | Prospective cohort | 102 dyads, 4–45 d pp | Calcium | ICAP-ES | 25.0 ± 0.5 mg/100 g (10–14 d pp) | Values are expressed as: mean ± SEM |
26.2 ± 0.5 mg/100 g (30–45 d pp) | ||||||
Phosphorus | ICAP-ES | 14.4 ± 0.3 mg/100 g (10–14 d pp) | ||||
13.3 ± 0.3 mg/100 g (30–45 d pp) | ||||||
Magnesium | ICAP-ES | 4.9 ± 0.1 mg/100 g (10–14 d pp) | ||||
4.9 ± 0.1 mg/100 g (30–45 d pp) | ||||||
Feeley et al., 1983b | Prospective cohort | 102 dyads, 4–45 d pp | Copper | ICAP-ES | 93.9 ± 3.6 μg/100 g (10–14 d pp) | All values are expressed as: mean ± SEM |
84.7 ± 3.8 μg/100 g (30–45 d pp) | ||||||
Iron | ICAP-ES | 85.4 ± 4.5 μg/100 g (10–14 d pp) | ||||
76.1 ± 3.8 μg/100 g (30–45 d pp) |
Zinc | ICAP-ES | 0.41 ± 0.01 mg/100 g (10–14 d pp) | ||||
0.29 ± 0.01 mg/100 g (30–45 d pp) | ||||||
Smith et al., 1983 | Prospective cohort | 11 dyads, 6–12 wk pp | Folate | L. casei | 6 wk pp (ng/mL) | |
48.7 ± 17.4 morning/foremilk | ||||||
69.8 ± 23.8 morning/hindmilk | ||||||
60.6 ± 28.2 midday/foremilk | ||||||
77.0 ± 24.0 midday/hindmilk | ||||||
83.4 ± 37.7 evening/foremilk | ||||||
100.3 ± 43.7 evening/hindmilk | ||||||
12 wk pp (ng/mL) | ||||||
44.4 ± 27.5 morning/foremilk | ||||||
70.0 ± 37.1 morning/hindmilk | ||||||
58.9 ± 34.3 midday/foremilk | ||||||
98.2 ± 55.6 midday/hindmilk | ||||||
103.7 ± 52.8 evening/foremilk | ||||||
131.3 ± 44.2 evening/hindmilk | ||||||
Greer et al., 1982 | Prospective cohort | 18 dyads, 3–26 wk pp | Calcium | AAS | 25.9 ± 0.96 mg/dL (3 wk pp) |
Values are expressed as: mean ± SE This article reported additional nutrients (phosphorus) that did not meet the inclusion criteria |
27.7 ± 0.86 mg/dL (6 wk pp) | ||||||
24.8 ± 0.97 mg/dL (26 wk pp) | ||||||
Magnesium | AAS | 14.7 ± 0.6 mg/dL (3 wk pp) | ||||
12.7 ± 0.4 mg/dL (6 wk pp) | ||||||
10.7 ± 0.4 mg/dL (26 wk pp) | ||||||
Keenan et al., 1992 | Prospective cohort | 28 dyads, 3.5–32 wk pp | Sodium | Flame photometry | 7.9 ± 3.0 mEq/L (3.5–6 wk pp) | |
4.7 ± 2.0 mEq/L (8.5–18 wk pp) | ||||||
5.4 ± 1.3 mEq/L (20–32 wk pp) | ||||||
Potassium | Flame photometry | 15.2 ± 1.8 mEq/L (3.5–6 wk pp) | ||||
13.8 ± 1.3 mEq/L (8.5–18 wk pp) | ||||||
13.3 ± 1.1 mEq/L (20–32 wk pp) |
Koo and Gupta, 1982 | Prospective cohort | 45 Australian dyads, 0–28 d pp | Sodium | Flame photometry | 9.8 ± 0.6 mmol/L (8–14 d pp) | Values are expressed as: mean ± SEM |
6.9 ± 0.2 mmol/L (15–28 d pp) | ||||||
Ohtake et al., 1981 | Prospective cohort | 30 Japanese dyads, 1–3 mo pp | Zinc | AAS | 3.80 ± 1.24 μg/mL (27–47 d pp) | |
Copper | AAS | 0.38 ± 0.08 μg/mL (27–47 d pp) | ||||
Tamura et al., 1980 | Cross-sectional | 25 Japanese dyads, 3–25 wk pp | Folate | L. casei | 141.4 ± 47.9 ng/mL |
NOTES: A number of authors claimed that fatty acids do not change within a feed and used this as their rationale for not using a complete breast expression as their sample. However, the fatty acids are part of the lipid component of milk, which varies remarkably during a feed. If all you want to know is the proportion of fatty acids, something other than a full expression may suffice, but for estimating an infant’s needs, it is not acceptable. The amount of a fatty acid actually delivered is the key information needed. This is the product of the total lipid in the whole feed and the proportion of that lipid represented by the particular fatty acid.
AAS = atomic absorption spectrometry; B-carotene = beta-carotene; BMI = body mass index; CI = confidence interval; d = day; DHA = docosahexaenoic acid; dL = deciliter; EPA = eicosapentaenoic acid; ETA-AAS = electro thermal atomization-atomic absorption spectroscopy; g = gram; GC = gas chromatography; HPLC = high-performance liquid chromatography; HPLC-EC = high-performance liquid chromatography-electrochemical detection; HPLC-FLD = high-performance liquid chromatography with fluorescence detection; hr = hour; HRGC = high resolution gas chromatography; ICAP-ES = inductively coupled argon plasma emission spectrometry; ICP-AES = inductively coupled plasma atomic emission spectrometry; ICP-MS = inductively coupled plasma-mass spectrometry; ICP-OES = inductively coupled plasma-optical emission spectrometry; IQR = interquartile range; kg = kilogram; L = liter; LC-MS/MS = liquid chromatography tandem mass spectrometry; MC-ICP-MS = multicollector inductively coupled plasma mass spectrometry; mEq = milliequivalent; mg = milligram; mL = milliliter; mmol = millimole; mo = month; mol = mole; ng = nanogram; NP-HPLC = normal-phase high-performance liquid chromatography; NPN = nonprotein nitrogen; pmol = picomole; pp = postpartum; RCT = randomized, double-blind, placebo-controlled trial; SD = standard deviation; SE = standard error; SEM = standard error of the mean; TE = alpha-tocopherol equivalent; UN-ICP-AES = ultrasonic nebulization-inductively coupled plasma atomic emission spectrometry; UV = ultraviolet; WIC = Special Supplemental Nutrition Program for Women, Infants, and Children; wk = week; wt/wt = weight/weight.
a Study was done in the United States, unless noted otherwise.
b Values are presented as the mean ± standard deviation unless noted otherwise.
TABLE 3-2 Assessment of Included Studies of the Volumea of Human Milk on the Basis of Prespecified Criteria (Results Include Studies of Healthy, Singleton, Full-Term Infants Who Were Exclusively Breastfed from Birth to 5.9 Months)
Study Authors, Year | Study Type | Study Populationb | Methodology | Outcome (mean ± SD)c | Additional Comments |
---|---|---|---|---|---|
Mohd Shukri et al., 2019 | RCT | 11 Malaysian dyads, 2–18 wk pp | Deuterium dilution | 534.1 ± 169 g/d (2 wk pp) | |
Buntuchai et al., 2017 | Cross-sectional | 36 Thai dyads, 1–3 mo pp | 24-hr test weighing | 598.7 ± 182.4 mL/d | |
Bandara et al., 2015 | Cross-sectional | 48 Sri Lankan dyads, 0–6 mo pp | Deuterium oxide to the mother | 773 ± 219 g/d (2 to < 4 mo pp) | Volume was measured over a 14-day period Dyads were randomly selected from health clinics |
802 ± 156 g/d (4–6 mo pp) | |||||
Wells et al., 2012 | Randomized trial | 50 Icelandic dyads, 6 mo pp | Deuterium dilution | 901 ± 158 g/d | |
Nielsen et al., 2011 | Prospective cohort | 36 Scottish dyads, 15–25 wk pp | Deuterium dilution | 923 ± 122 g/d (15 wk pp) | |
999 ± 146 g/d (25 wk pp) | |||||
Kent et al., 2006 | Cross-sectional | 71 Australian dyads, 4–26 wk pp | 24-hr test weighing | 788 ± 169 g/d | |
Sekiyama et al., 2003 | Prospective cohort | 13 Japanese dyads, 30–90 d pp | Test weighing | 712 ± 188 g/d (30 d pp) | |
809 ± 164 g/d (60 d pp) | |||||
798 ± 120 g/d (90 d pp) | |||||
Mitoulas et al., 2002 | Cross-sectional | 30 Australian dyads, 1–6 mo pp | Test weighing | 750 ± 200 mL/d | |
Butte et al., 2001 | Prospective cohort | 24 dyads, 3–24 mo pp | 3-day test weighing | 763 ± 144 g/d (3 mo pp) | |
Chen et al., 1998 | Cross-sectional | Dyads (19 primiparous; 16 multiparous), 0–2 wk pp | 24-hr test weighing | Day 14 pp | A third subgroup of primiparous women who delivered by cesarean was not included because they did not meet the inclusion criteria |
766 ± 196 g/d (primiparous) | |||||
960 ± 166 g/d (multiparous) |
Dewey et al., 1991 | Prospective cohort | 67 dyads, 3 mo pp | 24-hr test weighing | 914 ± 194 g/d | |
Vio et al., 1991 | Case-control | 10 Chilean dyads (nonsmokers), 1–3 mo pp | Deuterium dilution | 961 ± 120 g/d (1–3 mo pp) | |
Woodward and Cumming, 1990 | Cross-sectional | 35 Australian dyads, 6–12 wk pp | Test weighing | 830 ± 152 g/24 hr | |
Neville et al., 1988 | Prospective cohort | 13 dyads, 0–5 mo pp | Test weighing | 615 ± 130 g/d (7–14 d pp) | |
689 ± 148 g/d (15–28 d pp) | |||||
707 ± 104 g/d (30–59 d pp) | |||||
753 ± 89 g/d (60–150 d pp) | |||||
Lucas et al., 1987 | Prospective cohort | 12 dyads, 5–11 wk pp | Deuterium dilution | 767 ± 20 mL/d (5 wk pp) | Values are expressed as: mean ± SE |
868 ± 39 mL/d (11 wk pp) | |||||
Dewey and Lonnerdal, 1986 | Prospective cohort | 18 dyads, 6–21 wk pp | 24-hr test weighing | 753 ± 121 g/24 hr | |
Forsum and Sadurskis, 1986 | Prospective cohort | 22 Swedish dyads, 2–10 wk pp | 24-hr test weighing | 666 ± 129 g/24 hr (2 wk pp) | |
765 ± 126 g/24 hr (4 wk pp) | |||||
778 ± 146 g/24 hr (6 wk pp) | |||||
778 ± 147 g/24 hr (8 wk pp) | |||||
789 ± 132 g/24 hr (10 wk pp) | |||||
Janas and Picciano, 1986 | Prospective cohort | 10 dyads, 2–8 wk pp | Test weighing | 634 ± 43 mL/d (2 wk pp) | |
691 ± 43 mL/d (4 wk pp) | |||||
701 ± 47 mL/d (8 wk pp) | |||||
Matheny and Picciano, 1986 | Prospective cohorts (3 combined) | 50 dyads, 2–16 wk pp | Test weighing | 628 ± 127 mL/d (4 wk pp) | The authors noted that 1 g of milk consumed was taken to represent 1 mL of milk ingested |
644 ± 138 mL/d (8 wk pp) | |||||
676 ± 140 mL/d (12 wk pp) | |||||
Strode et al., 1986 | Intervention trial | 14 dyads, 6–24 wk pp | Test weighing | 736 ± 168 g/24 hr (6–24 wk pp) | |
Butte et al., 1985 | Prospective cohort | 45 dyads, 0–4 mo pp | 24-hr test weighing | Feeding Pattern A | Feeding pattern A = feedings distributed throughout the 24-hr day |
798.2 ± 159.0 g/24 hr (1 mo pp) |
781.5 ± 172.7 g/24 hr (2 mo pp) | |||||
751.2 ± 112.2 g/24 hr (3 mo pp) | |||||
787.9 ± 149.0 g/24 hr (4 mo pp) | Feeding Pattern B = no feeding from 12 am to 6 am | ||||
Feeding Pattern B | |||||
795.2 ± 176.4 g/24 hr (3 mo pp) | |||||
841.7 ± 101.6 g/24 hr (4 mo pp) | |||||
Butte et al., 1984a | Prospective cohort | 45 dyads, 0–4 mo pp | 24-hr test weighing | 751 ± 130 g/d (1 mo pp) | |
725 ± 131 g/d (2 mo pp) | |||||
723 ± 114 g/d (3 mo pp) | |||||
740 ± 128 g/d (4 mo pp) | |||||
De Carvalho et al., 1982 | Prospective cohort | 46 dyads, 1 mo pp | 24-hr test weighing | 681 ± 136 mL/d | |
Pao et al., 1980 | Prospective cohort | 11 dyads, 1–6 mo pp | Test weighing | 600 ± 159 mL/d (1 mo pp) |
NOTE: d = day; g = gram; hr = hour; mL = milliliter; mo = month; pp = postpartum; RCT = randomized controlled trial; SD = standard deviation; wk = week.
a To measure milk volume, infant intake is assessed (not maternal weight change or total production, which can be higher as infants leave milk in the breast). However, weighing the baby before and after a feed underestimates the volume consumed because of insensible water loss (sweat that has evaporated and exhaled water). Because very few reports corrected for this, often without having estimated this amount themselves, the committee did not use correction for insensible water loss as an exclusion criteria.
b Study was done in the United States, unless noted otherwise.
c Values are presented as the mean ± standard deviation unless noted otherwise.
TABLE 3-3 Assessment of Included Studies of Both Nutrient Composition and Milk Volumea on the Basis of Prespecified Criteria (Results Include Volume Studies of Healthy, Singleton, Full-Term Infants Who Were Exclusively Breastfed from Birth to 5.9 Months)
Study Authors, Year | Study Type | Study Populationb | Nutrient(s) | Nutrient Analysis Methodology | Outcome (mean ±SD)c | Additional Comments |
---|---|---|---|---|---|---|
McCrory et al., 1999 | Randomized intervention | 23 dyads, 8–16 wk pp | Volume | Test weighing | 801 ± 115 g/d | |
Total lipid | Folch extraction | 34.1 ± 6.0 g/L | ||||
Total protein | Micro Kjeldahl | 9.10 ± 1.36 g/L | ||||
Dewey et al., 1994 | Case-control | 33 dyads, 6–8 wk pp | Total protein | Kjeldahl with correction for NPN by acid precipitation | 9.1 ± 1.0 g/L | This article reported additional nutrients (lactose) that did not meet the inclusion criteria |
Total lipid | Folch assay (solvent extraction) | 32.7 ± 5.1 g/L | ||||
Volume | Test weighing | 838 ± 176 g/d | ||||
Krebs et al., 1994 | Prospective cohort | 71 healthy dyads, followed from 2 wk to 9 mo pp | Volume | Test weighing | 600 ± 120 g/d (2 wk pp) | Study only reported daily zinc intake from human milk, not zinc concentration |
690 ± 110 g/d (3 mo pp) | ||||||
Zinc | Flame AAS | Zinc intake from human milk: | ||||
2.30 ± 0.68 mg/d (2 wk pp) | ||||||
1.00 ± 0.43 mg/d (3 mo pp) | ||||||
Stuff and Nichols, 1989 | Prospective cohort | 45 dyads, 16–24 wk pp | Volume | Test weighing | 792 ± 111 g/d (16 wk pp) | This article reported additional nutrients (lactose) that did not meet the inclusion criteria |
734 ± 150 g/d (16 wk pp) | ||||||
729 ± 165 g/d (20 wk pp) | ||||||
Total lipid | Gravimetric analysis | 29.3 ± 7.0 mg/g (16 wk pp) | ||||
28.4 ± 7.0 mg/g (16 wk pp) | ||||||
29.2 ± 6.4 mg/g (20 wk pp) |
32.1 ± 7.7 mg/g (20 wk pp) | ||||||
30.8 ± 9.0 mg/g (24 wk pp) | ||||||
30.1 ± 6.6 mg/g (24 wk pp) | ||||||
33.8 ± 10.4 mg/g (28 wk pp) | ||||||
32.7 ± 12.7 mg/g (28 wk pp) | ||||||
34.3 ± 13.9 mg/g (32 wk pp) | ||||||
Protein nitrogen | Kjeldahl | 1.29 ± 0.17 mg/g (16 wk pp) | ||||
1.30 ± 0.14 mg/g (16 wk pp) | ||||||
1.25 ± 0.21 mg/g (20 wk pp) | ||||||
1.33 ± 0.15 mg/g (20 wk pp) | ||||||
1.20 ± 0.15 mg/g (24 wk pp) | ||||||
1.27 ± 0.16 mg/g (24 wk pp) | ||||||
1.21 ± 0.18 mg/g (28 wk pp) | ||||||
1.26 ± 0.14 mg/g (28 wk pp) | ||||||
1.27 ± 0.17 mg/g (32 wk pp) | ||||||
Casey et al., 1985 | Prospective cohort | 11 dyads, 0–31 d pp | Chromium | Graphite furnace AAS | 0.22 ± 0.09 ng/mL (14 d pp) | |
Zinc | Flame AAS | 4.74 ± 1.02 μg/mL (8 d pp) | ||||
3.88 ± 0.91 μg/mL (14 d pp) | ||||||
Copper | Graphite furnace AAS | 0.49 ± 0.06 μg/mL (14 d pp) | ||||
Manganese | Graphite furnace AAS | 3.8 ± 2.4 ng/mL (14 d pp) | ||||
Volume | 24-hr test weighing | 542 ± 103 mL/d (8 d pp) | ||||
615 ± 108 mL/d (14 d pp) |
Butte et al., 1984b | Prospective cohort | 45 dyads, 0–4 mo pp | Total lipid | Solvent extraction | 36.2 ± 7.5 mg/g (1 mo pp) | |
34.4 ± 6.8 mg/g (2 mo pp) | ||||||
32.2 ± 7.8 mg/g (3 mo pp) | ||||||
34.8 ± 10.8 mg/g (4 mo pp) | ||||||
Volume | 24-hr test weighing | 751.0 ± 130.0 g/d (1 mo pp) | ||||
725.0 ± 131.0 g/d (2 mo pp) | ||||||
723.0 ± 114.0 g/d (3 mo pp) | ||||||
740.0 ± 128.0 g/d (4 mo pp) | ||||||
Dewey et al., 1983 | Prospective cohort | 20 dyads, 1–6 mo pp | Potassium | Flame AAS | 527 ± 70 μg/mL (1 mo pp) |
This article reported additional nutrients (lactose, total protein, total lipid) that did not meet the inclusion criteria. Study authors defined exclusive breastfeeding as receiving ≤ 50 kcal/d from other sources |
477 ± 79 μg/mL (2 mo pp) | ||||||
470 ± 81 μg/mL (3 mo pp) | ||||||
464 ± 89 μg/mL (4 mo pp) | ||||||
460 ± 85 μg/mL (5 mo pp) | ||||||
430 ± 63 μg/mL (6 mo pp) | ||||||
Sodium | Flame AAS | 227 ± 152 μg/mL (1 mo pp) | ||||
264 ± 223 μg/mL (2 mo pp) | ||||||
184 ± 139 μg/mL (3 mo pp) | ||||||
175 ± 138 μg/mL (4 mo pp) | ||||||
166 ± 130 μg/mL (5 mo pp) | ||||||
134 ± 78 μg/mL (6 mo pp) | ||||||
Copper | Flame AAS | 0.36 ± 0.08 μg/mL (1 mo pp) | ||||
0.28 ± 0.06 μg/mL (2 mo pp) | ||||||
0.27 ± 0.07 μg/mL (3 mo pp) | ||||||
0.24 ± 0.05 μg/mL (4 mo pp) | ||||||
0.20 ± 0.09 μg/mL (5 mo pp) | ||||||
0.21 ± 0.07 μg/mL (6 mo pp) | ||||||
Calcium | Flame AAS | 261 ± 44 μg/mL (1 mo pp) | ||||
275 ± 48 μg/mL (2 mo pp) | ||||||
270 ± 61 μg/mL (3 mo pp) | ||||||
255 ± 43 μg/mL (4 mo pp) | ||||||
248 ± 40 μg/mL (5 mo pp) |
256 ± 42 μg/mL (6 mo pp) | ||||||
Magnesium | Flame AAS | 27.6 ± 4.7 μg/mL (1 mo pp) | ||||
32.4 ± 4.1 μg/mL (2 mo pp) | ||||||
33.6 ± 4.7 μg/mL (3 mo pp) | ||||||
35.1 ± 8.0 μg/mL (4 mo pp) | ||||||
33.8 ± 7.1 μg/mL (5 mo pp) | ||||||
33.9 ± 4.4 μg/mL (6 mo pp) | ||||||
Iron | Flame AAS | 0.31 ± 0.11 μg/mL (1 mo pp) | ||||
0.22 ± 0.07 μg/mL (2 mo pp) | ||||||
0.25 ± 0.11 μg/mL (3 mo pp) | ||||||
0.22 ± 0.09 μg/mL (4 mo pp) | ||||||
0.20 ± 0.08 μg/mL (5 mo pp) | ||||||
0.21 ± 0.10 μg/mL (6 mo pp) | ||||||
Zinc | Flame AAS | 2.71 ± 0.36 μg/mL (1 mo pp) | ||||
1.67 ± 0.68 μg/mL (2 mo pp) | ||||||
1.35 ± 0.54 μg/mL (3 mo pp) | ||||||
0.89 ± 0.39 μg/mL (4 mo pp) | ||||||
0.57 ± 0.20 μg/mL (5 mo pp) | ||||||
0.64 ± 0.28 μg/mL (6 mo pp) | ||||||
Volume | 24-hr test weighing | 673 ± 192 mL/d (1 mo pp) | ||||
756 ± 170 mL/d (2 mo pp) | ||||||
782 ± 172 mL/d (3 mo pp) | ||||||
810 ± 142 mL/d (4 mo pp) | ||||||
805 ± 117 mL/d (5 mo pp) | ||||||
896 ± 122 mL/d (6 mo pp) | ||||||
Picciano et al., 1981 | Prospective cohort | 26 dyads, 1–3 mo pp | Iron | AAS | 5.87 ± 2.09 μmol/L (1 mo pp) | |
6.62 ± 2.17 μmol/L (2 mo pp) | ||||||
7.36 ± 3.03 μmol/L (3 mo pp) | ||||||
Zinc | AAS | 33.8 ± 19.8 μmol/L (1 mo pp) | ||||
31.8 ± 16.8 μmol/L (2 mo pp) |
29.5 ± 13.8 μmol/L (3 mo pp) | ||
Calcium | AAS | 7.24 ± 1.52 mmol/L (1 mo pp) |
7.31 ± 1.40 mmol/L (2 mo pp) | ||
7.14 ± 1.25 mmol/L (3 mo pp) | ||
Copper | AAS | 3.35 ± 1.07 μmol/L (1 mo pp) |
3.24 ± 1.21 μmol/L (2 mo pp) | ||
3.26 ± 1.35 μmol/L (3 mo pp) | ||
Phosphorus | Colorimetric assay | 5.04 ± 0.84 mmol/L (1 mo pp) |
4.78 ± 0.84 mmol/L (2 mo pp) | ||
4.68 ± 0.81 mmol/L (3 mo pp) | ||
Magnesium | AAS | 1.15 ± 0.25 mmol/L (1 mo pp) |
1.27 ± 0.21 mmol/L (2 mo pp) | ||
1.36 ± 0.21 mmol/L (3 mo pp) | ||
Sodium | AAS | 6.57 ± 2.39 mmol/L (1 mo pp) |
5.26 ± 2.18 mmol/L (2 mo pp) | ||
5.48 ± 2.04 mmol/L (3 mo pp) | ||
Potassium | AAS | 11.92 ± 2.38 mmol/L (1 mo pp) |
10.92 ± 2.23 mmol/L (2 mo pp) | ||
10.41 ± 2.05 mmol/L (3 mo pp) | ||
Chlorine | Ion electrode | 12.04 ± 2.37 mmol/L (1 mo pp) |
11.70 ± 2.09 mmol/L (2 mo pp) | ||
11.96 ± 2.57 mmol/L (3 mo pp) | ||
Volume | Test weighing | 606 ± 135 mL/d (1 mo pp) |
NOTE: AAS = atomic absorption spectrometry; d = day; g = gram; kcal = kilocalories; L = liter; mg = milligram; mL = milliliter; mmol = millimole; mo = month; mol = mole; ng = nanogram; NPN = nonprotein nitrogen; pp = postpartum; wk = week.
a To measure milk volume, infant intake is assessed (not maternal weight change or total production, which can be higher as infants leave milk in the breast). However, weighing the baby before and after a feed underestimates the volume consumed because of insensible water loss (sweat
that has evaporated and exhaled water). Because very few reports corrected for this, often without having estimated this amount themselves, the committee did not use correction for insensible water loss as an exclusion criteria.
b Study was done in the United States, unless noted otherwise.
c Values are presented as the mean ± standard deviation unless noted otherwise.
REFERENCES
Andon, M. B., R. D. Reynolds, P. B. Moser-Veillon, and M. P. Howard. 1989. Dietary intake of total and glycosylated vitamin B-6 and the vitamin B-6 nutritional status of unsupplemented lactating women and their infants. American Journal of Clinical Nutrition 50(5):1050-1058.
Bandara, T., M. Hettiarachchi, C. Liyanage, S. Amarasena, and W. W. Wong. 2015. The deuterium oxide-to-the-mother method documents adequate breast-milk intake among Sri Lankan infants. Journal of Nutrition 145(6):1325-1329.
Bocca, B., A. Alimonti, E. Coni, M. Di Pasquale, L. Giglio, A. Piccioli Bocca, and S. Caroli. 2000. Determination of the total content and binding pattern of elements in human milk by high-performance liquid chromatography-inductively coupled plasma atomic emission spectrometry. Talanta 53(2):295-303.
Buntuchai, G., P. Pavadhgul, W. Kittipichai, and W. Satheannoppakao. 2017. Traditional galactagogue foods and their connection to human milk volume in Thai breastfeeding mothers. Journal of Human Lactation 33(3):552-559.
Butte, N. F., C. Garza, J. E. Stuff, E. O. Smith, and B. L. Nichols. 1984a. Effect of maternal diet and body composition on lactational performance. American Journal of Clinical Nutrition 39(2):296-306.
Butte, N. F., C. Garza, E. O. Smith, and B. L. Nichols. 1984b. Human milk intake and growth in exclusively breast-fed infants. Journal of Pediatrics 104(2):187-195.
Butte, N. F., C. Garza, C. A. Johnson, E. O. Smith, and B. L. Nichols. 1984c. Longitudinal changes in milk composition of mothers delivering preterm and term infants. Early Human Development 9(2):153-162.
Butte, N. F., C. Wills, C. A. Jean, E. O. Smith, and C. Garza. 1985. Feeding patterns of exclusively breast-fed infants during the first four months of life. Early Human Development 12(3):291-300.
Butte, N. F., C. Garza, E. O. Smith, C. Wills, and B. L. Nichols. 1987. Macro- and trace-mineral intakes of exclusively breast-fed infants. American Journal of Clinical Nutrition 45(1):42-48.
Butte, N. F., W. W. Wong, and J. M. Hopkinson. 2001. Energy requirements of lactating women derived from doubly labeled water and milk energy output. Journal of Nutrition 131(1):53-58.
Butts, C. A., D. I. Hedderley, T. D. Herath, G. Paturi, S. Glyn-Jones, F. Wiens, B. Stahl, and P. Gopal. 2018. Human milk composition and dietary intakes of breastfeeding women of different ethnicity from the Manawatu-Wanganui region of New Zealand. Nutrients 10(9):4.
Canfield, L. M., J. M. Hopkinson, A. F. Lima, B. Silva, and C. Garza. 1991. Vitamin K in colostrum and mature human milk over the lactation period—a cross-sectional study. American Journal of Clinical Nutrition 53(3):730-735.
Canfield, L. M., M. T. Clandinin, D. P. Davies, M. C. Fernandez, J. Jackson, J. Hawkes, W. J. Goldman, K. Pramuk, H. Reyes, B. Sablan, T. Sonobe, and X. Bo. 2003. Multinational study of major breast milk carotenoids of healthy mothers. European Journal of Nutrition 42(3):133-141.
Carratu, B., C. Boniglia, F. Scalise, A. M. Ambruzzi, and E. Sanzini. 2003. Nitrogenous components of human milk: Non-protein nitrogen, true protein and free amino acids. Food Chemistry 81(3):357-362.
Casey, C. E., and K. M. Hambidge. 1984. Chromium in human milk from American mothers. British Journal of Nutrition 52(1):73-77.
Casey, C. E., and M. C. Neville. 1987. Studies in human lactation 3: Molybdenum and nickel in human milk during the first month of lactation. American Journal of Clinical Nutrition 45(5):921-926.
Casey, C. E., K. M. Hambidge, and M. C. Neville. 1985. Studies in human lactation: Zinc, copper, manganese and chromium in human milk in the first month of lactation. American Journal of Clinical Nutrition 41(6):1193-1200.
Casey, C. E., M. C. Neville, and K. M. Hambidge. 1989. Studies in human lactation: Secretion of zinc, copper, and manganese in human milk. American Journal of Clinical Nutrition 49(5):773-785.
Chappell, J. E., T. Francis, and M. T. Clandinin. 1985. Vitamin A and E content of human milk at early stages of lactation. Early Human Development 11(2):157-167.
Chen, D. C., L. Nommsen-Rivers, K. G. Dewey, and B. Lonnerdal. 1998. Stress during labor and delivery and early lactation performance. American Journal of Clinical Nutrition 68(2):335-344.
Clark, R. M., and K. E. Hundrieser. 1989. Changes in cholesteryl esters of human milk with total milk lipid. Journal of Pediatric Gastroenterology & Nutrition 9(3):347-350.
Coppa, G. V., O. Gabrielli, P. Pierani, C. Catassi, A. Carlucci, and P. L. Giorgi. 1993. Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics 91(3):637-641.
Dagnelie, P. C., W. A. van Staveren, A. H. Roos, L. G. Tuinstra, and J. Burema. 1992. Nutrients and contaminants in human milk from mothers on macrobiotic and omnivorous diets. European Journal of Clinical Nutrition 46(5):355-366.
de Carvalho, M., S. Robertson, R. Merkatz, and M. Klaus. 1982. Milk intake and frequency of feeding in breast fed infants. Early Human Development 7(2):155-163.
Deelstra, H., O. van Schoor, H. Robberecht, R. Clara, and W. Eylenbosch. 1988. Daily chromium intake by infants in Belgium. Acta Paediatrica Scandinavica 77(3):402-407.
Denic, M., S. Sunaric, M. Gencic, J. Zivkovic, T. Jovanovic, G. Kocic, and M. Jonovic. 2019. Maternal age has more pronounced effect on breast milk retinol and beta-carotene content than maternal dietary pattern. Nutrition 65:120-125.
Dewey, K. G., and B. Lonnerdal. 1983. Milk and nutrient intake of breast-fed infants from 1 to 6 months: Relation to growth and fatness. Journal of Pediatric Gastroenterology & Nutrition 2(3):497-506.
Dewey, K. G., and B. Lonnerdal. 1986. Infant self-regulation of breast milk intake. Acta Paediatrica Scandinavica 75(6):893-898.
Dewey, K. G., D. A. Finley, and B. Lonnerdal. 1984. Breast milk volume and composition during late lactation (7-20 months). Journal of Pediatric Gastroenterology & Nutrition 3(5):713-720.
Dewey, K. G., M. J. Heinig, L. A. Nommsen, and B. Lonnerdal. 1991. Maternal versus infant factors related to breast milk intake and residual milk volume: The DARLING study. Pediatrics 87(6):829-837.
Dewey, K. G., C. A. Lovelady, L. A. Nommsen-Rivers, M. A. McCrory, and B. Lonnerdal. 1994. A randomized study of the effects of aerobic exercise by lactating women on breast-milk volume and composition. New England Journal of Medicine 330(7):449-453.
Dold, S., M. B. Zimmermann, A. Aboussad, M. Cherkaoui, Q. Jia, T. Jukic, Z. Kusic, A. Quirino, Z. Sang, T. O. San Luis, E. Vandea, and M. Andersson. 2017. Breast milk iodine concentration is a more accurate biomarker of iodine status than urinary iodine concentration in exclusively breastfeeding women. Journal of Nutrition 147(4):528-537.
Dold, S., M. B. Zimmermann, T. Jukic, Z. Kusic, Q. Jia, Z. Sang, A. Quirino, T. O. L. San Luis, R. Fingerhut, R. Kupka, A. Timmer, G. S. Garrett, and M. Andersson. 2018. Universal salt iodization provides sufficient dietary iodine to achieve adequate iodine nutrition during the first 1000 days: A cross-sectional multicenter study. Journal of Nutrition 148(4):587-598.
Domellof, M., B. Lonnerdal, K. G. Dewey, R. J. Cohen, and O. Hernell. 2004. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. American Journal of Clinical Nutrition 79(1):111-115.
Doneray, H., E. Olcaysu, A. Yildirim, and A. Ozden. 2017. The effect of the zinc concentration in breast milk on neonatal weight gain. Journal of Trace Elements in Medicine & Biology 41:32-35.
Dumrongwongsiri, O., U. Suthutvoravut, S. Chatvutinun, P. Phoonlabdacha, A. Sangcakul, A. Siripinyanond, U. Thiengmanee, and N. Chongviriyaphan. 2015. Maternal zinc status is associated with breast milk zinc concentration and zinc status in breastfed infants aged 4-6 months. Asia Pacific Journal of Clinical Nutrition 24(2):273-280.
Feeley, R. M., R. R. Eitenmiller, J. B. Jones, Jr., and H. Barnhart. 1983a. Calcium, phosphorus, and magnesium contents of human milk during early lactation. Journal of Pediatric Gastroenterology & Nutrition 2(2):262-267.
Feeley, R. M., R. R. Eitenmiller, J. B. Jones, Jr., and H. Barnhart. 1983b. Copper, iron, and zinc contents of human milk at early stages of lactation. American Journal of Clinical Nutrition 37(3):443-448.
Ferris, A. M., M. A. Dotts, R. M. Clark, M. Ezrin, and R. G. Jensen. 1988. Macronutrients in human milk
at 2, 12, and 16 weeks postpartum. Journal of the American Dietetic Association 88(6):694-697.
Fischer, L. M., K. A. da Costa, J. Galanko, W. Sha, B. Stephenson, J. Vick, and S. H. Zeisel. 2010. Choline intake and genetic polymorphisms influence choline metabolite concentrations in human breast milk and plasma. American Journal of Clinical Nutrition 92(2):336-346.
Fly, A. D., K. L. Uhlin, and J. P. Wallace. 1998. Major mineral concentrations in human milk do not change after maximal exercise testing. American Journal of Clinical Nutrition 68(2):345-349.
Forsum, E., and A. Sadurskis. 1986. Growth, body composition and breast milk intake of Swedish infants during early life. Early Human Development 14(2):121-129.
Goran, M. I., A. A. Martin, T. L. Alderete, H. Fujiwara, and D. A. Fields. 2017. Fructose in breast milk is positively associated with infant body composition at 6 months of age. Nutrients 9(2):16.
Gossage, C. P., M. Deyhim, S. Yamini, L. W. Douglass, and P. B. Moser-Veillon. 2002. Carotenoid composition of human milk during the first month postpartum and the response to beta-carotene supplementation. American Journal of Clinical Nutrition 76(1):193-197.
Greer, F. R., R. C. Tsang, R. S. Levin, J. E. Searcy, R. Wu, and J. J. Steichen. 1982. Increasing serum calcium and magnesium concentrations in breast-fed infants: Longitudinal studies of minerals in human milk and in sera of nursing mothers and their infants. Journal of Pediatrics 100(1):59-64.
Greer, F. R., S. P. Marshall, A. L. Foley, and J. W. Suttie. 1997. Improving the vitamin K status of breastfeeding infants with maternal vitamin K supplements. Pediatrics 99(1):88-92.
Han, Y. H., M. Yon, H. S. Han, K. Y. Kim, T. Tamura, and T. H. Hyun. 2009. Folate contents in human milk and casein-based and soya-based formulas, and folate status in Korean infants. British Journal of Nutrition 101(12):1769-1774.
Hannan, M. A., B. Faraji, J. Tanguma, N. Longoria, and R. C. Rodriguez. 2009. Maternal milk concentration of zinc, iron, selenium, and iodine and its relationship to dietary intakes. Biological Trace Element Research 127(1):6-15.
Hirano, M., K. Honma, T. Daimatsu, K. Hayakawa, J. Oizumi, K. Zaima, and Y. Kanke. 1992. Longitudinal variations of biotin content in human milk. International Journal for Vitamin & Nutrition Research 62(3):281-282.
Houghton, L. A., J. Yang, and D. L. O’Connor. 2009. Unmetabolized folic acid and total folate concentrations in breast milk are unaffected by low-dose folate supplements. American Journal of Clinical Nutrition 89(1):216-220.
Huisman, M., C. M. van Beusekom, C. I. Lanting, H. J. Nijeboer, F. A. Muskiet, and E. R. Boersma. 1996. Triglycerides, fatty acids, sterols, mono- and disaccharides and sugar alcohols in human milk and current types of infant formula milk. European Journal of Clinical Nutrition 50(4):255-260.
Hunt, C. D., N. F. Butte, and L. K. Johnson. 2005. Boron concentrations in milk from mothers of exclusively breast-fed healthy full-term infants are stable during the first four months of lactation. Journal of Nutrition 135(10):2383-2386.
Huynh, D., D. Condo, R. Gibson, B. Muhlhausler, P. Ryan, S. Skeaff, M. Makrides, and S. J. Zhou. 2017. Iodine status of postpartum women and their infants in Australia after the introduction of mandatory iodine fortification. British Journal of Nutrition 117(12):1656-1662.
Ilcol, Y. O., R. Ozbek, E. Hamurtekin, and I. H. Ulus. 2005. Choline status in newborns, infants, children, breast-feeding women, breast-fed infants and human breast milk. Journal of Nutritional Biochemistry 16(8):489-499.
Janas, L. M., and M. F. Picciano. 1986. Quantities of amino acids ingested by human milk-fed infants. Journal of Pediatrics 109(5):802-807.
Jozwik, M., M. Jozwik, C. Teng, M. Jozwik, and F. C. Battaglia. 2013. Human breast milk sugars and polyols over the first 10 puerperium days. American Journal of Human Biology 25(2):198-204.
Kantola, M., and T. Vartiainen. 2001. Changes in selenium, zinc, copper and cadmium contents in human milk during the time when selenium has been supplemented to fertilizers in Finland. Journal of Trace Elements in Medicine & Biology 15(1):11-17.
Keenan, B. S., S. W. Buzek, C. Garza, E. Potts, and B. L. Nichols. 1982. Diurnal and longitudinal
variations in human milk sodium and potassium: Implication for nutrition and physiology. American Journal of Clinical Nutrition 35(3):527-534.
Kent, J. C., L. R. Mitoulas, M. D. Cregan, D. T. Ramsay, D. A. Doherty, and P. E. Hartmann. 2006. Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics 117(3):e387-e395.
Kim, H., B.-M. Jung, B.-N. Lee, Y.-J. Kim, J. A. Jung, and N. Chang. 2017. Retinol, α-tocopherol, and selected minerals in breast milk of lactating women with full-term infants in South Korea. Nutrition Research and Practice 11(1):64-69.
Koo, W. W., and J. M. Gupta. 1982. Breast milk sodium. Archives of Disease in Childhood 57(7):500-502.
Krebs, N. F., K. M. Hambidge, M. A. Jacobs, and J. O. Rasbach. 1985a. The effects of a dietary zinc supplement during lactation on longitudinal changes in maternal zinc status and milk zinc concentrations. American Journal of Clinical Nutrition 41(3):560-570.
Krebs, N. F., K. M. Hambidge, M. A. Jacobs, and S. Mylet. 1985b. Zinc in human milk: Diurnal and within-feed patterns. Journal of Pediatric Gastroenterology & Nutrition 4(2):227-229.
Krebs, N. F., C. J. Reidinger, A. D. Robertson, and K. M. Hambidge. 1994. Growth and intakes of energy and zinc in infants fed human milk. Journal of Pediatrics 124(1):32-39.
Li, F., E. Rossipal, and K. J. Irgolic. 1999. Determination of selenium in human milk by hydride cold-trapping atomic absorption spectrometry and calculation of daily selenium intake. Journal of Agricultural & Food Chemistry 47(8):3265-3268.
Lin, T. H., Y. J. Jong, C. H. Chiang, and M. H. Yang. 1998. Longitudinal changes in ca, mg, fe, cu, and zn in breast milk of women in Taiwan over a lactation period of one year. Biological Trace Element Research 62(1-2):31-41.
Lucas, A., G. Ewing, S. B. Roberts, and W. A. Coward. 1987. How much energy does the breast fed infant consume and expand? British Medical Journal 295(6590):75-77.
Mackey, A. D., and M. F. Picciano. 1999. Maternal folate status during extended lactation and the effect of supplemental folic acid. American Journal of Clinical Nutrition 69(2):285-292.
Mahdavi, R., L. Nikniaz, and S. J. Gayemmagami. 2010. Association between zinc, copper, and iron concentrations in breast milk and growth of healthy infants in Tabriz, Iran. Biological Trace Element Research 135(1-3):174-181.
Mahdavi, R., S. Taghipour, A. Ostadrahimi, L. Nikniaz, and S. J. Hezaveh. 2015. A pilot study of synbiotic supplementation on breast milk mineral concentrations and growth of exclusively breast fed infants. Journal of Trace Elements in Medicine & Biology 30:25-29.
Martysiak-Zurowska, D., A. Szlagatys-Sidorkiewicz, and M. Zagierski. 2013. Concentrations of alpha- and gamma-tocopherols in human breast milk during the first months of lactation and in infant formulas. Maternal & Child Nutrition 9(4):473-482.
Martysiak-Zurowska, D., M. Zagierski, E. Wos-Wasilewska, and A. Szlagatys-Sidorkiewicz. 2016. Higher absorption of vitamin C from food than from supplements by breastfeeding mothers at early stages of lactation. International Journal for Vitamin and Nutrition Research 86(3-4):81-87.
Mataloun, M. M., and C. R. Leone. 2000. Human milk mineral intake and serum concentrations of calcium and phosphorus in newborn term infants: Influence of intrauterine growth restriction. Acta Paediatrica 89(9):1093-1097.
Matheny, R., and M. F. Picciano. 1986. Feeding and growth characteristics of human milk-fed infants. Journal of the American Dietetic Association 86(3):327-331.
Matos, C., C. Moutinho, V. Balcão, C. Almeida, M. Ribeiro, A. F. Marques, and A. Guerra. 2009. Total antioxidant activity and trace elements in human milk: The first 4 months of breast-feeding. European Food Research and Technology 230(2):201-208.
Matos, C., C. Moutinho, C. Almeida, A. Guerra, and V. Balcao. 2014. Trace element compositional changes in human milk during the first four months of lactation. International Journal of Food Sciences & Nutrition 65(5):547-551.
McCrory, M. A., L. A. Nommsen-Rivers, P. A. Mole, B. Lonnerdal, and K. G. Dewey. 1999.
Randomized trial of the short-term effects of dieting compared with dieting plus aerobic exercise on lactation performance. American Journal of Clinical Nutrition 69(5):959-967.
Meneses, F., and N. M. F. Trugo. 2005. Retinol, β-carotene, and lutein + zeaxanthin in the milk of Brazilian nursing women: Associations with plasma concentrations and influences of maternal characteristics. Nutrition Research 25(5):443-451.
Minato, T., K. Nomura, H. Asakura, A. Aihara, H. Hiraike, Y. Hino, T. Isojima, and H. Kodama. 2019. Maternal undernutrition and breast milk macronutrient content are not associated with weight in breastfed infants at 1 and 3 months after delivery. International Journal of Environmental Research and Public Health 16(18):3315.
Mitoulas, L. R., C. T. Lai, L. C. Gurrin, M. Larsson, and P. E. Hartmann. 2002. Efficacy of breast milk expression using an electric breast pump. Journal of Human Lactation 18(4):344-352.
Mohd Shukri, N. H., J. Wells, S. Eaton, F. Mukhtar, A. Petelin, Z. Jenko-Praznikar, and M. Fewtrell. 2019. Randomized controlled trial investigating the effects of a breastfeeding relaxation intervention on maternal psychological state, breast milk outcomes, and infant behavior and growth. American Journal of Clinical Nutrition 110(1):121-130.
Morrison, L. A., and J. A. Driskell. 1985. Quantities of B6 vitamers in human milk by high-performance liquid chromatography. Influence of maternal vitamin B6 status. Journal of Chromatography A 337(2):249-258.
Morriss, F. H., Jr., E. D. Brewer, S. B. Spedale, L. Riddle, D. M. Temple, R. M. Caprioli, and M. S. West. 1986. Relationship of human milk pH during course of lactation to concentrations of citrate and fatty acids. Pediatrics 78(3):458-464.
Neville, M. C., R. Keller, J. Seacat, V. Lutes, M. Neifert, C. Casey, J. Allen, and P. Archer. 1988. Studies in human lactation: Milk volumes in lactating women during the onset of lactation and full lactation. American Journal of Clinical Nutrition 48(6):1375-1386.
Nielsen, S. B., J. J. Reilly, M. S. Fewtrell, S. Eaton, J. Grinham, and J. C. Wells. 2011. Adequacy of milk intake during exclusive breastfeeding: A longitudinal study. Pediatrics 128(4):e907-e914.
Nommsen, L. A., C. A. Lovelady, M. J. Heinig, B. Lonnerdal, and K. G. Dewey. 1991. Determinants of energy, protein, lipid, and lactose concentrations in human milk during the first 12 mo of lactation: The DARLING study. American Journal of Clinical Nutrition 53(2):457-465.
Ohtake, M., and T. Tamura. 1993. Changes in zinc and copper concentrations in breast milk and blood of Japanese women during lactation. Journal of Nutritional Science & Vitaminology 39(2):189-200.
Ohtake, M., R. Chiba, K. Mochizuki, and K. Tada. 1981. Zinc and copper concentrations in human milk and in serum from exclusively-breast-fed infants during the first 3 months of life. Tohoku Journal of Experimental Medicine 135(4):335-343.
Ortega, R. M., P. Andres, R. M. Martinez, A. M. Lopez-Sobaler, and M. E. Quintas. 1997. Zinc levels in maternal milk: The influence of nutritional status with respect to zinc during the third trimester of pregnancy. European Journal of Clinical Nutrition 51(4):253-258.
Ozarda, Y., M. Cansev, and I. H. Ulus. 2014. Breast milk choline contents are associated with inflammatory status of breastfeeding women. Journal of Human Lactation 30(2):161-166.
Panagos, P. G., R. Vishwanathan, A. Penfield-Cyr, N. R. Matthan, N. Shivappa, M. D. Wirth, J. R. Hebert, and S. Sen. 2016. Breastmilk from obese mothers has pro-inflammatory properties and decreased neuroprotective factors. Journal of Perinatology 36(4):284-290.
Pao, E. M., J. M. Himes, and A. F. Roche. 1980. Milk intakes and feeding patterns of breast-fed infants. Journal of the American Dietetic Association 77(5):540-545.
Perrin, M. T., A. D. Fogleman, D. S. Newburg, and J. C. Allen. 2017. A longitudinal study of human milk composition in the second year postpartum: Implications for human milk banking. Maternal & Child Nutrition 13(1):1.
Picciano, M. F., E. J. Calkins, J. R. Garrick, and R. H. Deering. 1981. Milk and mineral intakes of breastfed infants. Acta Paediatrica Scandinavica 70(2):189-194.
Qian, J., T. Chen, W. Lu, S. Wu, and J. Zhu. 2010. Breast milk macro- and micronutrient composition in lactating mothers from suburban and urban Shanghai. Journal of Paediatrics & Child Health
46(3):115-120.
Qian, L., B. Wang, N. Tang, W. Zhang, and W. Cai. 2012. Polymorphisms of slc30a2 and selected perinatal factors associated with low milk zinc in Chinese breastfeeding women. Early Human Development 88(8):663-668.
Rodríguez Rodríguez, E. M., M. Sanz Alaejos, and C. Díaz Romero. 1998. Concentrations of selenium in human milk. European Food Research and Technology 207(2):174-179.
Schweigert, F. J., K. Bathe, F. Chen, U. Buscher, and J. W. Dudenhausen. 2004. Effect of the stage of lactation in humans on carotenoid levels in milk, blood plasma and plasma lipoprotein fractions. European Journal of Nutrition 43(1):39-44.
Sekiyama, M., S. Matsu'ura, and R. Ohtsuka. 2003. Monthly growth and milk intake of Japanese infants exclusively breast-fed up to three months old. Anthropological Science 111(4):373-381.
Severi, C., M. Hambidge, N. Krebs, R. Alonso, and E. Atalah. 2013. Zinc in plasma and breast milk in adolescents and adults in pregnancy and pospartum: A cohort study in Uruguay. Nutricion Hospitalaria 28(1):223-228.
Shehadeh, N., N. Aslih, S. Shihab, M. J. Werman, R. Sheinman, and R. Shamir. 2006. Human milk beyond one year post-partum: Lower content of protein, calcium, and saturated very long-chain fatty acids. Journal of Pediatrics 148(1):122-124.
Silvestre, D., C. Martinez-Costa, M. J. Lagarda, J. Brines, R. Farre, and G. Clemente. 2001. Copper, iron, and zinc contents in human milk during the first three months of lactation: A longitudinal study. Biological Trace Element Research 80(1):1-11.
Smith, A. M., M. F. Picciano, and R. H. Deering. 1983. Folate supplementation during lactation: Maternal folate status, human milk folate content, and their relationship to infant folate status. Journal of Pediatric Gastroenterology & Nutrition 2(4):622-628.
Song, W. O., G. M. Chan, B. W. Wyse, and R. G. Hansen. 1984. Effect of pantothenic acid status on the content of the vitamin in human milk. American Journal of Clinical Nutrition 40(2):317-324.
Stimming, M., C. M. Mesch, M. Kersting, H. Kalhoff, H. Demmelmair, B. Koletzko, A. Schmidt, V. Bohm, and L. Libuda. 2014. Vitamin E content and estimated need in German infant and follow-on formulas with and without long-chain polyunsaturated fatty acids (LC-PUFA) enrichment. Journal of Agricultural & Food Chemistry 62(41):10153-10161.
Strode, M. A., K. G. Dewey, and B. Lonnerdal. 1986. Effects of short-term caloric restriction on lactational performance of well-nourished women. Acta Paediatrica Scandinavica 75(2):222-229.
Stuff, J. E., and B. L. Nichols. 1989. Nutrient intake and growth performance of older infants fed human milk. Journal of Pediatrics 115(6):959-968.
Sunaric, S., M. Denic, J. Lalic, T. Jovanovic, A. Spasic, J. Zivkovic, N. Trutic, and G. Kocic. 2017. Physicochemical and biochemical parameters in milk of Serbian breastfeeding women. Turkish Journal of Medical Sciences 47(1):246-251.
Szlagatys-Sidorkiewicz, A., M. Zagierski, A. Jankowska, G. Luczak, K. Macur, T. Baczek, M. Korzon, G. Krzykowski, D. Martysiak-Zurowska, and B. Kaminska. 2012. Longitudinal study of vitamins A, E and lipid oxidative damage in human milk throughout lactation. Early Human Development 88(6):421-424.
Szlagatys-Sidorkiewicz, A., D. Martysiak-Zurowska, G. Krzykowski, M. Zagierski, and B. Kaminska. 2013. Maternal smoking modulates fatty acid profile of breast milk. Acta Paediatrica 102(8):e353-e359.
Tamari, Y., and E. S. Kim. 1999. Longitudinal study of the dietary selenium intake of exclusively breastfed infants during early lactation in Korea and Japan. Journal of Trace Elements in Medicine & Biology 13(3):129-133.
Tamura, T., Y. Yoshimura, and T. Arakawa. 1980. Human milk folate and folate status in lactating mothers and their infants. American Journal of Clinical Nutrition 33(2):193-197.
Taravati Javad, M., A. Vahidinia, F. Samiee, J. Elaridi, M. Leili, J. Faradmal, and A. Rahmani. 2018. Analysis of aluminum, minerals and trace elements in the milk samples from lactating mothers in Hamadan, Iran. Journal of Trace Elements in Medicine & Biology 50:8-15.
Udipi, S. A., A. Kirksey, and J. L. Roepke. 1987. Diurnal variations in folacin levels of human milk: Use of a single sample to represent folacin concentration in milk during a 24-h period. American Journal of Clinical Nutrition 45(4):770-779.
Urzica, D., C. Gales, C. Zamfir, and M. Nechifor. 2013. The influence of oral steroidal contraceptives on magnesium concentration in breast milk. Magnesium Research 26(4):188-191.
Vio, F., G. Salazar, and C. Infante. 1991. Smoking during pregnancy and lactation and its effects on breast-milk volume. American Journal of Clinical Nutrition 54(6):1011-1016.
Wack, R. P., E. L. Lien, D. Taft, and J. D. Roscelli. 1997. Electrolyte composition of human breast milk beyond the early postpartum period. Nutrition 13(9):774-777.
Wang, W., Y. Sun, M. Zhang, Y. Zhang, W. Chen, L. Tan, J. Shen, Z. Zhao, S. Lan, and W. Zhang. 2018. Breast milk and infant iodine status during the first 12 weeks of lactation in Tianjin City, China. Asia Pacific Journal of Clinical Nutrition 27(2):393-398.
Wasowicz, W., J. Gromadzinska, K. Szram, K. Rydzynski, J. Cieslak, and Z. Pietrzak. 2001. Selenium, zinc, and copper concentrations in the blood and milk of lactating women. Biological Trace Element Research 79(3):221-233.
Wells, J. C., O. H. Jonsdottir, P. L. Hibberd, M. S. Fewtrell, I. Thorsdottir, S. Eaton, A. Lucas, G. Gunnlaugsson, and R. E. Kleinman. 2012. Randomized controlled trial of 4 compared with 6 mo of exclusive breastfeeding in Iceland: Differences in breast-milk intake by stable-isotope probe. American Journal of Clinical Nutrition 96(1):73-79.
Wiedeman, A. M., K. C. Whitfield, K. M. March, N. N. Chen, H. Kroeun, L. Sokhoing, P. Sophonneary, R. A. Dyer, Z. Xu, D. D. Kitts, T. J. Green, S. M. Innis, and S. I. Barr. 2018. Concentrations of water-soluble forms of choline in human milk from lactating women in Canada and Cambodia. Nutrients 10(3):20.
Wong, V. W. S., Y. F. Ng, S. M. Chan, Y. X. Su, K. W. H. Kwok, H. M. Chan, C. L. Cheung, H. W. Lee, W. Y. Pak, S. Y. Li, and M. S. Wong. 2019. Positive relationship between consumption of specific fish type and n-3 PUFA in milk of Hong Kong lactating mothers. British Journal of Nutrition 121(12):1431-1440.
Woodward, D. R., and F. J. Cumming. 1990. Do ambient temperature and humidity influence the breastmilk intake of babies? Journal of Paediatrics & Child Health 26(6):347-350.
Xue, Y., E. Campos-Gimenez, K. M. Redeuil, A. Leveques, L. Actis-Goretta, G. Vinyes-Pares, Y. Zhang, P. Wang, and S. K. Thakkar. 2017. Concentrations of carotenoids and tocopherols in breast milk from urban Chinese mothers and their associations with maternal characteristics: A cross-sectional study. Nutrients 9(11):9.
Yagi, T., S. Iwamoto, R. Mizuseki, M. Furuya, and K. Nakayama. 2013. Contents of all forms of vitamin B6, pyridoxine-beta-glucoside and 4-pyridoxic acid in mature milk of Japanese women according to 4-pyridoxolactone-conversion high performance liquid chromatography. Journal of Nutritional Science & Vitaminology 59(1):9-15.
Zhao, A., Y. Ning, Y. Zhang, X. Yang, J. Wang, W. Li, and P. Wang. 2014. Mineral compositions in breast milk of healthy Chinese lactating women in urban areas and its associated factors. Chinese Medical Journal 127(14):2643-2648.
Zimmerman, D. R., L. Goldstein, E. Lahat, R. Braunstein, D. Stahi, A. Bar-Haim, and M. Berkovitch. 2009. Effect of a 24+ hour fast on breast milk composition. Journal of Human Lactation 25(2):194-198.