National Academies Press: OpenBook
« Previous: 5 Education, Training, and Workforce Needs
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

References

Agarwal, A., C.-S. Kim, R. Hobbs, D. van Dyck, and Karl K. Berggren. 2017. A nanofabricated, monolithic, path-separated electron interferometer. Scientific Reports 7(1):1677. https://doi.org/10.1038/s41598-017-01466-0.

Auböck, G., C. Consani, R. Monni, A. Cannizzo, F. van Mourik, and M. Chergui. 2012a. Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate. Review of Scientific Instruments 83(9):093105. https://doi.org/10.1063/1.4750978.

Auböck, G., C. Consani, F. van Mourik, and M. Chergui. 2012b. Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption. Optics Letters 37(12):2337–2339. https://doi.org/10.1364/ol.37.002337.

Bacellar, C., D. Kinschel, G. F. Mancini, R. A. Ingle, J. Rouxel, O. Cannelli, C. Cirelli, G. Knopp, J. Szlachetko, F. A. Lima, S. Menzi, G. Pamfilidis, K. Kubicek, D. Khakhulin, W. Gawelda, A. Rodriguez-Fernandez, M. Biednov, C. Bressler, C. A. Arrell, P. J. M. Johnson, C. J. Milne, and M. Chergui. 2020. Spin cascade and doming in ferric hemes: Femtosecond x-ray absorption and x-ray emission studies. Proceedings of the National Academy of Sciences of the United States of America 117(36):21914–21920. https://doi.org/10.1073/pnas.2009490117.

Barton, J., M. Gulka, J. Tarabek, Y. Mindarava, Z. Wang, J. Schimer, H. Raabova, J. Bednar, M. B. Plenio, F. Jelezko, M. Nesladek, and P. Cigler. 2020. Nanoscale dynamic readout of a chemical redox process using radicals coupled with nitrogen-vacancy centers in nanodiamonds. ACS Nano 14(10):12938–12950. https://doi.org/10.1021/acsnano.0c04010.

Barzanjeh, S., S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola. 2015. Microwave quantum illumination. Physical Review Letters 114(8):080503. https://doi.org/10.1103/physrevlett.114.080503.

Beckstead, A. A., Y. Zhang, M. S. de Vries, and B. Kohler. 2016. Life in the light: Nucleic acid photoproperties as a legacy of chemical evolution. Physical Chemistry Chemical Physics 18(35):24228–24238. https://doi.org/10.1039/c6cp04230a.

Bell, J. S. 1964. On the Einstein-Podolsky-Rosen paradox. Physics Physique Fizika 1(3):195–200. https://doi.org/10.1103/physicsphysiquefizika.1.195.

Benfey, P. N., P. J. Linstead, K. Roberts, J. W. Schiefelbein, M. T. Hauser, and R. A. Aeschbacher. 1993. Root development in Arabidopsis: Four mutants with dramatically altered root morphogenesis. Development 119(1):57–70. https://pubmed.ncbi.nlm.nih.gov/8275864.

Brand, M. D., J. L. Pakay, A. Ocloo, J. Kokoszka, D. C. Wallace, P. S. Brookes, and E. J. Cornwall. 2005. The basal proton conductance of mitochondria

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

depends on adenine nucleotide translocase content. Biochemical Journal 392(2):353–362. https://doi.org/10.1042/BJ20050890.

Branson, H. 1942. Physics training for the Negro student. American Journal of Physics 10(4):201. https://doi.org/10.1119/1.1990377.

Broderick, S., T. Zhang, B. Kota, R. Subramanian, S. Setlur, V. Govindaraju, and K. Rajan. 2018. Machine learning for atomic scale chemical and morphological assessment. Microscopy and Microanalysis 24(S1):526–527. https://doi.org/10.1017/S1431927618003124.

Buckner, E., C. Ottley, C. Williams, A. de Luis Balaguer, C. E. Melvin, and R. Sozzani. 2018. Tracking gene expression via light sheet microscopy and computer vision in living organisms. Pp. 818–821 in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE. https://doi.org/10.1109/embc.2018.8512416.

Buckner, E., I. Madison, C. E. Melvin, T. Long, R. Sozzani, and C. Williams. 2020. BioVision Tracker: A semi-automated image analysis software for spatiotemporal gene expression tracking in Arabidopsis thaliana. Pp. 419–436 in Methods in Cell Biology, Vol. 160, C. T. Anderson, E. S. Haswell, and R. Dixi, eds. New York: Academic Press. https://doi.org/10.1016/bs.mcb.2020.04.017.

Busse, S. M., P. T. McMillen, and M. Levin. 2018. Cross-limb communication during Xenopus hindlimb regenerative response: Non-local bioelectric injury signals. Development 145(19):dev164210. https://doi.org/10.1242/dev.164210.

Cannizzo, A., O. Bräm, G. Zgrablic, A. Tortschanoff, A. Ajdarzadeh Oskouei, F. van Mourik, and M. Chergui. 2007. Femtosecond fluorescence upconversion setup with broadband detection in the ultraviolet. Optics Letters 32(24):3555–3557. https://doi.org/10.1364/ol.32.003555.

Cao, Q.-Y., P.-C. Yang, M.-S. Gong, M. Yu, A. Retzker, M. B. Plenio, C. Müller, N. Tomek, B. Naydenov, L. P. McGuinness, F. Jelezko, and J.-M. Cai. 2020. Protecting quantum spin coherence of nanodiamonds in living cells. Physical Review Applied 13(2):024021. https://doi.org/10.1103/physrevapplied.13.024021.

Celardo, G. L., M. Angeli, T. J. A. Craddock, and P. Kurian. 2019. On the existence of superradiant excitonic states in microtubules. New Journal of Physics 21(2):023005. https://doi.org/10.1088/1367-2630/aaf839.

Chávez, N. C., F. Mattiotti, J. A. Méndez-Bermúdez, F. Borgonovi, and G. L. Celardo. 2020. Disorder-enhanced and disorder-independent transport with long-range hopping: Application to molecular chains in optical cavities. Physical Review Letters 126(15):153201. https://arxiv.org/abs/2010.08060.

Chernet, B. T., D. S. Adams, M. Lobikin, and M. Levin. 2016. Use of genetically encoded, light-gated ion translocators to control tumorigenesis. Oncotarget 7(15):19575–19588. https://doi.org/10.18632/oncotarget.8036.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Clark, N. M., and R. Sozzani. 2017. Measuring protein movement, oligomerization state, and protein–protein interaction in Arabidopsis roots using scanning fluorescence correlation spectroscopy (scanning FCS). Pp. 251–266 in Plant Genomics: Methods in Molecular Biology, Vol. 1610, W. Busch, ed. New York: Humana Press. https://doi.org/10.1007/978-1-49397003-2_16.

Clark, N. M., E. Hinde, C. M. Winter, A. P. Fisher, G. Crosti, I. Blilou, E. Gratton, P. N. Benfey, and R Sozzani. 2016. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy. eLife 5:e14770. https://doi.org/10.7554/elife.14770.

Clark, N. M., A. P. Fisher, B. Berckmans, L. Van den Broeck, E. C. Nelson, T. T. Nguyen, E. Bustillo-Avendaño, S. G. Zebell, M. Moreno-Risueno, R. Simon, K. L. Gallagher, and R. Sozzani. 2020. Protein complex stoichiometry and expression dynamics of transcription factors modulate stem cell division. Proceedings of the National Academy of Sciences of the United States of America 117(26):15332–15342. https://doi.org/10.1073/pnas.2002166117.

Consani, C., G. Aubock, F. van Mourik, and M. Chergui. 2013. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy. Science 339(6127):1586–1589. https://doi.org/10.1126/science.1230758.

Creatore, C., M. A. Parker, S. Emmott, and A. W. Chin. 2013. Efficient biologically inspired photocell enhanced by delocalized quantum states. Physical Review Letters 111(25):253601. https://doi.org/10.1103/physrevlett.111.253601.

Crespo-Hernández, C. E., B. Cohen, P. M. Hare, and B. Kohler. 2004. Ultrafast excited-state dynamics in nucleic acids. Chemical Reviews 104(4):1977–2020. https://doi.org/10.1021/cr0206770.

Cruz-Ramírez, A., S. Díaz-Triviño, I. Blilou, V. A. Grieneisen, R. Sozzani, C. Zamioudis, P. Miskolczi, J. Nieuwland, R. Benjamins, P. Dhonukshe, J. Caballero-Pérez, B. Horvath, Y. Long, A. Pekka Mähönen, H. Zhang, J. Xu, J. A. H. Murray, P. N. Benfey, L. Bako, A. F. M. Marée, and B. Scheres. 2012. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 150(5):1002–1015. https://doi.org/10.1016/j.cell.2012.07.017.

Dayan, B., A. Pe’er, A. A. Friesem, and Y. Silberberg. 2005. Nonlinear interactions with an ultrahigh flux of broadband entangled photons. Physical Review Letters 94(4):043602. https://doi.org/10.1103/physrevlett.94.043602.

de Broglie, L. 1924. Recherches sur la théorie des quanta [Research on quanta theory]. Physique [Physics]. Migration—université en cours d’affectation [Migration—university in the process of assignment]. French.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

de Luis Balaguer, M. A., M. Ramos-Pezzotti, M. B. Rahhal, C. E. Melvin, E. Johannes, T. J. Horn, and R. Sozzani. 2016. Multi-sample Arabidopsis growth and imaging chamber (MAGIC) for long term imaging in the ZEISS Lightsheet Z.1. Developmental Biology 419(1):19–25. https://doi.org/10.1016/j.ydbio.2016.05.029.

Deckert, V., T. Deckert-Gaudig, D. Cialla-May, J. Popp, R. Zell, S. Deinhard-Emmer, A. V. Sokolov, Z. Yi, and M. O. Scully. 2020. Laser spectroscopic technique for direct identification of a single virus I: FASTER CARS. Proceedings of the National Academy of Sciences of the United States of America 117(45):27820–27824. https://doi.org/10.1073/pnas.2013169117.

Degasperis, A., L. Fonda, and G. C. Ghirardi. 1974. Does the lifetime of an unstable system depend on the measuring apparatus? Il Nuovo Cimento A 21(3):471–484. https://doi.org/10.1007/bf02731351.

Deniston, C. K., J. Salogiannis, S. Mathea, D. M. Snead, I. Lahiri, M. Matyszewski, O. Donosa, R. Watanabe, J. Böhning, A. K. Shiau, S. Knapp, E. Villa, S. L. Reck-Peterson, and A. E. Leschziner. 2020. Structure of LRRK2 in Parkinson’s disease and model for microtubule interaction. Nature 588(7837):344–349. https://doi.org/10.1038/s41586-020-2673-2.

Di Laurenzio, L., J. Wysocka-Diller, J. E. Malamy, L. Pysh, Y. Helariutta, G. Freshour, M. G. Hahn, K. A. Feldmann, and P. N. Benfey. 1996. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86(3):423–433. https://doi.org/10.1016/s0092-8674(00)80115-4.

Di Rienzo, C., E. Gratton, F. Beltram, and F. Cardarelli. 2014. Fast spatiotemporal correlation spectroscopy to determine protein lateral diffusion laws in live cell membranes. Biophysical Journal 106(2, Suppl. 1):224a. https://doi.org/10.1016/j.bpj.2013.11.1311.

Di Rienzo, C., F. Cardarelli, M. Di Luca, F. Beltram, and E. Gratton. 2016. Diffusion tensor analysis by two-dimensional pair correlation of fluorescence fluctuations in cells. Biophysical Journal 111(4):841–851. https://doi.org/10.1016/j.bpj.2016.07.005.

Digman, M. A., and E. Gratton. 2009. Imaging barriers to diffusion by pair correlation functions. Biophysical Journal 97(2):665–673. https://doi.org/10.1016/j.bpj.2009.04.048.

Digman, M. A., R. Dalal, A. F. Horwitz, and E. Gratton. 2008. Mapping the number of molecules and brightness in the laser scanning microscope. Biophysical Journal 94(6):2320–2332. https://doi.org/10.1529/biophysj.107.114645.

Dixit, G., C. Dabney-Smith, and G. A. Lorigan. 2020. The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights. Biochimica et Biophysica Acta: Biomembranes 1862(5):183148. https://doi.org/10.1016/j.bbamem.2019.183148.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Doi, R. H. 2008. Cellulases of mesophilic microorganisms. Annals of the New York Academy of Sciences 1125(1):267–279. https://doi.org/10.1196/annals.1419.002.

Donald, C. M. 1968. The breeding of crop ideotypes. Euphytica 17(3):385–403. https://doi.org/10.1007/bf00056241.

Dorfman, K. E., D. V. Voronine, S. Mukamel, and M. O. Scully. 2013. Photosynthetic reaction center as a quantum heat engine. Proceedings of the National Academy of Sciences of the United States of America 110(8):2746–2751. https://doi.org/10.1073/pnas.1212666110.

Downie, H., N. Holden, W. Otten, A. J. Spiers, T. A. Valentine, and L. X. Dupuy. 2012. Transparent soil for imaging the rhizosphere. PLOS ONE 7(9):e44276. https://doi.org/10.1371/journal.pone.0044276.

Driest, E., and H. O. Muller. 1935. Electron microscopic photographs (electron micrograms) of “Chitin” specimens. Zeitschrift fur wissenschaftliche Mikroskopie und mikroskopische Technik 52:53–57.

Dubochet, J., M. Adrian, J. J. Chang, J. Homo, J. Lepault, A. McDowall, and P. Schultz.1988. Cryo-electron microscopy of vitrified specimens. Quarterly Reviews of Biophysics 21(2):129–228. https://doi.org/10.1017/s0033583500004297.

Duncan, K. E., K. J. Czymmek, N. Jiang, A. C. Thies, and C. N. Topp. 2020. X-ray microscopy enables multiscale high-resolution 3D imaging of plant cells, tissues, and organs. https://www.biorxiv.org/content/10.1101/2020.12.18.423480v2.

Egerton, R. F. 2014. Choice of operating voltage for a transmission electron microscope. Ultramicroscopy 145:85–93. https://doi.org/10.1016/j.ultramic.2013.10.019.

Einstein, A., B. Podolsky, and N. Rosen. 1935. Can quantum-mechanical description of physical reality be considered complete? Physical Review 47(10):777–780. https://doi.org/10.1103/physrev.47.777.

Elitzur, A. C., and L. Vaidman. 1993. Quantum mechanical interaction-free measurements. Foundations of Physics 23(7):987–997. https://doi.org/10.1007/bf00736012.

Emlen, S. T., and J. T. Emlen. 1966. A technique for recording migratory orientation of captive birds. The Auk 83(3):361–367. https://doi.org/10.2307/4083048.

Engel, G. S., T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming. 2007. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446(7137):782–786. https://doi.org/10.1038/nature05678.

Eshun, A., Z. Cai, M. Awies, L. Yu, and T. Goodson III. 2018. Investigations of thienoacene molecules for classical and entangled two-photon absorption.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Journal of Physical Chemistry A 122(41):8167–8182. https://doi.org/ 10.1021/acs.jpca.8b06312.

Esposito, T. A. 2017. Evidence for direct tunneling and studies of the electron attenuation coefficient in porphyrin molecular junctions. Ph.D. dissertation. Rensselaer Polytechnic Institute. https://ui.adsabs.harvard.edu/abs/2017PhDT........52E/abstract.

Farhadi, A., G. H. Ho, D. P. Sawyer, R. W. Bourdeau, and M. G. Shapiro. 2019. Ultrasound imaging of gene expression in mammalian cells. Science 365(6460):1469–1475. https://doi.org/10.1126/science.aax4804.

Fatherly. 2018. The 2017 imagination report: What kids want to be when they grow up. January 25. https://www.fatherly.com/love-money/the-2017imagination-report-what-kids-want-to-be-when-they-grow-up.

Ferri, F., D. Magatti, L. A. Lugiato, and A. Gatti. 2010. Differential ghost imaging. Physical Review Letters 104(25):253603. https://doi.org/10.1103/physrevlett.104.253603.

Fisher, A. P., and R. Sozzani. 2016. Uncovering the networks involved in stem cell maintenance and asymmetric cell division in the Arabidopsis root. Current Opinion in Plant Biology 29:38–43. https://doi.org/10.1016/j.pbi.2015.11.002.

Fröhlich, H. 1968. Long-range coherence and energy storage in biological systems. International Journal of Quantum Chemistry 2(5):641–649. https://doi.org/10.1002/qua.560020505.

Gaskill, M. 2019. Designing a key to unlock Parkinson’s disease. NASA. July 30. https://www.nasa.gov/mission_pages/station/research/news/parkinsonsresearch.

Gilmore, S. P., J. K. Henske, and M. A. O’Malley. 2015. Driving biomass breakdown through engineered cellulosomes. Bioengineered 6(4):204–208. https://doi.org/10.1080/21655979.2015.1060379.

Grant, T., and N. Grigorieff. 2015. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4:e06980. https://doi.org/10.7554/elife.06980.

Green, E. W., G. Fedele, F. Giorgini, and C. P. Kyriacou. 2014. A Drosophila RNAi collection is subject to dominant phenotypic effects. Nature Methods 11(3):222–223. https://doi.org/10.1038/nmeth.2856.

Grigoriev, I. V., D. Cullen, S. B. Goodwin, D. Hibbett, T. W. Jeffries, C. P. Kubicek, C. Kuske, J. K. Magnuson, F. Martin, J. W. Spatafora, A. Tsang, and S. E. Baker. 2011. Fueling the future with fungal genomics. Mycology 2(3):192–209. https://www.tandfonline.com/doi/full/10.1080/21501203.2011.584577.

Grotz, B., J. Beck, P. Neumann, B. Naydenov, R. Reuter, F. Reinhard, F. Jelezko, J. Wrachtrup, D. Schweinfurth, B. Sarkar, and P. Hemmer. 2011. Sensing

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

external spins with nitrogen-vacancy diamond. New Journal of Physics 13(5):055004. https://doi.org/10.1088/1367-2630/13/5/055004.

Gullì, M., A. Valzelli, F. Mattiotti, M. Angeli, F. Borgonovi, and G. L. Celard. 2019. Macroscopic coherence as an emergent property in molecular nanotubes. New Journal of Physics 21(1):013019. https://doi.org/10.1088/1367-2630/aaf01a.

Haitjema, C. H., K. V. Solomon, J. K. Henske, M. K. Theodorou, and M. A. O’Malley. 2014. Anaerobic gut fungi: Advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnology and Bioengineering 111(8):1471–1482. https://doi.org/10.1002/bit.25264.

Haitjema, C. H., S. P. Gilmore, J. K. Henske, K. V. Solomon, R. de Groot, A. Kuo, S. J. Mondo, A. A. Salamov, K. LaButti, Z. Zhao, J. Chiniquy, K. Barry, H. M. Brewer, S. O. Purvine, A. T. Wright, M. Hainaut, B. Boxma, T. van Alen, J. H. P. Hackstein, B. Henrissat, S. E. Baker, I. V. Grigoriev, and M. A. O’Malley. 2017. A parts list for fungal cellulosomes revealed by comparative genomics. Nature Microbiology 2:17087. https://doi.org/10.1038/nmicrobiol.2017.87.

Hao, J., Y. Zhang, and X. Wei. 2011. Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films. Angewandte Chemie 50(30):6876–6880. https://doi.org/10.1002/anie.201101374.

Harpham, M. R., O. Süzer, C. Q. Ma, P. Bäuerle, and T. Goodson III. 2009. Thiophene dendrimers as entangled photon sensor materials. Journal of the American Chemical Society 131(3):973–979. https://doi.org/10.1021/ja803268s.

He, X., G. L. Chadwick, C. P. Kempes, V. J. Orphan, and C. Meile. 2021. Controls on interspecies electron transport and size limitation of anaerobically methane-oxidizing microbial consortia. mBio 12(3):e03620-20. https://doi.org/10.1128/mBio.03620-20.

He, Z., W. Qiu, M. E. Kizer, J. Wang, W. Chen, A, V. Sokolov, X, Wang, J. Hu, and M. O. Scully. 2020. Resolving the sequence of RNA strands by tip-enhanced Raman spectroscopy. ACS Photonics 8(2):424–430. https://doi.org/10.1021/acsphotonics.0c01486.

Heisenberg, W. 1927. Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik [The actual content of quantum theoretical kinematics and mechanics]. Zeitschrift für Physik 43:172–198.

Helfrich-Förster, C., C. Winter, A. Hofbauer, J. C. Hall, and R. Stanewsky. 2001. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30(1):249–261. https://doi.org/10.1016/s08966273(01)00277-x.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Henderson, R., and P. N. Unwin. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257(5521):28–32. https://doi.org/10.1038/257028a0.

Henske, J. K., S. P. Gilmore, D. Knop, F. J. Cunningham, J. A. Sexton, C. R. Smallwood, V. Shutthanandan, J. E. Evans, M. K. Theodorou, and M. A. O’Malley. 2017. Transcriptomic characterization of Caecomyces churrovis: A novel, non-rhizoid-forming lignocellulolytic anaerobic fungus. Biotechnology for Biofuels 10(1):305. https://doi.org/10.1186/s13068-0170997-4.

Higgins, K. D. B., S. C. Benjamin, T. M. Stace, G. J. Milburn, B. W. Lovett, and E. M. Gauger. 2014. Superabsorption of light via quantum engineering. Nature Communications 5(1):4705. https://doi.org/10.1038/ncomms5705.

Hiscock, H. G., S. Worster, D. R. Kattnig, C. Steers, Y. Jin, D. E. Manolopoulos, H. Mouritsen, and P. J. Hore. 2016. The quantum needle of the avian magnetic compass. Proceedings of the National Academy of Sciences of the United States of America 113(17):4634–4639. https://doi.org/10.1073/pnas.1600341113.

Hore, P. J., and H. Mouritsen, 2016. The radical-pair mechanism of magnetoreception. Annual Review of Biophysics 45(1):299–344. https://doi.org/10.1146/annurev-biophys-032116-094545.

Howard University. 2020. Howard University to lead IBM’s first quantum education and research initiative for Historically Black Colleges and Universities. Howard Newsroom, September 17. https://newsroom.howard.edu/newsroom/article/13231/howard-university-lead-ibms-firstquantum-education-and-research-initiative.

Huelga, S. F., and M. B. Plenio. 2013. Vibrations, quanta and biology. Contemporary Physics 54(4):181–207. https://doi.org/10.1080/00405000.2013.829687.

Humphries, J., L. Xiong, J. Liu, A. Prindle, F. Yuan, H. A. Arjes, L. Tsimring, and G. M. Süel. 2017. Species-independent attraction to biofilms through electrical signaling. Cell 168(1–2):200–209. https://doi.org/10.1016/j.cell.2016.12.014.

Jibu, M., S. Hagan, S. R. Hameroff, K. H. Pribram, and K. Yasue. 1994. Quantum optical coherence in cytoskeletal microtubules: Implications for brain function. Biosystems 32(3):195–209. https://doi.org/10.1016/03032647(94)90043-4.

Ju, K.Y., S. Degan, M. C. Fischer, K. C. Zhou, X. Jia, J. Yu, and W. S. Warren. 2019. Unraveling the molecular nature of melanin changes in metastatic cancer. Journal of Biomedical Optics 24(5):1–13. https://doi.org/10.1117/1.JBO.24.5.051414.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Juffmann, T., S. A. Koppell, B. B. Klopfer, C. Ophus, R. M. Glaeser, and M. A. Kasevich. 2017. Multi-pass transmission electron microscopy. Scientific Reports 7(1):1699. https://doi.org/10.1038/s41598-017-01841-x.

Kalashnikov, D. A., E. V. Melik-Gaykazyan, A. A. Kalachev, Y. F. Yu, A. I. Kuznetsov, and L. A. Krivitsky. 2017. Quantum interference in the presence of a resonant medium. Scientific Reports 7(1):11444. https://doi.org/10.1038/s41598-017-11694-z.

Kett, L. R., D. Boassa, C. C-Y. Ho, H. J. Rideout, J. Hu, M. Terada, M. Ellisman, and W. T. Dauer. 2012. LRRK2 Parkinson disease mutations enhance its microtubule association. Human Molecular Genetics 21(4):890–899. https://doi.org/10.1093/hmg/ddr526.

Kinschel, D., C. Bacellar, O. Cannelli, B. Sorokin, T. Katayama, G. F. Mancini, J.y R. Rouxel, Y. Obara, J. Nishitani, H. Ito, T. Ito, N. Kurahashi, C. Higashimura, S. Kudo, T. Keane, F. A. Lima, W. Gawelda, P. Zalden, S. Schulz, J. M. Budarz, D. Khakhulin, A. Galler, C. Bressler, C. J. Milne, T. Penfold, M. Yabashi, T. Suzuki, K. Misawa, and M. Chergui. 2020. Femtosecond x-ray emission study of the spin cross-over dynamics in haem proteins. Nature Communications 11(1):4145. https://doi.org/10.1038/s41467-020-17923-w.

Klug, A., and J. Finch. 1965. Structure of viruses of the papilloma-polyoma type I human wart virus. Journal of Molecular Biology 13(3):961–962. https://doi.org/10.1016/s0022-2836(65)80162-0.

Kolesov, R., K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and J. Wrachtrup. 2012. Optical detection of a single rare-earth ion in a crystal. Nature Communications 3:1029. https://doi.org/10.1038/ncomms2034.

Kolobov, M. I. 1999. The spatial behavior of nonclassical light. Reviews of Modern Physics 71(5):1539–1589. https://doi.org/10.1103/revmodphys.71.1539.

Kolobov, M. I., and P. Kumar. 1993. Sub-shot-noise microscopy: Imaging of faint phase objects with squeezed light. Optics Letters 18(11):849–851. https://doi.org/10.1364/ol.18.000849.

Kumar, P., and M. I. Kolobov. 1994. Degenerate four-wave mixing as a source for spatially-broadband squeezed light. Optics Communications 104(4–6):374–378. https://doi.org/10.1016/0030-4018(94)90573-8.

Kwiat, P., H. Weinfurter, T. Herzog, A. Zeilinger, and M. A. Kasevich. 1995. Interaction-free measurement. Physical Review Letters 74(24):4763–4766. https://doi.org/10.1103/physrevlett.74.4763.

Lawrence, J. R., G. D. W. Swerhone, G. G. Leppard, T. Araki, X. Zhang, M. M. West, and A. P. Hitchcock. 2003. Scanning transmission x-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Applied and Environmental

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Microbiology 69(9):5543–5554. https://doi.org/10.1128/aem.69.9.55435554.2003.

Lee, D.-D., L. Galera-Laporta, M. Bialecka-Fornal, E. C. Moon, Z. Shen, S. P. Briggs, J. Garcia-Ojalvo, and G. M. Süel. 2019. Magnesium flux modulates ribosomes to increase bacterial survival. Cell 177(2):352–360. https://doi.org/10.1016/j.cell.2019.01.042.

Lee, D.-I., and T. Goodson. 2006. Entangled photon absorption in an organic porphyrin dendrimer. Journal of Physical Chemistry B 110(51):25582–25585. https://doi.org/10.1021/jp066767g.

Lemos, G. B., V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger. 2014. Quantum imaging with undetected photons. Nature 512(7515):409–412. https://doi.org/10.1038/nature13586.

Leonard, J., E. Portuondo-Campa, A. Cannizzo, F. van Mourik, G. van der Zwan, J. Tittor, S. Haacke, and M. Chergui. 2009. Functional electric field changes in photoactivated proteins revealed by ultrafast Stark spectroscopy of the Trp residues. Proceedings of the National Academy of Sciences of the United States of America 106(19):7718–7723. https://doi.org/10.1073/pnas.0812877106.

Levin, M. 2021. Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 184(8):1971–1989.

Li, J., Z. Liu, C. Tan, X. Guo, L. Wang, A. Sancar, and D. Zhong. 2010. Dynamics and mechanism of repair of ultraviolet-induced (6-4) photoproduct by photolyase. Nature 466(7308):887–890. https://doi.org/10.1038/nature09192.

Li, X., P. L. Voss, J. E. Sharping, and P. Kumar. 2005. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Physical Review Letters 94(5):053601. https://doi.org/10.1103/physrevlett.94.053601.

Li, X., H. Ren, M. Kundu, Z. Liu, F. W. Zhong, L. Wang, J. Gao, and D. Zhong. 2020. A leap in quantum efficiency through light harvesting in photoreceptor UVR8. Nature Communications 11(1):4316. https://doi.org/10.1038/s41467020-17838-6.

Lillington, S. P., W. Chrisler, C. H. Haitjema, S. P. Gilmore, C. Smallwood, V. Shutthanandan, J. E. Evans, and M. A. O’Malley. 2021. Cellulosome localization patterns vary across life stages of anaerobic fungi. mBio 12(3):e0083221. https://doi.org/10.1128/mBio.00832-21.

Lis, D., and F. Cecchet. 2014. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: Towards an astonishing molecular sensitivity. Beilstein Journal of Nanotechnology 5:2275–2292. https://doi.org/10.3762/bjnano.5.237.

Lloyd, S. 2008. Enhanced sensitivity of photodetection via quantum illumination. Science 321(5895):1463–1465. https://doi.org/10.1126/science.1160627.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Ly, S., J. Petrlova, T. Huser, S. Fore, T. Gao, J. Voss, and T. A. Laurence. 2011. Stoichiometry of reconstituted high-density lipoproteins in the hydrated state determined by photon antibunching. Biophysical Journal 101(4):970–975. https://doi.org/10.1016/j.bpj.2011.06.060.

Madison, I., C. E. Melvin, E. Buckner, C. Williams, R. Sozzani, and T. Long. 2020. MAGIC: Live imaging of cellular division in plant seedlings using lightsheet microscopy. Pp. 405–418 in Methods in Cell Biology, Vol. 160, C. T. Anderson, E. S. Haswell, and R. Dixi, eds. New York: Academic Press. https://doi.org/10.1016/bs.mcb.2020.04.004.

Maeda, K., K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, and P. J. Hore. 2008. Chemical compass model of avian magnetoreception. Nature 453(7193):387–390. https://doi.org/10.1038/nature06834.

Maeda, K., A. J. Robinson, K. B. Henbest, H. J. Hogben, T. Biskup, M. Ahmad, E. Schleicher, S. Weber, C. R. Timmel, and P. J. Hore. 2012. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proceedings of the National Academy of Sciences of the United States of America 109(13):4774–4779. https://doi.org/10.1073/pnas.1118959109.

Magaña-Loaiza, O. S., R. D. J. León-Montiel, A. Perez-Leija, A. B. U’Ren, C. You, K. Busch, A. E. Lita, S. W. Nam, R. P. Mirin, and T. Gerrits. 2019. Multiphoton quantum-state engineering using conditional measurements. npj Quantum Information 5(1):80. https://doi.org/10.1038/s41534-019-0195-2.

Mattiotti, F., W. M. Brown, N. P. Piovella, S. Olivares, E. M. Gauger, and G. L. Celardo. 2020a. Bio-inspired sunlight-pumped lasers. ArXiv Quantum Physics 04341. https://arxiv.org/abs/2007.04314.

Mattiotti, F., M. Kuno, F. Borgonovi, B. Jankó, and G. L. Celardo. 2020b. Thermal decoherence of superradiance in lead halide perovskite nanocrystal superlattices. Nano Letters 20(10):7382–7388. https://doi.org/10.1021/acs.nanolett.0c02784.

Mavromatos, N. E. 2011. Quantum coherence in (brain) microtubules and efficient energy and information transport. Journal of Physics: Conference Series 329:012026. https://doi.org/10.1088/1742-6596/329/1/012026.

McMullan, G., A. R., Faruqi, D., Clare, and R. Henderson. 2014. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147:156–163. https://doi.org/10.1016/j.ultramic.2014.08.002.

Middleton, C. T., K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler. 2009. DNA excited-state dynamics: From single bases to the double helix. Annual Review of Physical Chemistry 60(1):217–239. https://doi.org/10.1146/annurev.physchem.59.032607.093719.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Milo, R., and R. Phillips. 2015. Cell Biology by the Numbers, 1st ed. New York: Garland Science.

Mondo, S. J., R. O. Dannebaum, R. C. Kuo, K. B. Louie, A. J. Bewick, K. LaButti, S. Haridas, A. Kuo, A. Salamov, S. R. Ahrendt, R. Lau, B. P. Bowen, A. Lipzen, W. Sullivan, B. B. Andreopoulos, A. Clum, E. Lindquist, C. Daum, T. R. Northen, G. Kunde-Ramamoorthy, R. J. Schmitz, A. Gryganskyi, D. Culley, J. Magnuson, T. Y. James, M. A. O’Malley, J. E. Stajich, J. W. Spatafora, A. Visel, and I. V. Grigoriev. 2017. Widespread adenine N6-methylation of active genes in fungi. Nature Genetics 49(6):964–968. https://doi.org/10.1038/ng.3859.

Monni, R., A. Al Haddad, F. van Mourik, G. Auböck, and M. Chergui. 2015. Tryptophan-to-heme electron transfer in ferrous myoglobins. Proceedings of the National Academy of Sciences of the United States of America 112(18):5602–5606. https://doi.org/10.1073/pnas.1423186112.

Mukamel, S. 2013. Comment on “Coherence and uncertainty in nanostructured organic photovoltaics.” Journal of Physical Chemistry A 117(40):10563–10564. https://doi.org/10.1021/jp4071086.

Müller, C., X. Kong, J.-M. Cai, K. Melentijević, A. Stacey, M. Markham, D. Twitchen, J. Isoya, S. Pezzagna, J. Meijer, J. F. Du, M. B. Plenio, B. Naydenov, L. P. McGuinness, and F. Jelezko. 2014. Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nature Communications 5(1):4703. https://doi.org/10.1038/ncomms5703.

Nardecchia, I., J. Torres, M. Lechelon, V. Giliberti, M. Ortolani, P. Nouvel, M. Gori, Y. Meriguet, I. Donato, J. Preto, L. Varani, J. Sturgis, and M. Pettini. 2018. Out-of-equilibrium collective oscillation as phonon condensation in a model protein. Physical Review X 8(3):031061. https://doi.org/10.1103/physrevx.8.031061.

Nizovtsev, A. P., S. Y. Kilin, F. Jelezko, I. Popa, A. Gruber, C. Tietz, and J. Wrachtrup. 2003. Spin-selective low temperature spectroscopy on single molecules with a triplet-triplet optical transition: Application to the NV defect center in diamond. Optics and Spectroscopy 94(6):848–858. https://doi.org/10.1134/1.1586735.

Okamoto, H. 2012. Possible use of a Cooper-pair box for low-dose electron microscopy. Physical Review A 85(4):043810. https://doi.org/10.1103/physreva.85.043810.

O’Malley, M. A., M. K. Theodorou, and C. A. Kaiser. 2011. Evaluating expression and catalytic activity of anaerobic fungal fibrolytic enzymes native to Piromyces sp E2 in Saccharomyces cerevisiae. Environmental Progress and Sustainable Energy 31(1):37–46. https://doi.org/10.1002/ep.10614.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Oppermann, M., B. Bauer, T. Rossi, F. Zinna, J. Helbing, J. Lacour, and M. Chergui. 2019. Ultrafast broadband circular dichroism in the deep ultraviolet. Optica 6(1):56–60. https://doi.org/10.1364/optica.6.000056.

Orpin, C. G. 1975. Studies on the rumen flagellate Neocallimastix frontalis. Journal of General Microbiology 91(2):249–262. https://doi.org/10.1099/00221287-91-2-249.

Ostermeyer, M., D. Puhlmann, and D. Korn. 2009. Quantum diffraction of biphotons at a blazed grating. Journal of the Optical Society of America B 26(12):2347. https://doi.org/10.1364/josab.26.002347.

Ostroumov, E. E., R. M. Mulvaney, R. J. Cogdell, and G. D. Scholes. 2013. Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria. Science 340(6128):52–56. https://doi.org/10.1126/science.1230.

Oviedo, N. J., B. J. Pearson, M. Levin, and A. Sanchez Alvarado. 2008. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling. Disease Models and Mechanisms 1(2–3):131–143. https://doi.org/10.1242/dmm.000117.

Ozturk, N. 2017. Phylogenetic and functional classification of the photolyase/cryptochrome family. Photochemistry and Photobiology 93(1):104–111. https://doi.org/10.1111/php.12676.

Padgett, M. J., and R. W. Boyd. 2017. An introduction to ghost imaging: Quantum and classical. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375(2099):20160233. https://doi.org/10.1098/rsta.2016.0233.

Paul, K., P. Sengupta, E. D. Ark, H. Tu, Y. Zhao, and S. A. Boppart. 2017. Coherent control of an opsin in living brain tissue. Nature Physics 13:1111–1116. https://doi.org/10.1038/nphys4257.

Pecourt, J. M. L., J. Peon, and B. Kohler. 2000. Ultrafast internal conversion of electronically excited RNA and DNA nucleosides in water. Journal of the American Chemical Society 122(38):9348–9349. https://doi.org/10.1021/ja0021520.

Pecourt, J. M. L., J. Peon, and B. Kohler. 2001. DNA excited-state dynamics: Ultrafast internal conversion and vibrational cooling in a series of nucleosides. Journal of the American Chemical Society 123(42):10370–10378. https://doi.org/10.1021/ja0161453.

Peng, T., X. Liu, L. G., Adams, G. Agarwal, B. Akey, J. Cirillo, V. Deckert, S. Delfan, E. Fry, Z. Han, P. Hemmer, G. Kattawar, M. Kim, M.-C. Lee, C. Lu, J. Mogford, R. Nessler, B. Neuman, X. Nie, J. Pan, J. Pryor, N. Rajil, Y. Shih, A. Sokolov, A. Svidzinsky, D. Wang, Z. Yi, A. Zheltikov, and M. Scully. 2020. Enhancing sensitivity of lateral flow assay with application to SARS-CoV-2. Applied Physics Letters 117(12):120601. https://doi.org/10.3/5.0021842.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Pestov, D., R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully. 2007. Optimizing the laser-pulse configuration for coherent Raman spectroscopy. Science 316(5822):265–268. https://doi.org/10.1126/science.1139055.

Podolsky, I. A., S. Seppälä, T. S. Lankiewicz, J. L. Brown, C. L. Swift, and M. A. O’Malley. 2019. Harnessing nature’s anaerobes for biotechnology and bioprocessing. Annual Review of Chemical and Biomolecular Engineering 10(1):105–128. https://doi.org/10.1146/annurev-chembioeng-060718030340.

Port, R. G., A. R. Anwar, M. Ku, G. C. Carlson, S. J. Siegel, and T. P. L. Roberts. 2015. Prospective MEG biomarkers in ASD: Pre-clinical evidence and clinical promise of electrophysiological signatures. Yale Journal of Biology and Medicine 88(1):25–36. https://pubmed.ncbi.nlm.nih.gov/25745372.

Preto, J., M. Pettini, and J. A. Tuszynski. 2015. Possible role of electrodynamic interactions in long-distance biomolecular recognition. Physical Review E 91(5):052710. https://doi.org/10.1103/physreve.91.052710.

Prindle, A., J. Liu, M. Asally, S. Ly, J. Garcia-Ojalvo, and G. M. Süel. 2015. Ion channels enable electrical communication in bacterial communities. Nature 527(7576):59–63. https://doi.org/10.1038/nature15709.

Procopio, M., and T. Ritz. 2020. The reference-probe model for a robust and optimal radical-pair-based magnetic compass sensor. Journal of Chemical Physics 152(6):065104. https://doi.org/10.3/1.5128128.

Putnam, W. P., and M. F. Yanik. 2009. Noninvasive electron microscopy with interaction-free quantum measurements. Physical Review A 80(4):040902. https://doi.org/10.1103/physreva.80.040902.

Reimers, J. R., L. K. McKemmish, R. H. McKenzie, A. E. Mark, and N. S. Hush. 2009. Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness. Proceedings of the National Academy of Sciences of the United States of America (11):4219–4224. https://doi.org/10.1073/pnas.0806273.

Ritz, T., S. Adem, and K. Schulten. 2000. A model for photoreceptor-based magnetoreception in birds. Biophysical Journal 78(2):707–718. https://doi.org/10.1016/s0006-3495(00)76629-x.

Ritz, T., P. Thalau, J. B. Phillips, R. Wiltschko, and W. Wiltschko. 2004. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429(6988):177–180. https://doi.org/10.1038/nature02534.

Ritz, T., R. Wiltschko, P. J. Hore, C. T. Rodgers, K. Stapput, P. Thalau, C. R. Timmel, and W. Wiltschko. 2009. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophysical Journal 96(8):3451–3457. https://doi.org/10.1016/j.bpj.2008.11.072.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Ritz, T., M. Ahmad, H. Mouritsen, R. Wiltschko, and W. Wiltschko. 2010. Photoreceptor-based magnetoreception: Optimal design of receptor molecules, cells, and neuronal processing. Journal of the Royal Society Interface 7(Suppl. 2):S135–S146. https://doi.org/10.1098/rsif.2009.0456.focus.

Romero, E., V. I. Novoderezhkin, and R. van Grondelle. 2017. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543(7645):355–365. https://doi.org/10.1038/nature22012.

Ross, J. L. 2016. The dark matter of biology. Biophysical Journal 111(5):909–916. https://doi.org/10.1016/j.bpj.2016.07.037.

Rubin, E. M. 2008. Genomics of cellulosic biofuels. Nature 454(7206):841–845. https://doi.org/10.1038/nature07190.

Saha, S., G. Qian, and K. M. Lewis. 2011. Fabrication of nanogaps by a progressive electromigration technique using wires of various thicknesses. Journal of Vacuum Science and Technology B 29(6):061802. https://doi.org/10.1116/1.3647908.

Samolis, P. D., and M. Y. Sander. 2019. Phase-sensitive lock-in detection for high-contrast mid-infrared photothermal imaging with sub-diffraction limited resolution. Optics Express 27(3):2643. https://doi.org/10.1364/oe.27.002643.

Samolis, P. D., D. Langley, B. M. O’Reilly, Z. Oo, G. Hilzenrat, S. Erramilli, A. E. Sgro, S. McArthur, and M. Y. Sander. 2020. Label-free imaging of fibroblast membrane interfaces and protein signatures with vibrational infrared photothermal and phase signals. Biomedical Optics Express 12(1):303–319. https://doi.org/10.1364/boe.411888.

Sánchez Alvarado, A. 2007. Stem cells and the planarian Schmidtea mediterranea. Comptes Rendus Biologies 330(6–7):498–503. https://doi.org/10.1016/j.crvi.2007.05.005.

Sarovar, M., A. Ishizaki, G. R. Fleming, and K. B. Whaley. 2010. Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics 6(6):462–467. https://doi.org/10.1038/nphys1652.

Scarcelli, G., and S. H. Yun. 2007. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nature Photonics 2(1):39–43. https://doi.org/10.1038/nphoton.2007.250.

Schenkel, T., J. A. Liddle, A. Persaud, A. M. Tyryshkin, S. A. Lyon, R. de Sousa, K. B. Whaley, J. Bokor J. Shangkuan, and I. Chakarov. 2006. Electrical activation and electron spin coherence of ultralow dose antimony implants in silicon. Applied Physics Letters 88(11):112101. https://doi.org/10.3/1.2182068.

Schmitt, S., T. Gefen, F. M. Stürner, T. Unden, G. Wolff, C. Müller, J. Scheuer, B. Naydenov, M. Markham, S. Pezzagna, J. Meijer, I. Schwarz, M. Plenio, A. Retzker, L. P. McGuinness, and F. Jelezko. 2017. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 356(6340):832–837. https://doi.org/10.1126/science.aam5532.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Schreier, W. J., Schrader, T. E., Koller, F. O., T. Unden, G. Wolff, C. Müller, J. Scheuer, B. Naydenov, M. Markham, S. Pezzagna, J. Meijer, I. Schwarz, M. Plenio, A. Retzker, L. P. McGuinness, and F. Jelezko. 2007. Thymine dimerization in DNA is an ultrafast photoreaction. Science 315(5812):625–629. https://doi.org/10.1126/science.1135428.

Schulten, K., C. E. Swenberg, and A. Weller. 1978. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Zeitschrift Für Physikalische Chemie 111(1):1–5. https://doi.org/10.1524/zpch.1978.111.1.001.

Schwartz, I., J. Rosskopf, S. Schmitt, B. Tratzmiller, Q. Chen, L. P. McGuinness, F. Jelezko, and M. B. Plenio. 2019. Blueprint for nanoscale NMR. Scientific Reports 9(1):6938. https://doi.org/10.1038/s41598-019-43404-2.

Scully, M. O., and A. A. Svidzinsky. 2009. The super of superradiance. Science 325(5947):1510–1511. https://doi.org/10.1126/science.1176695.

Scully, M. O., G. W. Kattawar, R. P. Lucht, T. Opatrný, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy. 2002. FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores. Proceedings of the National Academy of Sciences of the United States of America 99(17):10994–11001. https://doi.org/10.1073/pnas.172290899.

Scully, M. O., K. R. Chapin, K. E. Dorfman, M. B. Kim, and A. Svidzinsky. 2011. Quantum heat engine power can be increased by noise-induced coherence. Proceedings of the National Academy of Sciences of the United States of America 108(37):15097–15100. https://doi.org/10.1073/pnas.1110234108.

Shaner, N. C., G. H. Patterson, and M. W. Davidson, 2007. Advances in fluorescent protein technology. Journal of Cell Science 120(24):4247–4260. https://doi.org/10.1242/jcs.005801.

Shapiro, J. H. 2020. The quantum illumination story. IEEE Aerospace and Electronic Systems Magazine 35(4):8–20. https://doi.org/10.1109/maes.2019.2957870.

Shapiro, J. H., and R. W. Boyd. 2012. The physics of ghost imaging. Quantum Information Processing 11(4):949–993. https://doi.org/10.1007/s11128-0110356-5.

Sharma, K., M. Palatinszky, G. Nikolov, D. Berry, and E. A. Shank. 2020. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. eLife 9:e56275. https://doi.org/10.7554/elife.56275.

Sharping, J. E., K. F. Lee, M. A. Foster, A. C. Turner, B.y S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar. 2006. Generation of correlated photons in nanoscale silicon waveguides. Optics Express 14(25):12388. https://doi.org/10.1364/oe.14.012388.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Sherrard, R. M., N. Morellini, N. Jourdan, M. El-Esawi, L.-D. Arthaut, C. Niessner, F. Rouyer, A. Klarsfeld, M. Doulazmi, J. Witczak, A. d’Harlingue, J. Mariani, I. Mclure, C. F. Martino, and M. Ahmad. 2018. Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species. PLOS Biology 16(10):e2006229. https://doi.org/10.1371/journal.pbio.2006229.

Shi, Q., B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, and M. Wegener. 2016. Wiring up pre-characterized single-photon emitters by laser lithography. Scientific Reports 6(1):31135. https://doi.org/10.1038/srep31135.

Shi, S., A. Thomas, N. V. Corzo, P. Kumar, Y. Huang, and K. F. Lee. 2014. Generation of photon pairs in green fluorescent protein. In Frontiers in Optics 2014. OSA Technical Digest (online). Optical Society of America, paper FW1C. https://doi.org/10.1364/fio.2014.fw1c.3.

Shi, S., P. Kumar, and K. F. Lee. 2017. Generation of photonic entanglement in green fluorescent proteins. Nature Communications 8(1):1934. https://doi.org/10.1038/s41467-017-02027-9.

Shi, S., P. Kumar, and K. F. Lee. 2018. Entanglement generation in green fluorescent proteins. In Conference on Lasers and Electro-Optics. OSA Technical Digest (online). Optical Society of America, paper FM4H.8. https://doi.org/10.1364/cleo_qels.2018.fm4h.8.

Shih, Y. 2008. The physics of ghost imaging. In International Conference on Quantum Information. Optical Society of America, paper QTuB1. https://doi.org/10.1364/icqi.2008.qtub1.

Shor, P. W. 1994. Algorithms for quantum computation: Discrete logarithms and factoring. Pp. 124–134 in Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE. https://doi.org/10.1109/SFCS.1994.365700.

Solomon, K. V., C. H. Haitjema, J. K. Henske, S. P. Gilmore, D. Borges-Rivera, A. Lipzen, H. M. Brewer, S. O. Purvine, A. T. Wright, M. K. Theodorou, I. V. Grigoriev, A. Regev, D. A. Thompson, and M. A. O’Malley. 2016. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351(6278):1192–1195. https://doi.org/10.1126/science.aad1431.

Sozzani, R., H. Cui, M. A. Moreno-Risueno, W. Busch, J. M. Van Norman, T. Vernoux, S. M. Brady, W. Dewitte, J. A. H. Murray, P. N. Benfey. 2010. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466(7302):128–132. https://doi.org/10.1038/nature09143.

Stoneham, A. M., E. M. Gauger, K. Porfyrakis, S. C. Benjamin, and B. W. Lovett. 2012. A new type of radical-pair-based model for magnetoreception.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Biophysical Journal 102(5):961–968. https://doi.org/10.1016/j.bpj.2012. 01.007.

Stringari, C., L. Abdeladim, G. Malkinson, W. Supatto, S. Brizion, J.-B. Galey, A.-M. Pena, R. Legouis, and E. Beaurepaire. 2017. An efficient multicolor two-photon imaging of endogenous fluorophores in living tissues by wavelength mixing. Biophysical Journal 112(3):186a. https://doi.org/10.1016/j.bpj.2016.11.1033.

Szoke, S., H. Liu, B. P. Hickam, M. He, and S. K. Cushing. 2020 Entangled light-matter interactions and spectroscopy. Journal of Materials Chemistry C 8:10732–10741. https://doi.org/10.1039/D0TC02300K.

Taylor, K. A., and R. M. Glaeser 1973. Hydrophilic support films of controlled thickness and composition. Review of Scientific Instruments 44(10):1546–1547. https://doi.org/10.3/1.1685999.

Tedeschi, G., L. Scipioni, M. Papanikolaou, G. W. Abbott, and M. A. Digman. 2021. Fluorescence fluctuation spectroscopy enables quantification of potassium channel subunit dynamics and stoichiometry. Scientific Reports 11:10719. https://doi.org/10.1038/s41598-021-90002-2.

Timmel, C. R., and P. J. Hore. 1996. Oscillating magnetic field effects on the yields of radical pair reactions. Chemical Physics Letters 257(3–4):401–408. https://doi.org/10.1016/0009-2614(96)00466-6.

Totachawattana, A., H. Liu, A. Mertiri, M. K. Hong, S. Erramilli, and M. Y. Sander. 2015. Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: Asymptotic limit in signal-to-baseline contrast. Optics Letters 41(1):179. https://doi.org/10.1364/ol.41.000179.

Totachawattana, A., M. K. Hong, S. Erramilli, and M. Y. Sander. 2017. Multiple bifurcations with signal enhancement in nonlinear mid-infrared thermal lens spectroscopy. Analyst 142(11):1882–1890. https://doi.org/10.1039/c6an02565j.

Trinci, A. P., D. R. Davies, K. Gull, M. I. Lawrence, B. Bonde Nielsen, A. Rickers, and M. K. Theodorou. 1994. Anaerobic fungi in herbivorous animals. Mycological Research 98(2):129–152. https://doi.org/10.1016/s0953-7562(09)80178-0.

Troisi, A., and M. Ratner. 2006. Molecular signatures in the transport properties of molecular wire junctions: What makes a junction “molecular”? Small 2(2):172–181. https://doi.org/10.1002/smll.200500201.

Tsang, M. 2013. Quantum metrology with open dynamical systems. New Journal of Physics 15(7):073005. https://doi.org/10.1088/1367-2630/15/7/073005.

Turner, A., C. Johnson, and B. McMorran. 2020. Interaction-free interferometry with electrons. Microscopy and Microanalysis 26(S2):1744–1746. https://doi.org/10.1017/s1431927620019182.

Unruh, J. R., and E. Gratton. 2008. Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

CCD camera. Biophysical Journal 95(11):5385–5398. https://doi.org/ 10.1529/biophysj.108.130310.

Upton, L., M. Harpham, O. Suzer, M. Richter, S. Mukamel, and T. Goodson III. 2013. Optically excited entangled states in organic molecules illuminate the dark. Journal of Physical Chemistry Letters 4(12):2046–2052. https://doi.org/10.1021/jz400851d.

Van den Broeck, L., R. J. Spurney, A. P. Fisher, M. Schwartz, N. M. Clark, T. T. Nguyen, I. Madison, M. Gobble, T. Long, and R. Sozzani. 2021. A hybrid model connecting regulatory interactions with stem cell divisions in the root. Quantitative Plant Biology 2:E2. https://doi.org/10.1017/qpb.2021.1.

van Heel, M., and J. Frank. 1981. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6(2):187–194. https://doi.org/10.1016/0304-3991(81)90059-0.

Van Huizen, A. V., J. M. Morton, L. J. Kinsey, D. G. Von Kannon, M. A. Saad, T. R. Birkholz, J. M. Czajka, J. Cyrus, F. S. Barnes, and W. S. Beane. 2019. Weak magnetic fields alter stem cell–mediated growth. Science Advances 5(1):eaau7201. https://doi.org/10.1126/sciadv.aau7201.

Varnavski, O., and T. Goodson. 2020. Two-photon fluorescence microscopy at extremely low excitation intensity: The power of quantum correlations. Journal of the American Chemical Society 142(30):12966–12975. https://doi.org/10.1021/jacs.0c01153.

Varnavski, O., Pinsky, B., and T. Goodson. 2017. Entangled photon excited fluorescence in organic materials: An ultrafast coincidence detector. Journal of Physical Chemistry Letters 8(2):388–393. https://doi.org/10.1021/acs.jpclett.6b02378.

Villa, E., M. Schaffer, J. M. Plitzko, and W. Baumeister. 2013. Opening windows into the cell: Focused-ion-beam milling for cryo-electron tomography. Current Opinion in Structural Biology 23(5):771–777. https://doi.org/10.1016/j.sbi.2013.08.006.

Villabona-Monsalve, J. P., O. Varnavski, B. A. Palfey, and T. Goodson III. 2018. Two-photon excitation of flavins and flavoproteins with classical and quantum light. Journal of the American Chemical Society 140(44):14562–14566. https://doi.org/10.1021/jacs.8b08515.

Voronine, D. V., A. M. Sinyukov, X. Hua, K. Wang, P. K. Jha, E. Munusamy, S. E. Wheeler, G. Welch, A. V. Sokolov, and M. O. Scully. 2012. Time-resolved surface-enhanced coherent sensing of nanoscale molecular complexes. Scientific Reports 2(1):00891. https://doi.org/10.1038/srep00891.

Watanabe, R., R. Buschauer, J. Böhning, M. Audagnotto, K. Lasker, T.-W. Lu, D. Boassa, S. Taylor, and E. Villa. 2020. The in situ structure of Parkinson’s disease-linked LRRK2. Cell 182(6):1508–1518. https://doi.org/10.1016/j.cell.2020.08.004.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

Whiteside, M. D., K. K. Treseder, and P. R. Atsatt. 2009. The brighter side of soils: Quantum dots track organic nitrogen through fungi and plants. Ecology 90(1):100–108. https://doi.org/10.1890/07-2115.1.

Whiteside, M. D., G. D. Werner, V. E. Caldas, A. van’t Padje, S. E. Dupin, B. Elbers, M. Bakker, G. A. K. Wyatt, M. Klein, M. A. Hink, M. Postma, B. Vaitla, R. Noë, T. S. Shimizu, S. A. West, and E. T. Kiers. 2019. Mycorrhizal fungi respond to resource inequality by moving phosphorus from rich to poor patches across networks. Current Biology 29(12):2043–2050. https://doi.org/10.1016/j.cub.2019.04.061.

Wiltschko, W., and R. Wiltschko. 1972. Magnetic compass of European robins. Science 176(4030):62–64. https://doi.org/10.1126/science.176.4030.62.

Wiltschko, W., U. Munro, R. C. Beason, H. Ford, and R. Wiltschko. 1994. A magnetic pulse leads to a temporary deflection in the orientation of migratory birds. Experientia 50(7):697–700. https://doi.org/10.1007/bf01952877.

Wiltschko, R., T. Ritz, K. Stapput, P. Thalau, and W. Wiltschko. 2005. Two different types of light-dependent responses to magnetic fields in birds. Current Biology 15(16):1518–1523. https://doi.org/10.1016/j.cub.2005.07.037.

Wu, Y., F. Jelezko, M. B. Plenio, and T. Weil. 2016. Diamond quantum devices in biology. Angewandte Chemie International Edition 55(23):6586–6598. https://doi.org/10.1002/anie.201506556.

Yabe, T., T. Ohkubo, S. Uchida, K. Yoshida, B. Bagheri, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, M. Nakatsuka, M. Yoshida, S. Motokoshi Y. Sato, C. Baasandash, N. Nakayama, Y. Okamoto, and K. Yanagaidani. 2008. Experimental study of solar pumped laser for magnesium-hydrogen energy cycle. Journal of Physics: Conference Series 112(4):042072. https://doi.org/10.1088/1742-6596/112/4/042072.

Yang, F., L. G. Moss, and G. N. Phillips. 1996. The molecular structure of green fluorescent protein. Nature Biotechnology 14(10):1246–1251. https://doi.org/10.1038/nbt1096-1246.

Yardeni, T., A. G. Cristancho, A. J. McCoy, P. M. Schaefer, M. J. McManus, E. D. Marsh, and D. C. Wallace. 2021. An mtDNA mutant mouse demonstrates that mitochondrial deficiency can result in autism endophenotypes. Proceedings of the National Academy of Sciences of the United States of America 118(6):e2021429118. https://doi.org/10.1073/pnas.2021429118.

Yu, Q., and A. A. Heikal. 2009. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. Journal of Photochemistry and Photobiology 95(1):46–57. https://doi.org/10.1016/j.jphotobiol.2008.12.010.

Yuen, H. P. 1975. Two‐photon stimulated emission and pulse amplification. Applied Physics Letters 26(9):505–507. https://doi.org/10.3/1.88236.

Zeng, S. M., E. K. W. Lo, B. J. Hazelton, M. F. Morales, and K. U. Torii. 2020. Effective range of non-cell autonomous activator and inhibitor peptides

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

specifying stomatal patterning. Development 147(17):dev192237. https://doi.org/10.1242/dev.192237.

Zhang, M., L. Wang, S. Shu, A. Sancar, and D. Zhong. 2016. Bifurcating electron-transfer pathways in DNA photolyases determine the repair quantum yield. Science 354(6309):209–213. https://doi.org/10.1126/science.aah6071.

Zhang, Y., K. de La Harpe, A. A. Beckstead, R. Improta, and B. Kohler. 2015. UV-Induced proton transfer between DNA strands. Journal of the American Chemical Society 137(22):7059–7062. https://doi.org/10.1021/jacs.5b03914.

Zhang, Y., K. de La Harpe, A. A. Beckstead, L. Martínez-Fernández, R. Improta, and B. Kohler. 2016a. Excited-state dynamics of DNA duplexes with different H-bonding motifs. Journal of Physical Chemistry Letters 7(6):950–954. https://doi.org/10.1021/acs.jpclett.6b00074.

Zhang, Y., X. B. Li, A. M. Fleming, J. Dood, A. A. Beckstead, A. M. Orendt, C. J. Burrows, and B. Kohler. 2016b. UV-Induced proton-coupled electron transfer in cyclic DNA miniduplexes. Journal of the American Chemical Society 138(23):7395–7401. https://doi.org/10.1021/jacs.6b03216.

Zhang, Y., B. Sun, D. Feng, H. Hu, M. Chu, Q. Qu, J. T. Tarrasch, S. Li, T. S. Kobilka, B. K. Kobilka, and G. Skiniotis. 2017. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546(7657): 248–253. https://doi.org/10.1038/nature22394.

Zhang, Z., G. S. Agarwal, and M. O. Scully. 2019. Quantum fluctuations in the Fröhlich condensate of molecular vibrations driven far from equilibrium. Physical Review Letters 122(15):158101. https://doi.org/10.1103/physrevlett.122.158101.

Zhu, X., J. W. Lin, and M. Y. Sander. 2019. Infrared inhibition and waveform modulation of action potentials in the crayfish motor axon. Biomedical Optics Express 10(12):6580–6594. https://doi.org/10.1364/BOE.10.006580.

Zhu, X., J. W. Lin, and M. Y. Sander. 2020. Infrared inhibition impacts on locally initiated and propagating action potentials and the downstream synaptic transmission. Neurophotonics 7(4):045003. https://doi.org/10.1117/1.nph.7.4.045003.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×

This page intentionally left blank.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 61
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 62
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 63
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 64
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 65
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 66
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 67
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 68
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 69
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 70
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 71
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 72
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 73
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 74
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 75
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 76
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 77
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 78
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 79
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 80
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 81
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26139.
×
Page 82
Next: Appendix A: Statement of Task »
Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop Get This Book
×
 Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology: Proceedings of a Workshop
Buy Paperback | $40.00 Buy Ebook | $32.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Quantum concepts hold the potential to enable significant advances in sensing and imaging technologies that could be vital to the study of biological systems. The workshop Quantum Science Concepts in Enhancing Sensing and Imaging Technologies: Applications for Biology, held online March 8-10, 2021, was organized to examine the research and development needs to advance biological applications of quantum technology. Hosted by the National Academies of Sciences, Engineering, and Medicine, the event brought together experts working on state-of-the-art, quantum-enabled technologies and scientists who are interested in applying these technologies to biological systems. Through talks, panels, and discussions, the workshop facilitated a better understanding of the current and future biological applications of quantum-enabled technologies in fields such as microbiology, molecular biology, cell biology, plant science, mycology, and many others. This publication summarizes the presentation and discussion of the workshop.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!