National Academies Press: OpenBook
« Previous: 5 Planetary Protection and Human Missions to Mars
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×

References

Abotalib, A.Z., and E. Heggy. 2019. A deep groundwater origin for recurring slope lineae on Mars. Nature Geoscience 12: 235-241. https://doi.org/10.1038/s41561-019-0327-5.

Aharonson, O., and N. Schorghofer. 2006. Subsurface ice on Mars with rough topography. Journal of Geophysical Research: Planets 111: E11007.

Anderson, K.L., E.E. Apolinario, and K.R. Sowers. 2012. Desiccation as a long-term survival mechanism for the Archaeon Methanosarcina barkeri. Applied Environmental Microbiology 78: 1473-1479. https://doi.org/10.1128/AEM.06964-11.

Aoki, S., A.C. Vandaele, F. Daerden, G.L. Villanueva, G. Liuzzi, I.R. Thomas, J.T. Erwin, et al. 2019. Water vapor vertical profiles on Mars in dust storms observed by TGO/NOMAD. Journal of Geophysical Research: Planets. https://doi.org/10.1029/2019JE006109.

Bakermans, C., and M. Skidmore. 2011. Microbial respiration in ice at subzero temperatures (−4°C to −33°C). Environmental Microbiology Reports 3: 774-782. https://doi.org/10.1111/j.17582229.2011.00298.x.

Bandfield, J.L. 2007. High-resolution subsurface water-ice distributions on Mars. Nature 447(7140): 64-67. doi: 10.1038/nature05781.

Bell, J. 2008. The Martian Surface—Composition, Mineralogy, and Physical Properties. Cambridge University Press.

Bidle, K.D., S. Lee, D.R. Marchant, and P.G. Falkowski. 2007. Fossil genes and microbes in the oldest ice on Earth. Proceedings of the National Academy of Sciences U.S.A. 104: 13455 LP13460. https://doi.org/10.1073/pnas.0702196104.

Blazewicz, S.J. 2013. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME Journal 7: 2061-2068. https://doi.org/10.1038/ismej.2013.102.

Bouley, S., D. Baratoux, N. Paulien, Y. Missenard, and B. Saint-Bézar. 2018. The revised tectonic history of Tharsis. Earth and Planetary Science Letters 488: 126-133. https://doi.org/10.1016/j.epsl.2018.02.019.

Boynton, W.V., W.C. Feldman, S.W. Squyres, T.H. Prettyman, J. Brückner, L.G. Evans, R.C. Reedy, et al. 2002. Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297(5578): 81-85. https://doi.org/10.1126/science.1073722.

Bramson, A.M., S. Byrne, N.E. Putzig, S. Sutton, J.J. Plaut, T.C. Brothers, and J.W. Holt. 2015. Widespread excess ice in Arcadia Planitia, Mars. Geophysical Research Letters 42(16): 6566-6574. https://doi.org/10.1002/2015GL064844.

Bramson, A.M., S. Byrne, and J. Bapst. 2017. Preservation of midlatitude ice sheets on Mars. Journal of Geophysical Research: Planets 122(11): 2250-2266. https://doi.org/10.1002/2017JE005357.

Bruckbauer, S.T., and M.M. Cox. 2021. Experimental evolution of extremophile resistance to ionizing radiation. Trends in Genetics S0168-9525(21): 00107-4. https://doi.org/10.1016/j.tig.2021.04.011.

Carr, M.H. 2007. The Surface of Mars. Cambridge University Press. https://doi.org/10.1017/CBO9780511536007.

Carr, M.H., and J.W. Head. 2010. Geologic history of Mars. Earth and Planetary Science Letters 294: 185-203. https://doi.org/10.1016/j.epsl.2009.06.042.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×

Carrier, B.L., D.W. Beaty, M.A. Meyer, J.G. Blank, L. Chou, S. DasSarma, D.J. Des Marais, et al. 2020. Mars extant life: What’s next? Conference report. Astrobiology 20: 785-814. https://doi.org/10.1089/ast.2020.2237.

Chin, J.P., J. Megaw, C.L. Magill, K. Nowotarski, J.P. Williams, P. Bhaganna, M. Linton, M.F. Patterson, G.J. Underwood, A.Y. Mswaka, and J.E. Hallsworth. 2010. Solutes determine the temperature windows for microbial survival and growth. Proceedings of the National Academy of Sciences U.S.A. 107: 7835 LP7840.

Christner, B.C., G. Royston-Bishop, C.M. Foreman, B.R. Arnold, M. Tranter, K.A. Welch, W.B. Lyons, A.I. Tsapin, M. Studinger, and J.C. Priscu,. 2006. Limnological conditions in Subglacial Lake Vostok, Antarctica. Limnology and Oceanography 51. https://doi.org/10.4319/lo.2006.51.6.2485.

Clifford, S.M., and T.J. Parker. 2001. The evolution of the Martian hydrosphere: Implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154: 40-79. https://doi.org/10.1006/icar.2001.6671.

Clifford, S.M., J. Lasue, E. Heggy, J. Boisson, P. McGovern, and M.D. Max. 2010. Depth of the Martian cryosphere: Revised estimates and implications for the existence and detection of subpermafrost groundwater. Journal of Geophysical Research: Planets 115: E07001. https://doi.org/10.1029/2009JE003462.

Collins, M.A., and R.K. Buick. 1989. Effect of temperature on the spoilage of stored peas by Rhodotorula glutinis. Food Microbiology 6: 135-142. https://doi.org/10.1016/S0740-0020(89)80021-8.

COSPAR (Committee on Space Research). 2020. “COSPAR Policy on Planetary Protection.” June 17.

Cushing, G.E. 2015. “Mars Global Cave Candidate Catalog PDS4 Archive Bundle.” PDS Cartography and Imaging Sciences Node (IMG). https://doi.org/10.17189/1519222.

Cushing, G.E. 2017. “Mars Global Cave Candidate Catalog (MGC3).” PDS Archive. https://doi.org/10.17189/1519222.

Daly, M.J. 2009. A new perspective on radiation resistance based on Deinococcus radiodurans. Nature Reviews Microbiology 7(3): 237-245. https://doi.org/10.1038/nrmicro2073.

Dartnell, L.R., S.J. Hunter, K.V. Lovell, A.J. Coates, and J.M. Ward. 2010. Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria. Astrobiology 10(7): 717-732. https://doi.org/10.1089/ast.2009.0439.

Daubar, I.J., A.S. McEwen, S. Byrne, M.R. Kennedy, and B. Ivanov. 2013. The current martian cratering rate. Icarus 225(1): 506-516. https://doi.org/10.1016/j.icarus.2013.04.009.

Daubar, I., A. Gao, D. Wexler, J. Eschenfelder, T. Neidhart, G.S. Collins, K. Miljkovic, C. Dundas, A. McEwen, S. Piqueux, M. Malin, and L. Posiolova. 2020. New craters on Mars: An updated catalog. Bulletin of the AAS 52(6).

Dieser, M. 2013. DNA double-strand break repair at −15°C. Applied Environmental Microbiology 79: 7662-7668. https://doi.org/10.1128/AEM.02845-13.

Diniega, S., A.S. McEwen, M. Chojnacki, M.P. Milazzo, S. Byrne, J.N. McElwaine, and A. Urso. 2013. A new dry hypothesis for the formation of Martian linear gullies. Icarus 225: 526-537. https://doi.org/10.1016/j.icarus.2013.04.006.

Dundas, C.M., et al. 2017. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. Nature Geoscience 10: 903-907. https://doi.org/10.1038/s41561-017-0012-5.

Dundas, C.M., S. Byrne, A.S. McEwen, M.T. Mellon, M.R. Kennedy, I.J. Daubar, and L. Saper. 2014. HiRISE observations of new impact craters exposing Martian ground ice. Journal of Geophysical Research: Planets 119: 109-127. https://doi.org/10.1002/2013JE004482.

Dundas, C.M., A.M. Bramson, L. Ojha, J.J. Wray, M.T. Mellon, S. Byrne, A.S. McEwen, et al. 2018. Exposed subsurface ice sheets in the Martian mid-latitudes. Science 359(6372): 199-201. https://doi.org/10.1126/science.aao1619.

Feldman, W.C., A. Pathare, S. Maurice, T.H. Prettyman, D.J. Lawrence, R.E. Milliken, and B.J. Travis. 2011. Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars. Journal of Geophysical Research: Planets 116: E11009. https://doi.org/10.1029/2011JE003806.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×

Fergason, R.L., P.R. Christensen, J.F. Bell III, M.P. Golombek, K.E. Herkenhoff, and H.H. Kieffer. 2006. Physical properties of the MarsExploration Rover landing sites as inferred from Mini-TES-derived thermal inertia Journal of Geophysical Research 111: E02S21.

Fischer, E., G.M. Martínez, H.M. Elliott, and N.O. Rennó. 2014. Experimental evidence for the formation of liquid saline water on Mars. Geophysical Research Letters 41: 4456-4462. https://doi.org/10.1002/2014GL060302.

Fischer, E., G.M. Martínez, and N.O. Renno. 2016. Formation and persistence of brine on Mars: Experimental simulations throughout the diurnal cycle at the Phoenix landing site. Astrobiology 16: 937-948. https://doi.org/10.1089/ast.2016.1525.

Formisano, V., S. Atreya, T. Encrenaz, N. Ignatiev, and M. Giuranna. 2004. Detection of methane in the atmosphere of Mars. Science 306(5702): 1758-1761. https://doi.org/10.1126/science.1101732.

Frösler, J., C. Panitz, J. Wingender, H.-C. Flemming, and P. Rettberg. 2017. Survival of Deinococcus geothermalis in biofilms under desiccation and simulated space and Martian conditions. Astrobiology 17(5): 431-447. https://doi.org/10.1089/ast.2015.1431.

Ghosal, D., M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, A. Venkateswaran, M. Zhai, et al. 2005. How radiation kills cells: Survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiology Reviews 29(2): 361-375. doi: 10.1016/j.femsre.2004.12.007.

Goordial, J., A. Davila, D. Lacelle, W. Pollard, M.M. Marinova, C.W. Greer, J. DiRuggiero, C.P. McKay, and L.G. Whyte. 2016. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME Journal 10: 1613-1624. https://doi.org/10.1038/ismej.2015.239.

Granger, A.C. 2011. Effects of Mn and Fe levels on Bacillus subtilis spore resistance and effects of Mn2+, other divalent cations, orthophosphate, and dipicolinic acid on protein resistance to ionizing radiation. Applied Environment Microbiology 77(1): 32-40. https://doi.org/10.1128/AEM.01965-10.

Grimm, R.E., K.P. Harrison, D.E. Stillman, and M.R. Kirchoff. 2017. On the secular retention of ground water and ice on Mars. Journal of Geophysical Research: Planets 122: 94-109. https://doi.org/10.1002/2016JE005132.

Grott, M., T. Spohn, J. Knollenberg, C. Krause, T.L. Hudson, S. Piqueux, et al. 2021. Thermal conductivity of the Martian soil at the InSight landing site from HP3 active heating experiments. Journal of Geophysical Research: Planets 126: e2021JE006861.

Hamilton, V.E., A.R. Vasavada, E. Sebastián, M. Torre Juárez, M. Ramos, C. Armiens, et al. 2014. Observations and preliminary science results from the first 100 sols of MSL rover environmental monitoring station ground temperature sensor measurements at Gale Crater. Journal of Geophysical Research: Planets 119: 745-770. https://doi.org/10.1002/2013JE004520.

Hassler, D.M., C. Zeitlin, R.F. Wimmer-Schweingruber, B. Ehresmann, S. Rafkin, J.L. Eigenbrode, D.E. Brinza, et al. 2014. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science 343(6169): 1244797. https://doi.org/10.1126/science.1244797.

Hecht, M.H., S.P. Kounaves, R.C. Quinn, S.J. West, S.M.M. Young, D.W. Ming, D.C. Catling, et al. 2009. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix Lander site. Science 325: 64-67. https://doi.org/10.1126/science.1172466.

Hibshman, J.D., J.S. Clegg, and B. Goldstein. 2020. Mechanisms of desiccation tolerance: Themes and variations in brine shrimp, roundworms, and tardigrades. Frontiers in Physiology 11: 1-19.

Holm-Hansen, O. 1967. Factors affecting the viability of lyophilized algae. Cryobiology 4(1): 17-23. https://doi.org/10.1016/s0011-2240(67)80182-2.

Holstein-Rathlou, C., H.P. Gunnlaugsson, J.P. Merrison, K.M. Bean, B.A. Cantor, J.A. Davis, R. Davy, et al. 2010. Winds at the phoenix landing site. Journal of Geophysical Research: Planets 115(5): 1-20. https://doi.org/10.1029/2009JE003411.

Karl, D.M. 2007. Microbial oceanography: Paradigms, processes and promise. Nature Reviews Microbiology 5: 759-769. https://doi.org/10.1038/nrmicro1749.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×

Karl, D.M., D.F. Bird, K. Björkman, T. Houlihan, R. Shackelford, and L. Tupas. 1999. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science (80)286: 2144-2147. doi: 10.1126/science.286.5447.2144.

Kearney, M.L., J.J. Wynne, G.E. Cushing, N.M. Bardabelias, and N.G. Barlow. 2021. “Robotic Exploration Potential of Martian Caves.” 52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548). https://www.hou.usra.edu/meetings/lpsc2021/pdf/2078.pdf.

Kieffer, H.H. 2013. Thermal model for analysis of Mars infrared mapping. Journal of Geophysical Research: Planets 118: 451-470. https://doi.org/10.1029/2012JE004164.

Kminek, G., V. Hipkin, A. Anesio, J. Barengoltz, P.J. Boston, B.C. Clark, C.A. Conley, et al. 2015. Meeting Report: COSPAR Panel on Planetary Protection Colloquium, Bern, Switzerland, September 2015. Space Research Today 195. doi: 10.1016/j.srt.2016.03.013.

Kounaves, S.P., M.H. Hecht, J. Kapit, K. Gospodinova, L. DeFlores, R.C. Quinn, W.V. Boynton, et al. 2010. Wet chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results. Journal of Geophysical Research: Planets E00E10. https://doi.org/10.1029/2009JE003424.

Laskowska, E., and D. Kuczyńska-Wiśnik. 2020. New insight into the mechanisms protecting bacteria during desiccation. Current Genetics 66: 313-318. https://doi.org/10.1007/s00294-019-01036-z.

Leask, E.K., B.L. Ehlmann, M.M. Dundar, S.L. Murchie, and F.P. Seelos. 2018. “Challenges in the Search for Perchlorate and Other Hydrated Minerals with 2.1-μm Absorptions on Mars.” Geophysical Research Letters 45: 12180-12189. https://doi.org/10.1029/2018GL080077.

Leshin, L.A., P.R. Mahaffy, C.R. Webster, M. Cabane, P. Coll, P.G. Conrad, P.D. Archer, Jr., et al. 2013. Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover. Science 341(6153): 1238937. https://doi.org/10.1126/science.1238937.

Levin, G.V., and P.A. Straat. 2016. The case for extant life on Mars and its possible detection by the Viking Labeled Release experiment. Astrobiology 16(10): 798-810. https://doi.org/10.1089/ast.2015.1464.

Lieb-Lappen, R.M., E.J. Golden, and R.W. Obbard. 2017. Metrics for interpreting the microstructure of sea ice using X-ray micro-computed tomography. Cold Regions Science and Technology 138: 24-35. https://doi.org/10.1016/j.coldregions.2017.03.001.

Lieblappen, R.M., D.D. Kumar, S.D. Pauls, and R.W. Obbard. 2018. A network model for characterizing brine channels in sea ice. Cryosphere 12(3): 1013-1026. https://doi.org/10.5194/tc-12-1013-2018.

Lindensmith, C.A., S. Rider, M. Bedrossian, J.K. Wallace, E. Serabyn, G.M. Showalter, J.W. Deming, and J.L. Nadeau. 2016. A submersible, off-axis holographic microscope for detection of microbial motility and morphology in aqueous and icy environments. PLoS ONE 11(1): e0147700. https://doi.org/10.1371/journal.pone.0147700.

Liu, Y., et al. 2016. Bacterial responses to environmental change on the Tibetan Plateau over the past half century. Environment Microbiology 18: 1930-1941. https://doi.org/10.1111/1462-2920.13115.

Macelloni, G., M. Leduc-Leballeur, F. Montomoli, M. Brogioni, C. Ritz, and G. Picard. 2019. On the retrieval of internal temperature of Antarctica ice sheet by using SMOS observations. Remote Sensing of Environment 233: 111405. https://doi.org/10.1016/j.rse.2019.111405.

Makarova, K.S., M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, A. Lapidus, et al. 2007. Deinococcus geothermalis: The pool of extreme radiation resistance genes shrinks. PLoS One 2(9): e955. https://doi.org/10.1371/journal.pone.0000955.

Manga, M., and V. Wright. 2021. No cryosphere confined aquifer below InSight on Mars. Geophysical Research Letters 48: e93127. https://doi.org/10.1029/2021GL093127.

Martínez, G.M., C.N. Newman, A. De Vicente-Retortillo, E. Fischer, N.O. Renno, M.I. Richardson, A.G. Fairén, et al. 2017. The modern near-surface Martian climate: A review of in-situ meteorological data from Viking to Curiosity. Space Science Reviews 212(1-2): 295-338. https://doi.org/10.1007/s11214017-0360-x.

Mattimore, V., and J.R. Battista. 1996. Radioresistance of Deinococcus radiodurans: Functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. Journal of Bacteriology 178(3): 633-637. https://doi.org/10.1128/jb.178.3.633-637.1996.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×

Mellon, M.T., and B.M. Jakosky. 1993. Geographic variations in the thermal and diffusive stability of ground ice on Mars. Journal of Geophysical Research 98: 3345-3364.

Mellon, M.T., and B.M. Jakosky. 1995. The distribution and behavior of Martian ground ice during past and present epochs. Journal of Geophysical Research: Planets 100(E6): 11781. https://doi.org/10.1029/95JE01027.

Mellon, M.T., R.E. Arvidson, H.G. Sizemore, M.L. Searls, D.L. Blaney, S. Cull, M.H. Hecht, et al. 2009. Ground ice at the Phoenix Landing Site: Stability state and origin. Journal of Geophysical Research 114. doi: 10.1029/2009JE003417.

Mellon, M.T., W.C. Feldman, T.H. Prettyman. 2004. The presence and stability of ground ice in the southern hemisphere of Mars. Icarus 169: 324-340.

Melosh, H.J. 1988. The rocky road to panspermia. Nature 332: 687-688. doi: 10.1038/332687a0.

Meyer, M., C. Bakermans, D. Beaty, D. Bernard, P. Boston, V. Chevrier, C. Conley, et al. 2019. Report of the Joint Workshop on Induced Special Regions. Life Sciences and Space Research 23: 50-59. https://doi.org/10.1016/j.lssr.2019.09.002.

Moores, J.E., J. Schieber, A.M. Kling, R.M. Haberle, C.A. Moore, M.S. Anderson, I. Katz, et al. 2016. Transient atmospheric effects of the landing of the Mars Science Laboratory Rover: The emission and dissipation of dust and carbazic acid. Advances in Space Research 58(6): 1066-1092. https://doi.org/10.1016/J.ASR.2016.05.051.

Morgan, G.A., N.E. Putzig, M.R. Perry, H.G. Sizemore, A.M. Bramson, E.I. Petersen, Z.M. Bain, et al. 2021. Availability of subsurface water-ice resources in the northern mid-latitudes of Mars. Nature Astronomy 5: 230-236. https://doi.org/10.1038/s41550-020-01290-z.

Mumma, M., G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. Disanti, A.M. Mandell, and M.D. Smith. 2009. Strong release of methane on Mars in northern summer 2003. Science 323(5917): 1041-1045. https://doi.org/10.1126/science.1165243.

Musilova, M., G. Wright, J.M. Ward, and and L.R. Dartnell. 2015. Isolation of radiation-resistant bacteria from Mars analog Antarctic dry valleys by preselection, and the correlation between radiation and desiccation resistance. Astrobiology 15(12): 1076-1090. https://doi.org/10.1089/ast.2014.1278.

Mykytczuk, N.C.S., S.J. Foote, C.R. Omelon, G. Southam, C.W Greer, and L.G. Whyte. 2013. Bacterial growth at −15°C; Molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME Journal 7: 1211-1226. https://doi.org/10.1038/ismej.2013.8.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2018. Review and Assessment of Planetary Protection Policy Development Processes. Washington, DC: The National Academies Press. https://doi.org/10.17226/25172.

NASEM. 2020. Assessment of the Report of NASA’s Planetary Protection Independent Review Board. Washington, DC: The National Academies Press. https://doi.org/10.17226/25773.

Newman, C.E., J. Gómez-Elvira, M. Marin, S. Navarro, J. Torres, M.I. Richardson, J.M. Battalio, et al. 2017. Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover’s Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF. Icarus 124: 3442-3468. https://doi.org/10.1016/j.icarus.2016.12.016.

News of Science. 1958. Development of international efforts to avoid contamination of extraterrestrial bodies. Science 128(3329): 887-891.

NRC (National Research Council). 2002a. The Quarantine and Certification of Martian Samples. Washington, DC: The National Academies Press. https://doi.org/10.17226/10138.

NRC. 2002b. Safe on Mars: Precursor Measurements Necessary to Support Human Operations on the Martian Surface. Washington, DC: The National Academies Press. https://doi.org/10.17226/10360.

NRC. 2006. Preventing the Forward Contamination of Mars. Washington, DC: The National Academies Press. https://doi.org/10.17226/11381.

NRC. 2007. An Astrobiology Strategy for the Exploration of Mars. Washington, DC: The National Academies Press.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×

Ojha, L., M.B. Wilhelm, S.L. Murchie, A.S. McEwen, J.J. Wray, J. Hanley, M. Massé, and M. Chojnacki. 2015. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience 8: 829-832. https://doi.org/10.1038/ngeo2546.

Osinski, G.R., C.S. Cockell, A. Pontefract, and H.M. Sapers. 2020. The role of meteorite impacts in the origin of life. Astrobiology 12: 1121-1149. https://doi.org/10.1089/ast.2019.2203.

Piqueux, S., C.S. Edwards, R.L. Fergason, J. Laura, A. Weintraub, P.R. Christensen, and H.H. Kieffer. 2018. “Improving Thermal Model Capability for the Planetary Science Community.” XLIX Lunar Plan. Sci. Conf. LPI. Houston. #1027.

Piqueux, S., J. Buz, C.S. Edwards, J.L. Bandfield, A. Kleinböhl, D.M. Kass, P.O. Hayne, The MCS, and THEMIS Teams. 2019. Geophysical Research Letters 46(24): 14290-14298.

Piqueux, S., N. Mueller, M. Grott, M. Siegler, E. Millour, F. Forget, et al. 2021. Regolith properties near the InSight Lander derived from 50 sols of radiometer measurements. Journal of Geophysical Research (Planets). Submitted.

Plaut, J.J., A. Safaeinili, J.W. Holt, R.J. Phillips, J.W. Head III, R. Seu, N.E. Putzig, and A. Frigeri. 2009. Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophysical Research Letters 36(2). https://doi.org/10.1029/2008GL036379.

PPIRB (Planetary Protection Independent Review Board). 2019. NASA Planetary Protection Independent Review Board (PPIRB): Report to NASA/SMD: Final Report. Washington, DC. https://www.nasa.gov/sites/default/files/atoms/files/planetary_protection_board_report_20191018.pdf.

Price, P.B., and T. Sowers. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences U.S.A. 101(13): 4631-4636. https://doi.org/10.1073/pnas.0400522101.

Priscu, J.E., E.E. Adams, W.B. Lyons, M.A. Voytek, D.W. Mogk, R.L. Brown, C.P. McKay, C.D. Takacs, K.A. Welch, C.F. Wolf, J.D. Kirshtein, and R. Avci. 1999. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286: 2141-2144. https://doi.org/10.1126/science.286.5447.2141.

Putzig, N.E., and M.T. Mellon. 2007. Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191(1): 68-94. https://doi.org/10.1016/j.icarus.2007.05.013.

Rappé, M.S., and S.J. Giovannoni. 2003. The uncultured microbial majority. Annual Reviews Microbiology 57: 369-94. https://doi.org/10.1146/annurev.micro.57.030502.090759.

Richmond, R.C., R. Sridhar, Y. Zhou, and M.J. Daly. 1999. Physico-chemical survival pattern for the radiophile D. radiodurans: A polyextremophile model for life on Mars.” Proceedings of SPIE 3755, Instruments, Methods, and Missions for Astrobiology II. https://doi.org/10.1117/12.375078.

Rivera-Valentín, E.G., V.F. Chevrier, A. Soto, and G. Martínez. 2020. Distribution and habitability of (meta)stable brines on present-day Mars. Nature Astronomy 4(8): 756-761. https://doi.org/10.1038/s41550-020-1080-9.

Rivkina, E.M., E.I. Friedmann, C.P. McKay, and D.A. Gilichinsky. 2000. Metabolic activity of permafrost bacteria below the freezing point. Applied and Environmental Microbiology 66: 3230-3233. https://doi.org/10.1128/AEM.66.8.3230-3233.2000.

Rummel, J.D., D.W. Beaty, M.A. Jones, C. Bakermans, N.G. Barlow, P.J. Boston, V.F. Chevrier, et al. 2014. A new analysis of Mars ‘Special Regions’: Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 14: 887-968. https://doi.org/10.1089/ast.2014.1227.

Salese, F., M. Pondrelli, A. Neeseman, G. Schmidt, and G.G. Ori. 2019. “A Geological Model for Martian Groundwater Based on Water-Formed Features Within Deep Basins.” 50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132). https://www.hou.usra.edu/meetings/lpsc2019/pdf/3240.pdf.

Santibáñez, P.A., O.J. Maselli, M.C. Greenwood, M.M. Grieman, E.S. Saltzman, J.R. McConnell, and J.C. Priscu. 2018. Prokaryotes in the WAIS Divide ice core reflect source and transport changes

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×

between Last Glacial Maximum and the early Holocene. Global Change Biology 24: 2182-2197. doi: 10.1111/gcb.14042.

Sauro, F., R. Pozzobon, M. Massironi, P. De Berardinis, T. Santagata, and J. De Waele. 2020. Lava tubes on Earth, Moon and Mars: A review on their size and morphology revealed by comparative planetology. Earth Science Reviews 209: 103288. https://doi.org/10.1016/j.earscirev.2020.103288.

Sauvage, J.F., A. Flinders, A.J. Spivack, R. Pockalny, A.G. Dunlea, C.H. Anderson, D.C. Smith, R.W. Murray, and S. D’Hondt. 2021. The contribution of water radiolysis to marine sedimentary life. Nature Communication 12: 1297. https://doi.org/10.1038/s41467-021-21218-z.

Scheller, E.L., B.L. Ehlmann, R. Hu, D.J. Adams, and Y.L. Yung. 2021. Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science 372: 56-62. https://doi.org/10.1126/science.abc7717.

Schorghofer, N., and O. Aharonson. 2005. Stability and exchange of subsurface ice on Mars. Journal of Geophysical Research: Planets 110: E05003. https://doi.org/10.1029/2004JE002350.

Schuerger, A.C. 2015. “Ultraviolet Irradiation on the Surface of Mars: Implications for EVA Activities during Future Human Missions.” Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions. https://www.hou.usra.edu/meetings/ppw2015/pdf/1011.pdf.

Schulze-Makuch, D., and L.N. Irwin. 2018. Life in the Universe: Expectations and Constraints. 3rd edition. Springer. https://doi.org/10.1007/978-3-540-76817-3.

Sharma, A., E.K. Gaidamakova, O. Grichenko, V.Y. Matrosova, V. Hoeke, P. Klimenkova, I.H. Conze, et al. 2017. Across the tree of life, radiation resistance is governed by antioxidant Mn2+, gauged by paramagnetic resonance. Proceedings of the National Academy of Sciences U.S.A. 114(44): E9253-E9260. https://doi.org/10.1073/pnas.1713608114.

Shivaji, S., P. Chaturvedi, K. Suresh, G.S.N. Reddy, C.B.S. Dutt, M. Wainwright, J.V. Narlikar, and P.M. Bhargava. 2006. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. International Journal of Systematic and Evolutionary Microbiology 56(Pt 7): 1465-1473. https://doi.org/10.1099/ijs.0.64029-0.

Siegler, M.A., S.E. Smrekar, M. Grott, S. Piqueux, N. Mueller, J.-P. Williams, et al. 2017. The insight Mars lander and its effect on the subsurface thermal environment. Space Science Reviews 211(1-4): 259-275. https://doi.org/10.1007/s11214-017-0331-2.

Sizemore, H.G., M.T. Mellon, and M.P. Golombek. 2009. Ice table depth variability near small rocks at the Phoenix landing site, Mars: A pre-landing assessment. Icarus 199: 303-309.

Slade, D., and M. Radman. 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiology and Molecular Biology Reviews 75(1): 133-191. https://doi.org/10.1128/MMBR.00015-10.

Smith, P.H., L.K. Tamppari, R.E. Arvidson, D. Bass, D. Blaney, W.V. Boynton, A. Carswell, et al. 2009. H2O at the Phoenix landing site, Science 325: 58-61.

Stevenson, A., J.A. Cray, J.P. Williams, R. Santos, R. Sahay, N. Neuenkirchen, C.D. McClure, et al. 2014. “Is there a common water-activity limit for the three domains of life? ISME Journal 1333-1351. https://doi.org/10.1038/ismej.2014.219.

Stillman, D.E., B.D. Bue, K.L. Wagstaff, K.M. Primm, T.I. Michaels, and R.E. Grimm. 2020. Evaluation of wet and dry recurring slope lineae (RSL) formation mechanisms based on quantitative mapping of RSL in Garni Crater, Valles Marineris, Mars. Icarus 335: 113420. https://doi.org/10.1016/j.icarus.2019.113420.

Stres, B., W.J. Sul, B. Murovec, and J.M. Tiedje. 2013. Recently deglaciated high-altitude soils of the Himalaya: Diverse environments, heterogenous bacterial communities and long-range dust inputs from the upper troposphere. PLoS One 8(9): e76440. https://doi.org/10.1371/journal.pone.0076440.

Stuurman, C.M., G.R. Osinski, J.W. Holt, J.S. Levy, T.C. Brothers, M. Kerrigan, and B.A. Campbell. 2016. SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars. Geophysical Research Letters 43: 9484-9491. https://doi.org/10.1002/2016GL070138.

Tarnas, J.D., J.F. Mustard, B. Sherwood Lollar, V. Stamenković, K.M. Cannon, J.-P. Lorand, T.C. Onstott, J.R. Michalski, O. Warr, A.M. Palumbo, and A.-C. Plesa. 2021. Earth-like habitable

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×

environments in the subsurface of Mars. Astrobiology 21: 741-756. https://doi.org/10.1089/ast.2020.2386.

Teodoro, L., A. Davila, R.C. Elphic, D. Hamilton, C. McKay, and R. Quinn. 2018. “Habitability and Biomarker Preservation in the Martian Near-Surface Radiation Environment.” Pp. 211-231 in From Habitability to Life on Mars. https://doi.org/10.1016/B978-0-12-809935-3.00012-8.

Titus, T.N., H.H. Kieffer, and P.R. Christensen. 2003. Exposed water ice discovered near the south pole of Mars. Science 299(5609): 1048-1051. https://doi.org/10.1126/science.1080497.

Titus, T.N., J.J. Wynne, M.J. Malaska, A.-a. Agha-Mohammadi, P.B. Buhler, E.C. Alexander, J.W. Ashley, et al. 2021. A roadmap for planetary caves science and exploration. Nature Astronomy 5: 524-525. https://doi.org/10.1038/s41550-021-01385-1.

Toon, O.B., J.B. Pollack, and C. Sagan. 1977. Physical properties of the particles composing the Martian Dust Storm of 1971-1972. Icarus 30: 663-696. https://doi.org/10.1016/0019-1035(77)90088-4.

Trainer, M.G., M.H. Wong, T.H. McConnochie, H.B. Franz, S.K. Atreya, P.G. Conrad, F. Lefèvre, et al. 2019. Seasonal variations in atmospheric composition as measured in Gale Crater, Mars. Journal of Geophysical Research: Planets 124: 3000-3024. https://doi.org/10.1029/2019JE006175.

Vaishampayan, P., A. Hayden Roberts, A. Augustus, R. Pukall, P. Schumann, P. Schwendner, S. Mayilraj, T. Salmassi, and K. Venkateswaran. 2014. Deinococcus phoenicis sp. nov., an extreme ionizing-radiation-resistant bacterium isolated from the Phoenix Lander Assembly Facility. International Journal of Systematic and Evolutionary Microbiology 64(Pt 10): 3441-3446. https://doi.org/10.1099/ijs.0.063107-0.

van der Wielen, P.W.J.J., H. Bolhuis, S. Borin, D. Daffonchio, C. Corselli, L. Giuliano, G. D’Auria, et al. 2005. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307: 121-123. https://doi.org/10.1126/science.1103569.

Vasavada, A.R., S. Piqueux, K.W. Lewis, M.T. Lemmon, and M.D. Smith. 2017. Thermophysical properties along Curiosity’s traverse in Gale crater, Mars, derived from the REMS ground temperature sensor. Icarus 284: 372-386. https://doi.org/10.1016/j.icarus.2016.11.035.

Venkateswaran, A., S.C. McFarlan, D. Ghosal, K.W. Minton, A. Vasilenko, K. Makarova, L.P. Wackett, and M.J. Daly. 2000. Physiologic determinants of radiation resistance in Deinococcus radiodurans. Applied Environmental Microbiology 66(6): 2620-2626. https://doi.org/10.1128/AEM.66.6.26202626.2000.

Vicente-Retortillo, A., G.M. Martínez, N.O. Rennó, M.T. Lemmon, M. de la Torre-Juárez, and J. Gómez-Elvira. 2020. In situ UV measurements by MSL/REMS: Dust deposition and angular response corrections. Space Science Reviews 216: 97. https://doi.org/10.1007/s11214-020-00722-6.

Vincendon, M., F. Forget, and J. Mustard. 2010. Water ice at low to midlatitudes on Mars. Journal of Geophysical Research: Planets 115: E10001. https://doi.org/10.1029/2010JE003584.

Wachtershauser, G. 1988. Before enzymes and templates: Theory of surface metabolism. Microbiology Reviews 52: 452-484. https://doi.org/10.1128/mr.52.4.452-484.

Wang, A., J. Bell, R. Li, J.R. Johnson, W.H. Farrand, E.A. Cloutis, R.E. Arvidson, et al. 2008. Light-toned salty soils and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills. Journal of Geophysical Research: Planets 113(12): E12S40.

Ward, J.A., G.F. Slater, D.P. Moser, L.-H. Lin, G. Lacrampe-Couloume, A.S. Bonin, M Davidson, et al. 2004. Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: Implications for the deep biosphere. Geochimica et Cosmochimica Acta 68(15): 3239-3250. https://doi.org/10.1016/j.gca.2004.02.020.

Webster, C.R., P.R. Mahaffy, J. Pla-Garcia, S.C.R. Rafkin, J.E. Moores, S.K. Atreya, G.J. Flesch, et al. 2021. Day-night differences in Mars methane suggest nighttime containment at Gale Crater. Astronomy and Astrophysics 650: A166. https://doi.org/10.1051/0004-6361/202040030.

Wetherill, G.W. 1984. Orbital evolution of impact ejecta from Mars. Meteoritics 19: 1-13. https://doi.org/10.1111/j.1945-5100.1984.tb00829.x.

Wharton, D., and D. Ferns. 1995. Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi. Journal of Experimental Biology 198(Pt 6): 1381-1387.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×

White House and National Space Council. 2020. National Strategy for Planetary Protection. December.

Williams, K.E., C.P. McKay, O.B. Toon, and J.W. Head. 2010. Do ice caves exist on Mars? Icarus 209: 358-368. https://doi.org/10.1016/j.icarus.2010.03.039.

Wilson, J.T., Vincent R. Eke, R.J. Massey, R.C. Elphic, W.C. Feldman, S. Maurice, and L.F.A. Teodoro. 2018. Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data. Icarus 299: 148-160. https://doi.org/10.1016/j.icarus.2017.07.028.

Yung, Y.L., P. Chen, K. Nealson, S. Atreya, P. Beckett, J.G. Blank, B. Ehlmann, et al. 2018. Methane on Mars and habitability: Challenges and responses. Astrobiology 18(10): 1221-1242. https://doi.org/10.1089/ast.2018.1917.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×

This page intentionally left blank.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×
Page 50
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×
Page 51
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×
Page 52
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×
Page 53
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×
Page 54
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×
Page 55
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×
Page 56
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×
Page 57
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×
Page 58
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×
Page 59
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2021. Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions. Washington, DC: The National Academies Press. doi: 10.17226/26336.
×
Page 60
Next: Appendix A: Statement of Task »
Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions Get This Book
×
 Report Series: Committee on Planetary Protection: Evaluation of Bioburden Requirements for Mars Missions
Buy Paperback | $41.00 Buy Ebook | $32.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Since the 1980s, national and international planetary protection policies have sought to avoid contamination by terrestrial organisms that could compromise future investigations regarding the origin or presence of Martian life. Over the last decade, the number of national space agencies planning, participating in, and undertaking missions to Mars has increased, and private-sector enterprises are engaged in activities designed to enable commercial missions to Mars. The nature of missions to Mars is also evolving to feature more diversity in purposes and technologies. As missions to Mars increase and diversify, national and international processes for developing planetary protection measures recognize the need to consider the interests of scientific discovery, commercial activity, and human exploration. The implications of these changes for planetary protection should be considered in the context of how much science has learned about Mars, and about terrestrial life, in recent years.

At the request of NASA, this report identifies criteria for determining locations on Mars potentially suitable for landed robotic missions that satisfy less stringent bioburden requirements, which are intended to manage the risk of forward contamination.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!