National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Guidance to Predict and Mitigate Dynamic Hydroplaning on Roadways. Washington, DC: The National Academies Press. doi: 10.17226/26287.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Guidance to Predict and Mitigate Dynamic Hydroplaning on Roadways. Washington, DC: The National Academies Press. doi: 10.17226/26287.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Guidance to Predict and Mitigate Dynamic Hydroplaning on Roadways. Washington, DC: The National Academies Press. doi: 10.17226/26287.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Guidance to Predict and Mitigate Dynamic Hydroplaning on Roadways. Washington, DC: The National Academies Press. doi: 10.17226/26287.
×
Page R4
Page v
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Guidance to Predict and Mitigate Dynamic Hydroplaning on Roadways. Washington, DC: The National Academies Press. doi: 10.17226/26287.
×
Page R5
Page vi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Guidance to Predict and Mitigate Dynamic Hydroplaning on Roadways. Washington, DC: The National Academies Press. doi: 10.17226/26287.
×
Page R6
Page vii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2021. Guidance to Predict and Mitigate Dynamic Hydroplaning on Roadways. Washington, DC: The National Academies Press. doi: 10.17226/26287.
×
Page R7

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

NCHRP Web-Only Document 300 Guidance to Predict and Mitigate Dynamic Hydroplaning on Roadways Gerardo W. Flintsch John B. Ferris Saied Taheri Samer Katicha Yongsuk Kang Ashkan Nazari Edgar de Leon Izeppi Kenneth Velez Virginia Tech Blacksburg, VA Francine Battaglia Lu Chen University of Buffalo Buffalo, NY David Kibler Consultant Blacksburg, VA Kevin K. McGhee Virginia Department of Transportation Charlottesville, VA Contractor’s Final Report for NCHRP Project 15-55 Submitted March 2021 NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM Systematic, well-designed, and implementable research is the most effective way to solve many problems facing state departments of transportation (DOTs) administrators and engineers. Often, highway problems are of local or regional interest and can best be studied by state DOTs individually or in cooperation with their state universities and others. However, the accelerating growth of highway transportation results in increasingly complex problems of wide interest to highway authorities. These problems are best studied through a coordinated program of cooperative research. Recognizing this need, the leadership of the American Association of State Highway and Transportation Officials (AASHTO) in 1962 initiated an objective national highway research program using modern scientific techniques—the National Cooperative Highway Research Program (NCHRP). NCHRP is supported on a continuing basis by funds from participating member states of AASHTO and receives the full cooperation and support of the Federal Highway Administration (FHWA), United States Department of Transportation, under Agreement No. 693JJ31950003. COPYRIGHT INFORMATION Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein. Cooperative Research Programs (CRP) grants permission to reproduce material in this publication for classroom and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply TRB, AASHTO, FAA, FHWA, FTA, GHSA, NHTSA, or TDC endorsement of a particular product, method, or practice. It is expected that those reproducing the material in this document for educational and not-for-profit uses will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from CRP. DISCLAIMER The opinions and conclusions expressed or implied in this report are those of the researchers who performed the research. They are not necessarily those of the Transportation Research Board; the National Academies of Sciences, Engineering, and Medicine; the FHWA; or the program sponsors. The information contained in this document was taken directly from the submission of the author(s). This material has not been edited by TRB.

The National Academy of Sciences was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, non- governmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for outstanding contributions to research. Dr. Marcia McNutt is president. The National Academy of Engineering was established in 1964 under the charter of the National Academy of Sciences to bring the practices of engineering to advising the nation. Members are elected by their peers for extraordinary contributions to engineering. Dr. John L. Anderson is president. The National Academy of Medicine (formerly the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. Dr. Victor J. Dzau is president. The three Academies work together as the National Academies of Sciences, Engineering, and Medicine to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The National Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine. Learn more about the National Academies of Sciences, Engineering, and Medicine at www.national-academies.org. The Transportation Research Board is one of seven major programs of the National Academies of Sciences, Engineering, and Medicine. The mission of the Transportation Research Board is to provide leadership in transportation improvements and innovation through trusted, timely, impartial, and evidence-based information exchange, research, and advice regarding all modes of transportation. The Board’s varied activities annually engage about 8,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation. Learn more about the Transportation Research Board at www.TRB.org.

C O O P E R A T I V E R E S E A R C H P R O G R A M S CRP STAFF FOR NCHRP WEB-ONLY DOCUMENT 300 Christopher J. Hedges, Director, Cooperative Research Programs Lori L. Sundstrom, Deputy Director, Cooperative Research Programs Dianne Schwager, Senior Program Officer Jarrel McAfee, Program Assistant Eileen P. Delaney, Publications Senior Advisor Natalie Barnes, Director of Publications Jennifer Correro, Assistant Editor NCHRP PROJECT 15-55 PANEL Field of Design—Area of General Design Khyle B. Clute, Iowa County Engineers Association Service Bureau, Ames, IA Glenn S. DeCou, Fair Oaks, CA Catherine Breland Earp, Atkins, Tallahassee, FL Jeff C. Jones, Tennessee Department of Transportation, Nashville, TN Steven M. Karamihas, University of Michigan, Transportation Research Institute, Ann Arbor, MI Casey M. Kramer, Natural Waters, Olympia, WA Jorge A. Millan, Texas Department of Transportation, Austin, TX Larry A. Scofield, American Concrete Pavement Association (ACPA), Mesa, AZ Joe S. Krolak, FHWA Liaison Stephen F. Maher, TRB Liaison .

TABLE OF CONTENTS SUMMARY .................................................................................................................................................................. 1 1. INTRODUCTION .................................................................................................................................................. 6 1.1. BACKGROUND .................................................................................................................................................. 6 1.2. PROJECT OBJECTIVE......................................................................................................................................... 6 1.3. RESEARCH APPROACH OVERVIEW ................................................................................................................... 7 1.4. OVERVIEW OF THE REPORT .............................................................................................................................. 9 2. CRITICAL ANALYSIS OF EXISTING MODELS .......................................................................................... 10 2.1. HYDROPLANING MODELS .............................................................................................................................. 10 2.1.1. Hydroplaning Speed Prediction ............................................................................................................. 10 2.1.2. Alternative Approaches for Predicting Hydroplaning Potential ............................................................. 14 2.2. WATER FILM THICKNESS MODELS................................................................................................................. 15 2.2.1. One-Dimensional Models ...................................................................................................................... 16 2.2.2. Two-Dimensional Models ...................................................................................................................... 17 2.2.3. Critical Evaluation ................................................................................................................................. 17 2.3. VEHICLE RESPONSE MODELS ......................................................................................................................... 19 2.3.1. Tire-Water-Pavement Interaction (Fluid Dynamics) Models ................................................................. 19 2.3.2. Vehicle Dynamics .................................................................................................................................. 23 2.4. SUMMARY ...................................................................................................................................................... 26 3. INTEGRATED HYDROPLANING MODEL ................................................................................................... 27 3.1. MODEL ARCHITECTURE ................................................................................................................................. 27 3.2. WATER ACCUMULATION SUBMODEL ............................................................................................................. 28 3.2.1. Rainfall Intensity .................................................................................................................................... 30 3.2.2. Initial Mesh Definition and Verification Work ...................................................................................... 31 3.2.3. Model Validation Through Sensitivity Analysis .................................................................................... 34 3.2.4. Discussion .............................................................................................................................................. 41 3.3. VEHICLE RESPONSE SUBMODEL ..................................................................................................................... 41 3.3.1. Assessing Vehicle Handling Capabilities ............................................................................................... 42 3.3.2. Fluid-Solid Interaction Model ................................................................................................................ 44 3.3.3. Performance Margin ............................................................................................................................... 57 3.3.4. Vehicle Dynamics Simulation ................................................................................................................ 62 3.4. HYDROPLANING POTENTIAL AND RISK .......................................................................................................... 65 3.4.1. Hydroplaning Potential for a Specific Roadway Segment ..................................................................... 66 3.4.2. Hydroplaning Risk ................................................................................................................................. 68 4. HYDROPLANING POTENTIAL ASSESSMENT TOOL (BETA VERSION) ............................................. 70 4.1. ROAD SURFACE PROPERTIES .......................................................................................................................... 71 4.2. SIMPLIFIED CALCULATION OF WATER FILM THICKNESS ................................................................................ 72 4.2.1. Determine Streamlines ........................................................................................................................... 72

4.2.2. Calculate the WFT Using a Modified Gallaway Equation ..................................................................... 73 4.2.3. Gaussian Kernel Smoothing to Simulate Diffusion ............................................................................... 74 4.2.4. Calibration of the WFT Model ............................................................................................................... 75 4.3. PERFORMANCE MARGIN ESTIMATION ............................................................................................................ 80 4.3.1. Speed Effect ........................................................................................................................................... 80 4.3.2. Longitudinal Slope Effect ...................................................................................................................... 80 4.4. LIMITATIONS AND POSSIBLE IMPROVEMENTS ................................................................................................ 81 5. HYDROPLANING MITIGATION SOLUTIONS ............................................................................................ 83 5.1. HIGHWAY ENGINEERING ................................................................................................................................ 83 5.1.1. Optimization of the Road Geometric Design ......................................................................................... 83 5.1.2. Road Surface Improvements .................................................................................................................. 84 5.1.3. Drainage Improvements ......................................................................................................................... 85 5.2. ENFORCEMENT AND TRAFFIC CONTROL ........................................................................................................ 86 5.3. ADVICE AND EDUCATION ............................................................................................................................... 86 6. CONCLUSIONS AND RECOMMENDATIONS ............................................................................................. 87 6.1. CONCLUSIONS ................................................................................................................................................ 87 6.1.1. Research Products .................................................................................................................................. 87 6.1.2. Advantages of the Research Deliverables .............................................................................................. 88 6.1.3. Limitation of the Analysis Approach and the Implemented Model ....................................................... 88 6.2. RECOMMENDATIONS FOR FUTURE RESEARCH ............................................................................................... 89 6.2.1. Improve the Water Accumulation Model ............................................................................................... 89 6.2.2. Refine the Models to Predict Hydroplaning Potential for Light Vehicles .............................................. 89 6.2.3. Develop an Enhanced Hydroplaning Potential Assessment Tool .......................................................... 89 6.3. RECOMMENDATIONS FOR IMPLEMENTATION ................................................................................................. 89 7. REFERENCES ..................................................................................................................................................... 91 APPENDIX A Hydroplaning Potential Assessment Tool (Beta Version): User Manual .................................... 97 APPENDIX B Research Need Statement for Expanding and Enhancing the Research Products .................. 124

LIST OF FIGURES Figure 1. Beta version of the Hydroplaning Potential Assessment Tool. ............................................................... 3 Figure 2. Modeling approach summary. ................................................................................................................. 8 Figure 3. Flow of information between the vehicle response submodels. ............................................................ 28 Figure 4. Rainfall rates versus duration for Tampa City, FL (from NOAA 2014). .............................................. 31 Figure 5. Schematic of experimental work by Reed et al. (1989). ....................................................................... 32 Figure 6. A schematic of macrotexture and CFD parameters ............................................................................... 32 Figure 7. Validation work with Reed at al. (1989) and 1-D correlations. ............................................................. 33 Figure 8. Schematic of two superelevated transitions (upper left A-B and D-E) and the change of longitudinal and cross slopes in transition section AB (lower left and right). ............................................... 34 Figure 9. Schematic of 3-D computational domain for real road conditions. ....................................................... 36 Figure 10. WFT distribution on pavement with different rainfall rate (ZCS = zero cross slope; RR = rainfall rate). .............................................................................................................................................................. 36 Figure 11. WFT distribution on pavement with different longitudinal slope. ...................................................... 37 Figure 12. WFT distribution on pavement with macrotextures. ........................................................................... 38 Figure 13. WFT distribution and velocity vectors before and after superelevation. ............................................. 39 Figure 14. Summary of the WFT Sensitivity Analysis. ........................................................................................ 40 Figure 15. WFT lateral profile at specified cross sections with different longitudinal slopes. ............................. 41 Figure 16. Examples of G-G diagrams. ................................................................................................................ 43 Figure 17. Schematic of the problem setup. ......................................................................................................... 45 Figure 18. Tire mesh profile. ................................................................................................................................ 45 Figure 19. Mesh profile of the whole fluid model. ............................................................................................... 45 Figure 20. Schematic of using the VOF method to track free surface. ................................................................. 46 Figure 21. Velocity vector distribution on the pavement and the tire surfaces. .................................................... 47 Figure 22. Reverse engineering process used to build a 2-D tire model in Abaqus. ............................................ 47 Figure 23. Tread design (a) created in NX and (b) meshed tread pattern created in Abaqus. .............................. 48 Figure 24. 3-D FE model development in Abaqus: (a) section and (b) full 3-D model. ...................................... 48 Figure 25. Schematic of tire with slip angle. ........................................................................................................ 49 Figure 26. Bald tire mesh profile and pressure distribution on bald tire surface. ................................................. 49 Figure 27. Comparison of treaded tire mesh and contact patch ............................................................................ 50 Figure 28. Lift force profiles of 0° slip angle and 2° slip angle over time. .......................................................... 50 Figure 29. Water film distributions. ..................................................................................................................... 51 Figure 30. Effect of slip angle on the contact patch at 40 mph. ........................................................................... 51 Figure 31. Volume fraction of the water flowing in the tire pattern groove with 5-mm WFT at 40 mph. ........... 52 Figure 32. The instrumented vehicle used to collect the data. .............................................................................. 53 Figure 33. Measurements of contact patch length for dry and wet conditions performed on the Smart Road. .... 53 Figure 34. FE calculations of contact patch length for dry and wet conditions. ................................................... 54 Figure 35. Illustration of the effect of WFT on vertical and lateral forces on the tire. ......................................... 55

Figure 36. Fit of the selected simple tire model. .................................................................................................. 57 Figure 37. Performance Envelope and PM (θb = cross-slope angle; θs =grade angle) .......................................... 58 Figure 38. Lateral forces acting on a vehicle system. ........................................................................................... 60 Figure 39. Longitudinal forces acting on a vehicle system. ................................................................................. 61 Figure 40. GUI of hydroplaning vehicle simulator. .............................................................................................. 63 Figure 41. Vehicle simulation flow diagram. ....................................................................................................... 64 Figure 42. Examples of G vector and output text file. .......................................................................................... 64 Figure 43. Performance Envelopes and PMs with four different conditions. ....................................................... 65 Figure 44. Effect of vehicle type on the Performance Envelopes and hydroplaning speed. ................................. 66 Figure 45. Hydroplaning Potential Assessment (beta version) Tool Flow Diagram. ........................................... 70 Figure 46. Hydroplaning Potential Assessment Tool (beta version) User Interface. ............................................ 71 Figure 47. Streamlines for a transition section on an 8-lane highway. ................................................................. 72 Figure 48. Streamlines for a transition section on 2-lane roadway including the shoulders. ................................ 74 Figure 49. Smoothed WFT along a transition on 8-lane roadway. ....................................................................... 75 Figure 50. Simulated WFT across the roadway without a curb compared with the Gallaway equation and experimental results (Sitek et al. 2020) ......................................................................................................... 76 Figure 51. Top grid view of road section; streamlines do not cross every cell in the grid. .................................. 76 Figure 52. Effect of neighborhood size on 2-D distribution of WFT and maximum WFT. ................................. 78 Figure 53. Effect of Gaussian kernel bandwidth compared to selected bandwidth ω on 2-D distribution of WFT and maximum WFT. ............................................................................................................................ 79 Figure 54. Results of the Hydroplaning Potential Assessment Tool for two different speeds. ............................. 80 Figure 55. Example results for 2-lane transitions with variable longitudinal slope .............................................. 81 LIST OF TABLES Table 1. Overview of Hydroplaning Speed Prediction Models ............................................................................ 13 Table 2. Overview of WFT Models ...................................................................................................................... 18 Table 3. Summary of Existing Literature on CFD Study of Hydroplaning .......................................................... 23 Table 4. Overview of Available Vehicle Dynamics Models ................................................................................ 25 Table 5. Details of the Grids Used in the Comparisons ........................................................................................ 33 Table 6. Operating Conditions for 3-D Simulation of WFT ................................................................................. 35 Table 7. Approximate Rainfall Intensities ............................................................................................................ 52 Table 8. FSI Simulation Results for Lift and Lateral Forces Under Different Conditions ................................... 54 Table 9. FSI Simulation Results for Lift and Lateral Forces under Different Conditions .................................... 56

Next: Summary »
Guidance to Predict and Mitigate Dynamic Hydroplaning on Roadways Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Hydroplaning is a serious problem that is associated with a relatively small but significant number of crashes. Statistics from various parts of the world indicate that approximately 15% to 20% of all road traffic crashes occur in wet weather conditions.

The TRB National Cooperative Highway Research Program's NCHRP Web-Only Document 300: Guidance to Predict and Mitigate Dynamic Hydroplaning on Roadways provides a novel, transformational approach to estimate hydroplaning based on the physics behind it. Using advanced fluid dynamics, tire, and vehicle response models, the project has developed a new way to assess the safety risks associated with vehicle hydroplaning. This research represents one of the first attempts to significantly upgrade understanding and methods to predict hydroplaning potential since the 1970s.

Supplemental to the document is a Hydroplaning Potential Assessment Tool and Excel files.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!