National Academies Press: OpenBook

New Directions for Chemical Engineering (2022)

Chapter: References

« Previous: 10 International Leadership
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

References

Abdelkareem, M. A., M. El Haj Assad, E. T. Sayed, and B. Soudan. 2018. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination 435:97-113. DOI: 10.1016/j.desal.2017.11.018.

Abejón, R., A. Garea, and A. Irabien. 2010. Ultrapurification of hydrogen peroxide solution from ionic metals impurities to semiconductor grade by reverse osmosis. Separation and Purification Technology 76(1):44-51. DOI: 10.1016/j.seppur.2010.09.018.

ACS and RSC (American Chemical Society and Royal Society of Chemistry). 1999. The discovery and development of penicillin 1928-1945. Retrieved August 19, 2021, from https://www.acs.org/content/dam/acsorg/education/whatischemistry/landmarks/flemingpenicillin/the-discovery-and-development-of-penicillin-commemorative-booklet.pdf.

Ahmed, F. 2007. Profile of Mark E. Davis. Proceedings of the National Academy of Sciences 104(52). DOI: 10.1073/pnas.0704959105.

Ahmetović, E., Z. Kravanja, N. Ibrić, I. E. Grossmann, and L. E. Savulescu. 2021. State of the art methods for combined water and energy systems optimisation in Kraft pulp mills. Optimization and Engineering 22:1831-1852. DOI: 10.1007/s11081-021-09612-4.

AIChE (American Institute of Chemical Engineers). 2017. Achievements in the environment. Retrieved August 17, 2021, from https://www.aiche.org/community/students/career-resources-k-12-students-parents/what-do-chemical-engineers-do/saving-environment/achievements.

AIChE. 2020. Thinking about climate. CEP Magazine 116(13). https://www.aiche.org/sites/default/files/cep/20210214.pdf.

AIChE. 2021. 2021 AIChE Salary Survey. CEP Magazine. https://www.aiche.org/resources/publications/cep/2021/june/2021-aiche-salary-survey.

Akee, R., M. R. Jones, and S. R. Porter. 2017. Race matters: Income Shares, income inequality, and income mobility for all U.S. Races. National Bureau of Economic Research Working Paper Series No. 23733. DOI: 10.3386/w23733.

Albrecht, T. R., A. Crootof, and C. A. Scott. 2018. The water-energy-food nexus: A systematic review of methods for nexus assessment. Environmental Research Letters 13(4). DOI: 10.1088/1748-9326/aaa9c6.

Alexandratos, S. D. 2009. Ion-exchange resins: A retrospective from industrial and engineering chemistry research. Industrial & Engineering Chemistry Research 48(1):388-398. DOI: 10.1021/ie801242v.

Alger, M., D. Velegol, and R. Shi. 2021. Sustainable energy corps: Building a global collaboration to accelerate transition to a low carbon world. Chemical Engineering Science: X 10. DOI: 10.1016/j.cesx.2021.100099.

Alias, A., R. Abhijith, and V. Thankachan. 2019. Review on applications of smart glass in green buildings. Presented at Green Buildings and Sustainable Engineering: Singapore.

Allison, G., Y. T. Cain, C. Cooney, T. Garcia, T. G. Bizjak, O. Holte, N. Jagota, B. Komas, E. Korakianiti, D. Kourti, R. Madurawe, E. Morefield, F. Montgomery, M. Nasr, W. Randolph, J. L. Robert, D. Rudd, and D. Zezza. 2015. Regulatory and quality considerations for continuous manufacturing, May 20-21, 2014: Continuous manufacturing symposium. Journal of Pharmaceutical Sciences 104(3):803-812. DOI: 10.1002/jps.24324.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Almudever, C. G., L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S. Varsamopoulos, C. Eichler, A. Wallraff, L. Geck, A. Kruth, J. Knoch, H. Bluhm, and K. Bertels. 2017. The engineering challenges in quantum computing. Presented at Design, Automation & Test in Europe Conference & Exhibition. Lausanne, Switzerland.

Alonso, C., T. Alig, J. Yoon, F. Bringezu, H. Warriner, and J. A. Zasadzinski. 2004. More than a monolayer: Relating lung surfactant structure and mechanics to composition. Biophysical Journal 87(6):4188-4202. DOI: 10.1529/biophysj.104.051201.

Altabet, Y. E., and P. G. Debenedetti. 2017. Communication: Relationship between local structure and the stability of water in hydrophobic confinement. The Journal of Chemical Physics 147(24). DOI: 10.1063/1.5013253.

America Makes, AMT, and Deloitte (Association for Manufacturing Technology and Deloitte Consulting). 2021. Assessing the role of additive manufacturing in support of the U.S. COVID-19 response. Advanced Manufacturing Crisis Production Response. https://www.fda.gov/media/150615/download.

Anastas, P. T., and J. C. Warner. 1998. Green chemistry: Theory and practice. New York: Oxford University Press.

Anastas, P. T., and J. B. Zimmerman. 2003. Design through the 12 principles of green engineering. Environmental Science & Technology 37(5):94A-101A. DOI: 10.1021/es032373g.

Andrew, R. M. 2018. Global CO2 emissions from cement production. Earth System Science Data 10:195-217. DOI: 10.5194/essd-10-195-2018.

Anna, S. L., N. Bontoux, and H. A. Stone. 2003. Formation of dispersions using “flow focusing” in microchannels. Applied Physics Letters 82(3):364-366. DOI: 10.1063/1.1537519.

Anselmo, A. C., and S. Mitragotri. 2014. An overview of clinical and commercial impact of drug delivery systems. Journal of Controlled Release 190:15-28. DOI: 10.1016/j.jconrel. 2014.03.053.

API (American Petroleum Institute). 2021. What are alternatives to make fracking less impactful? Retrieved August 17, 2021, from https://www.api.org/oil-and-natural-gas/energy-primers/hydraulic-fracturing/what-are-alternatives-to-make-fracking-less-impactful.

Ardo, S., D. Fernandez Rivas, M. A. Modestino, V. Schulze Greiving, F. F. Abdi, E. Alarcon Llado, V. Artero, K. Ayers, C. Battaglia, J.-P. Becker, D. Bederak, A. Berger, F. Buda, E. Chinello, B. Dam, V. Di Palma, T. Edvinsson, K. Fujii, H. Gardeniers, H. Geerlings, S. M. H. Hashemi, S. Haussener, F. Houle, J. Huskens, B. D. James, K. Konrad, A. Kudo, P. P. Kunturu, D. Lohse, B. Mei, E. L. Miller, G. F. Moore, J. Muller, K. L. Orchard, T. E. Rosser, F. H. Saadi, J.-W. Schüttauf, B. Seger, S. W. Sheehan, W. A. Smith, J. Spurgeon, M. H. Tang, R. van de Krol, P. C. K. Vesborg, and P. Westerik. 2018. Pathways to electrochemical solar-hydrogen technologies. Energy & Environmental Science 11(10):2768-2783. DOI: 10.1039/c7ee03639f.

Arent, D. J., S. M. Bragg-Sitton, D. C. Miller, T. J. Tarka, J. A. Engel-Cox, R. D. Boardman, P. C. Balash, M. F. Ruth, J. Cox, and D. J. Garfield. 2021. Multi-input, multi-output hybrid energy systems. Joule 5(1):47-58. DOI: 10.1016/j.joule.2020.11.004.

Aresco. 2021. Microwave fracking: The new hydraulic fracturing? Retrieved August 17, 2021, from https://www.arescotx.com/microwave-technology-the-new-fracking/.

Argus. 2020. EU ETS price €32-65/t under 2030 scenarios. Retrieved August 17, 2021, from https://www.argusmedia.com/en/news/2142240-eu-ets-price-3265t-under-2030scenarios.

Arnold, F. H. 2018. Directed evolution: Bringing new chemistry to life. Angewandte Chemie International Edition English 57(16):4143-4148. DOI: 10.1002/anie.201708408.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

ASEE (American Society for Engineering Education). 2020. Engineering & engineering technology by the numbers 2019. Retrieved August 17, 2021, from https://ira.asee.org/wp-content/uploads/2021/02/Engineering-by-the-Numbers-FINAL-2021.pdf.

Atkinson, R. D. 2018. Industry funding of university research: Which states lead? Retreived 2021, from https://itif.org/publications/2018/01/08/industry-funding-university-research-which-states-lead.

Auta, H. S., C. U. Emenike, and S. H. Fauziah. 2017. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International 102:165-176. DOI: 10.1016/j.envint.2017.02.013.

AWEA (American Wind Energy Association). 2020. Wind powers America annual report 2019. Retrieved August 18, 2021, from https://www.powermag.com/wp-content/uploads/2020/04/awea_wpa_executivesummary2019.pdf.

Bachler, J., P. H. Handle, N. Giovambattista, and T. Loerting. 2019. Glass polymorphism and liquid-liquid phase transition in aqueous solutions: Experiments and computer simulations. Physical Chemistry Chemical Physics 21(42):23238-23268. DOI: 10.1039/c9cp02953b.

Balicka, I. 2020. The food-energy-water nexus: A complex balance. Retrieved July 2020, from https://www.aiche.org/chenected/2020/07/food-energy-water-nexus-complex-balance.

Banholzer, W. F., and M. E. Jones. 2013. Chemical engineers must focus on practical solutions. AIChE Journal 59(8):2708-2720. DOI: 10.1002/aic.14172.

Barabino, G. A. 2021. Engineering solutions to COVID-19 and racial and ethnic health disparities. Journal of Racial and Ethnic Health Disparities 8(2):277-279. DOI: 10.1007/s40615-020-00953-x.

Bartel, M. A., J. R. Weinstein, and D. V. Schaffer. 2012. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Therapy 19(6):694-700. DOI: 10.1038/gt.2012.20.

Bates, F. S., P. Brant, G. W. Coates, J. Lipson, C. Osuji, J. de Pablo, S. Rowan, R. Segalman, and K. I. Winey. 2017. Frontiers in polymer science and engineering. NSF Workshop: Frontiers in Polymer Science and Engineering. Arlington, VA. http://nsfpolymerworkshop2016.cems.umn.edu.

Batzner, S., T. Smidt, L. Sun, J. Mailoa, M. Kornbluth, N. Molinari, and B. Kozinsky. 2021. SE(3)equivariant graph neural networks for data-efficient and accurate interatomic potentials. arXiv. DOI: 10.21203/rs.3.rs-244137/v1.

Bausch, M., C. Schultheiss, and J. B. Sieck. 2019. Recommendations for comparison of productivity between fed-batch and perfusion processes. Biotechnology Journal 14(2). DOI: 10.1002/biot.201700721.

Bazant, M. Z., and J. W. M. Bush. 2021. A guideline to limit indoor airborne transmission of COVID-19. Proceedings of the National Academy of Sciences 118(17). DOI: 10.1073/pnas.2018995118.

Beveridge, G. S. G., and R. S. Schechter. 1975. Optimization: Theory and practice (chemical engineering). New York: McGraw-Hill Education.

Bezek, L. B., J. Pan, C. Harb, C. E. Zawaski, B. Molla, J. R. Kubalak, L. C. Marr, and C. B. Williams. 2021. Additively manufactured respirators: Quantifying particle transmission and identifying system-level challenges for improving filtration efficiency. Journal of Manufacturing Systems 60:762-773. DOI: 10.1016/j.jmsy.2021.01.002.

Bhamla, M. S., B. Benson, C. Chai, G. Katsikis, A. Johri, and M. Prakash. 2017. Hand-powered ultralow-cost paper centrifuge. Nature Biomedical Engineering 1(1). DOI: 10.1038/s41551-016-0009.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Bhatia, S. N., and D. E. Ingber. 2014. Microfluidic organs-on-chips. Nature Biotechnology 32(8):760-772. DOI: 10.1038/nbt.2989.

Bhojwani, S., K. Topolski, R. Mukherjee, D. Sengupta, and M. M. El-Halwagi. 2019. Technology review and data analysis for cost assessment of water treatment systems. Science of the Total Environment 651:2749-2761. DOI: 10.1016/j.scitotenv.2018.09.363.

Biddy, M. J. 2016. Chemicals from biomass: A market assessment of bioproducts with near-term potential. Retrieved August 18, 2021, from https://www.energy.gov/sites/prod/files/2016/11/f34/biddy_bioenergy_2016.pdf.

Bielenberg, J., and M. Bryner. 2018. Realize the potential of process intensification. Retrieved March 2018, from https://www.aiche.org/sites/default/files/cep/20180341.pdf.

Biggs, E. M., E. Bruce, B. Boruff, J. M. A. Duncan, J. Horsley, N. Pauli, K. McNeill, A. Neef, F. Van Ogtrop, J. Curnow, B. Haworth, S. Duce, and Y. Imanari. 2015. Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environmental Science & Policy 54:389-397. DOI: 10.1016/j.envsci.2015.08.002.

Billiet, S., and S. R. Trenor. 2020. 100th Anniversary of macromolecular science viewpoint: Needs for plastics packaging circularity. ACS Macro Letters 9(9):1376-1390. DOI: 10.1021/acsmacrolett.0c00437.

(BIO) Biotechnology Innovation Organization. 2011. New study shows the rate of drug approvals lower than previously reported. Retrieved August 17, 2021, from https://archive.bio.org/media/press-release/new-study-shows-rate-drug-approvals-lower-previously-reported.

Bioeconomy Capital. 2018. Bioeconomy dashboard: Economic metrics. Retrieved August 17, 2021, from http://www.bioeconomycapital.com/bioeconomy-dashboard.

Bird, R. B., Warren E. Stewart, and Edwin N. Lightfoot. 1960. Transport phenomena. New York: John Wiley and Sons, Inc.

Bischoff, K. B. 2015. Pharmacokinetics and cancer chemotherapy. Journal of Pharmacokinetics and Biopharmaceutics 1(6):465-480. DOI: 10.1007/bf01059786.

Bjorneholm, O., M. H. Hansen, A. Hodgson, L. M. Liu, D. T. Limmer, A. Michaelides, P. Pedevilla, J. Rossmeisl, H. Shen, G. Tocci, E. Tyrode, M. M. Walz, J. Werner, and H. Bluhm. 2016. Water at interfaces. Chemical Reviews 116(13):7698-7726. DOI: 10.1021/acs.chemrev.6b00045.

BloombergNEF. 2020. Battery pack prices cited below $100/kWh for the first time in 2020, while market average sits at $137/kWh. Retrieved August 17, 2021, from https://about.bnef.com/blog/battery-pack-prices-cited-below-100-kwh-for-the-first-time-in-2020-while-market-average-sits-at-137-kwh.

BLS (U.S. Bureau of Labor Statistics). 2021. Occupational outlook handbook—Chemical engineers. Retrieved August 16, 2021, from https://www.bls.gov/ooh/architecture-and-engineering/chemical-engineers.htm#tab-1.

Boerner, L. K. 2019. Industrial ammonia production emits more CO2 than any other chemical-making reaction. Chemists want to change that. Chemical & Engineering News 97(24). https://cen.acs.org/environment/green-chemistry/Industrial-ammonia-production-emits-CO2/97/i24.

Boger, T., S. Roy, A. K. Heibel, and O. Borchers. 2003. A monolith loop reactor as an attractive alternative to slurry reactors. Catalysis Today 79(2):441-451. DOI: 10.1016/s0920-5861(03)00058-0.

Bozell, J. J., and G. R. Petersen. 2010. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chemistry 12(4). DOI: 10.1039/b922014c.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

BP. 2019. BP statistical review of world energy, 68th edition. Retrieved August 17, 2021, from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf.

Brady, J. R., and J. C. Love. 2021. Alternative hosts as the missing link for equitable therapeutic protein production. Nature Biotechnology 39(4):404-407. DOI: 10.1038/s41587-021-00884-w.

Branger, C., W. Meouche, and A. Margaillan. 2013. Recent advances on ion-imprinted polymers. Reactive and Functional Polymers 73(6):859-875. DOI: 10.1016/j.reactfunctpolym. 2013.03.021.

Broekhuis, R. R., R. M. Machado, and A. F. Nordquist. 2001. The ejector-driven monolith loop reactor—Experiments and modeling. Catalysis Today 69:87-93. DOI: 10.1016/s0920-5861(01)00358-3.

Brown, K. W., B. Gessesse, L. J. Butler, and D. L. MacIntosh. 2017. Potential effectiveness of point-of-use filtration to address risks to drinking water in the United States. Environmental Health Insights 11. DOI: 10.1177/1178630217746997.

Brown, S. A., B. P. Kovatchev, D. Raghinaru, J. W. Lum, B. A. Buckingham, Y. C. Kudva, L. M. Laffel, C. J. Levy, J. E. Pinsker, R. P. Wadwa, E. Dassau, F. J. Doyle, S. M. Anderson, M. M. Church, V. Dadlani, L. Ekhlaspour, G. P. Forlenza, E. Isganaitis, D. W. Lam, C. Kollman, and R. W. Beck. 2019. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. New England Journal of Medicine 381(18):1707-1717. DOI: 10.1056/NEJMoa1907863.

Brown, T. D., K. A. Whitehead, and S. Mitragotri. 2020. Materials for oral delivery of proteins and peptides. Nature Reviews Materials 5(2):127-148. DOI: 10.1038/s41578-019-0156-6.

Buchner, G. A., K. J. Stepputat, A. W. Zimmermann, and R. Schomäcker. 2019. Specifying technology readiness levels for the chemical industry. Industrial & Engineering Chemistry Research 58(17):6957-6969. DOI: 10.1021/acs.iecr.8b05693.

Bui, M., C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hackett, J. P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevor, G. C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scott, N. Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox, and N. Mac Dowell. 2018. Carbon capture and storage (CCS): The way forward. Energy & Environmental Science 11(5):1062-1176. DOI: 10.1039/C7EE02342A.

Buntz, B. 2021. Pharma’s top 20 R&D spenders in 2020. Drug Discovery and Development. Retrieved 2021, from https://www.drugdiscoverytrends.com/pharmas-top-20-rd-spenders-in-2020/.

Buzby, J. C., Hodan F. Wells, and J. Hyman. 2014. The estimated amount, value, and calories of postharvest food losses at the retail and consumer levels in the United States. U.S. Department of Agriculture, Economic Research Service EIB-121.

Byrne, C., K. M. Zahra, S. Dhaliwal, D. C. Grinter, K. Roy, W. Q. Garzon, G. Held, G. Thornton, and A. S. Walton. 2021. A combined laboratory and synchrotron in-situ photoemission study of the rutile TiO2 (110)/water interface. Journal of Physics D: Applied Physics 54(19). DOI: 10.1088/1361-6463/abddfb.

C&EN (Chemical and Engineering News). 2021. U.S. top 50 chemical companies of 2021. Retrieved December 3, 2021, from https://cen.acs.org/sections/us-top-50.html.

Caballero, J. A., J. A. Labarta, N. Quirante, A. Carrero-Parreño, and I. E. Grossmann. 2020. Environmental and economic water management in shale gas extraction. Sustainability 12(4). DOI: 10.3390/su12041686.

Cao, L., I. K. M. Yu, Y. Liu, X. Ruan, D. C. W. Tsang, A. J. Hunt, Y. S. Ok, H. Song, and S. Zhang. 2018a. Lignin valorization for the production of renewable chemicals: State-of-

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

the-art review and future prospects. Bioresource Technology 269:465-475. DOI: 10.1016/j.biortech.2018.08.065.

Cao, Q., M. Huang, T. H. Kuehn, L. Shen, W.-Q. Tao, J. Cao, and D. Y. H. Pui. 2018b. Urban-scale SALSCS, Part II: A Parametric Study of System Performance. Aerosol and Air Quality Research 18(11):2879-2894. DOI: 10.4209/aaqr.2018.06.0239.

Cao, Y., J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferova, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis, and A. Aspuru-Guzik. 2019. Quantum chemistry in the age of quantum computing. Chemical Review 119(19):10856-10915. DOI: 10.1021/acs.chemrev.8b00803.

Carayannis, E. G., and J. Alexander. 2004. Strategy, structure, and performance issues of precompetitive R&D consortia: Insights and lessons learned from SEMATECH. IEEE Transactions on Engineering Management 51(2):226-232. DOI: 10.1109/TEM. 2003.822459.

Carlson, R. 2016. Estimating the biotech sector’s contribution to the US economy. Nature Biotechnology 34(3):247-255. DOI: 10.1038/nbt.3491.

Carnahan, B., H. A. Luther, and J. O. Wilkes. 1969. Applied numerical methods. New York: Wiley.

Carter, P. J. 2011. Introduction to current and future protein therapeutics: A protein engineering perspective. Experimental Cell Research 317(9):1261-1269. DOI: 10.1016/j.yexcr. 2011.02.013.

Catalanotti, S., V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise. 1975. The radiative cooling of selective surfaces. Solar Energy 17(2):83-89. DOI: 10.1016/0038-092X(75) 90062-6.

Caudill, C. L., J. L. Perry, S. Tian, J. C. Luft, and J. M. DeSimone. 2018. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. Journal of Controlled Release 284:122-132. DOI: 10.1016/j.jconrel.2018.05. 042.

Cech, E. 2013. The (mis)framing of social justice: Why ideologies of depoliticization and meritocracy hinder engineers’ ability to think about social injustices. In Engineering education for social justice. Dordrecht, Netherlands: Springer. DOI 10.1007/978-94-007-6350-0_4.

Cech, E. A., and M. Blair-Loy. 2010. Perceiving glass ceilings? Meritocratic versus structural explanations of gender inequality among women in science and technology. Social Problems 57(3):371-397. DOI: 10.1525/sp.2010.57.3.371.

Celik, G., R. M. Kennedy, R. A. Hackler, M. Ferrandon, A. Tennakoon, S. Patnaik, A. M. LaPointe, S. C. Ammal, A. Heyden, F. A. Perras, M. Pruski, S. L. Scott, K. R. Poeppelmeier, A. D. Sadow, and M. Delferro. 2019. Upcycling single-use polyethylene into high-quality liquid products. ACS Central Science 5(11):1795-1803. DOI: 10.1021/acscentsci.9b00722.

Centi, G., G. Iaquaniello, and S. Perathoner. 2019. Chemical engineering role in the use of renewable energy and alternative carbon sources in chemical production. BMC Chemical Engineering 1. DOI: 10.1186/s42480-019-0006-8.

Cescon, M., S. Deshpande, R. Nimri, I. F. J. Doyle, and E. Dassau. 2021. Using iterative learning for insulin dosage optimization in multiple-daily-injections therapy for people with type 1 diabetes. IEEE Transactions on Biomedical Engineering 68(2):482-491. DOI: 10.1109/TBME.2020.3005622.

Chae, D., H. Lim, S. So, S. Son, S. Ju, W. Kim, J. Rho, and H. Lee. 2021. Spectrally selective nanoparticle mixture coating for passive daytime radiative cooling. ACS Applied Materials & Interfaces 13(18):21119-21126. DOI: 10.1021/acsami.0c20311.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Chanoca, A., L. de Vries, and W. Boerjan. 2019. Lignin engineering in forest trees. Frontiers in Plant Science 10:912. DOI: 10.3389/fpls.2019.00912.

Chen, F., and R. A. Dixon. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology 25(7):759-761. DOI: 10.1038/nbt1316.

Chen, D., L. Yin, H. Wang, and P. He. 2014. Pyrolysis technologies for municipal solid waste: A review. Waste Management 34(12):2466-2486. DOI: 10.1016/j.wasman.2014.08.004.

Cherkasov, A., E. N. Muratov, D. Fourches, A. Varnek, I. I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y. C. Martin, R. Todeschini, V. Consonni, V. E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha. 2014. QSAR Modeling: Where have you been? Where are you going to? Journal of Medicinal Chemistry 57(12):4977-5010. DOI: 10.1021/jm4004285.

Chetty, R., N. Hendren, F. LIn, J. Majerovitz, and B. Scuderi. 2016. Childhood environment and gender gaps in adulthood. Cambridge, MA: National Bureau of Economic Research. DOI: 10.3386/w21936.

Chetty, R., N. Hendren, M. R. Jones, and S. R. Porter. 2019. Race and economic opportunity in the United States: An intergenerational perspective. The Quarterly Journal of Economics 135(2):711-783. DOI: 10.1093/qje/qjz042.

CHiMaD (Center for Hierarchical Materials Design). 2021. Polymer property predictor and database. Retrieved August 27, 2021, from https://pppdb.uchicago.edu.

Chmiela, S., H. E. Sauceda, K.-R. Müller, and A. Tkatchenko. 2018. Towards exact molecular dynamics simulations with machine-learned force fields. Nature Communications 9, Article 3887. DOI: 10.1038/s41467-018-06169-2.

Chowdhury, S., and S. S. Fong. 2020. Leveraging genome-scale metabolic models for human health applications. Current Opinion in Biotechnology 66:267-276. DOI: 10.1016/j.copbio.2020.08.017.

Christopherson, D. A., W. C. Yao, M. Lu, R. Vijayakumar, and A. R. Sedaghat. 2020. High-efficiency particulate air filters in the era of COVID-19: Function and efficacy. Otolaryngology–Head and Neck Surgery 163(6):1153-1155. DOI: 10.1177/01945998 20941838.

Chung, M., G. Fortunato, and N. Radacsi. 2019. Wearable flexible sweat sensors for healthcare monitoring: A review. Journal of the Royal Society Interface 16(159). DOI: 10.1098/rsif.2019.0217.

CMS (Centers for Medicare & Medicaid Services). 2020. The National Health Expenditure Accounts (NHEA). Retrieved August 19, 2021, from https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/NationalHealthAccountsHistorical.

Cocchi, M., D. D. Angelis, L. Mazzeo, P. Nardozi, V. Piemonte, R. Tuffi, and S. Vecchio Ciprioti. 2020. Catalytic pyrolysis of a residual plastic waste using zeolites produced by coal fly ash. Catalysts 10(10). DOI: 10.3390/catal10101113.

Cohen, C. 1996. The early history of chemical engineering: A reassessment. British Journal for the History of Science 29(2):171-194. DOI: 10.1017/s000708740003421x.

Cohen, Y., and J. Glater. 2010. A tribute to Sidney Loeb—The pioneer of reverse osmosis desalination research. Desalination and Water Treatment 15:222-227. DOI: 10.5004/dwt.2010.1762.

Coley, C. W., W. H. Green, and K. F. Jensen. 2018. Machine learning in computer-aided synthesis planning. Accounts of Chemical Research 51(5):1281-1289. DOI: 10.1021/acs. accounts.8b00087.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Collias, D. I., A. M. Harris, V. Nagpal, I. W. Cottrell, and M. W. Schultheis. 2014. Biobased terephthalic acid technologies: A literature review. Industrial Biotechnology 10(2):91-105. DOI: 10.1089/ind.2014.0002.

Collias, D. I., J. E. Godlewski, and J. E. Velasquez. 2018. Method of making acrylic acid from hydroxypropionic acid. U.S. Patent No. 9,890,102. Washington, DC: U.S. Patent and Trademark Office.

Collias, D. I., M. I. James, and J.M. Jayman. 2021. Circular economy of polymers: Topics in recycling technologies. ACS Symposium Series 1391. DOI: 10.1021/bk-2021-1391.ch001.

Colman, R. J., and D. T. Rubin. 2014. Fecal microbiota transplantation as therapy for inflammatory bowel disease: A systematic review and meta-analysis. Journal of Crohn’s and Colitis 8(12):1569-1581. DOI: 10.1016/j.crohns.2014.08.006.

Colton, C. K., ed. 1991. Advances in chemical engineering. San Diego, CA: Academic Press.

Conn, R. W., M. M. Crow, C. M. Friend, and M. McNutt. July 21, 2021. The next 75 years of US science and innovation policy: An introduction. Issues in Science and Technology. https://issues.org/the-next-75-years-of-us-science-and-innovation-policy-an-introduction.

Coronell, D. G., T. H.-L. Hsiung, J. Howard Paul Withers, and A. J. Woytek. 1997. Process for nitrogen trifluoride synthesis. EP Patent No. 0787684B1. Munich, Germany: European Patent Office.

Correa-Baena, J. P., M. Saliba, T. Buonassisi, M. Gratzel, A. Abate, W. Tress, and A. Hagfeldt. 2017. Promises and challenges of perovskite solar cells. Science 358(6364):739-744. DOI: 10.1126/science.aam6323.

Cortes Garcia, G. E., J. van der Schaaf, and A. A. Kiss. 2017. A review on process intensification in HiGee distillation. Journal of Chemical Technology & Biotechnology 92(6):1136-1156. DOI: 10.1002/jctb.5206.

Coughanowr, D. R., and L. B. Koppel. 1965. Process systems analysis and control. New York: McGraw-Hill Book Company, Inc.

Creative Energy. 2007. European roadmap for process intensification. Retrieved August 17, 2021, from https://efce.info/efce_media/-p-531.pdf.

Crocker, J. C., M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz. 2000. Two-point microrheology of inhomogeneous soft materials. Physical Review Letters 85(4):888-891. DOI: 10.1103/PhysRevLett.85.888.

Crone, B. C., T. F. Speth, D. G. Wahman, S. J. Smith, G. Abulikemu, E. J. Kleiner, and J. G. Pressman. 2019. Occurrence of per- and polyfluoroalkyl substances (PFAS) in source water and their treatment in drinking water. Critical Reviews in Environmental Science and Technology 49(24):2359-2396. DOI: 10.1080/10643389.2019.1614848.

Cruz, A. C., A. L. Medel, A. C. Bianchi, V. Wong, and M. Danforth. 2021. Impact of flipped classroom model on high-workload and low-income students in upper-division computer science. Presented at ASEE Virtual Annual Conference.

Cui, S., Y. Wang, Y. Yang, F. M. Nave, and K. T. Harris. 2011. Connecting incoming freshmen with engineering through hands-on projects. American Journal of Engineering Education 2(2):31-42. DOI: 10.19030/ajee.v2i2.6636.

Cybulski, A., and J. A. Moulijn. 1994. Monoliths in heterogeneous catalysis. Catalysis Reviews 36(2):179-270. DOI: 10.1080/01614949408013925.

Cywar, R., N. A. Rorrerm, C. A. Hoyt, G. T. Beckham, and E. Chen. 2021. Bio-based polymers with performance-advantaged properties. Nature Reviews Materials. In press. DOI: 10.1038/s41578-021-00363-3.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Daglar, H., and S. Keskin. 2020. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coordination Chemistry Reviews 422. DOI: 10.1016/j.ccr.2020.213470.

Dahlman, J. E., K. J. Kauffman, Y. Xing, T. E. Shaw, F. F. Mir, C. C. Dlott, R. Langer, D. G. Anderson, and E. T. Wang. 2017. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proceedings of the National Academy of Sciences 114(8). DOI: 10.1073/pnas.1620874114.

Daiko, T., H. Dernis, M. Dosso, P. Gkotsis, M. Squicciarini, and A. Vezzani. 2017. World corporate R&D investors: Industrial property strategies in the digital economy. A JRC and OECD Common Report. Luxembourg: Publications office of the European Union.

Dan, Y., Y. Zhao, X. Li, S. Li, M. Hu, and J. Hu. 2020. Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials. NPJ Computational Materials 6(1). DOI: 10.1038/s41524-020-00352-0.

Das, T., and H. Cabezas. 2018. Tools and concepts for environmental sustainability in the food-energy-water nexus: Chemical engineering perspective. Environmental Progress & Sustainable Energy 37(1):73-81. DOI: 10.1002/ep.12763.

Dassau, E., E. Renard, J. Place, A. Farret, M. J. Pelletier, J. Lee, L. M. Huyett, A. Chakrabarty, F. J. Doyle 3rd, and H. C. Zisser. 2017. Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control-based fully-automated artificial pancreas in patients with type 1 diabetes: A pilot study. Diabetes, Obesity and Metabolism 19(12):1698-1705. DOI: 10.1111/dom.12999.

Davis, R., L. Tao, E. C. D. Tan, M. J. Biddy, G. T. Beckham, C. Scarlata, J. Jacobson, K. Cafferty, J. Ross, J. Lukas, D. Knorr, and P. Schoen. 2013. Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: Dilute acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons. Golden, CO: National Renewable Energy Laboratory.

de Beer, M. P., H. L. van der Laan, M. A. Cole, R. J. Whelan, M. A. Burns, and T. F. Scott. 2019. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Science Advances 5(1). DOI: 10.1126/sciadv.aau8723.

de Pee, A., D. Pinner, O. Roelofsen, K. Somers, E. Speelman, and M. Witteveen. 2018. Decarbonization of industrial sectors: The next frontier. Amsterdam: McKinsey.

Debenedetti, P. G. 2003. Supercooled and glassy water. Journal of Physics: Condensed Matter 15(45):R1669-1726. DOI: 10.1088/0953-8984/15/45/r01.

Debenedetti, P. G., and M. L. Klein. 2017. Chemical physics of water. Proceedings of the National Academy of Sciences 114(51):13325-13326. DOI: 10.1073/pnas.1719350115.

Decante, G., J. B. Costa, J. Silva-Correia, M. N. Collins, R. L. Reis, and J. M. Oliveira. 2021. Engineering bioinks for 3D bioprinting. Biofabrication 13(3). DOI: 10.1088/1758-5090/abec2c.

Denn, M. M. 1991. The identity of our profession. In Advances in chemical engineering. C. K. Colton, ed. San Diego, CA: Academic Press.

Deri, M. A., P. Mills, and D. McGregor. 2018. Structure and evaluation of a flipped general chemistry course as a model for small and large gateway science courses at an urban public institution. Journal of College Science Teaching 47(3):68-77.

DHS (Department of Homeland Security). 2019. Chemical sector profile. Retrieved August 16, 2021, from https://www.cisa.gov/sites/default/files/publications/Chemical-Sector-Profile_Final%20508.pdf.

DiMasi, J. A., H. G. Grabowski, and R. W. Hansen. 2016. Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics 47:20-33. DOI: 10.1016/j.jhealeco.2016.01.012.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Dixon, K., and J. L. Wendt. 2021. Science motivation and achievement among minority urban high school students: An examination of the flipped classroom model. Journal of Science Education and Technology 30(5):642-657. DOI: 10.1007/s10956-021-09909-0.

Dobbelaere, M. R., P. P. Plehiers, R. Van de Vijver, C. V. Stevens, and K. M. Van Geem. 2021. Machine learning in chemical engineering: Strengths, weaknesses, opportunities, and threats. Engineering 7(9):1201-1211. DOI: 10.1016/j.eng.2021.03.019.

D’Odorico, P., K. F. Davis, L. Rosa, J. A. Carr, D. Chiarelli, J. Dell’Angelo, J. Gephart, G. K. MacDonald, D. A. Seekell, S. Suweis, and M. C. Rulli. 2018. The global food-energy-water nexus. Reviews of Geophysics 56(3):456-531. DOI: 10.1029/2017rg000591.

DOE (U.S. Department of Energy). 2014. The water-energy nexus: Challenges and opportunities. Retrieved August 16, 2021, from https://www.energy.gov/articles/water-energy-nexus-challenges-and-opportunities.

DOE. 2015. Revolution…now—The future arrives for five clean energy technologies. Update retrieved August 16, 2021, from https://www.energy.gov/sites/prod/files/2015/11/f27/Revolution-Now-11132015.pdf.

DOE. 2016. 2016 Billion-ton report—Advancing domestic resources for a thriving bioeconomy. Retrieved August 18, 2021, from https://www.energy.gov/sites/default/files/2016/12/f34/2016_billion_ton_report_12.2.16_0.pdf.

DOE. 2018a. Moving beyond drop-in replacements: Performance-advantaged biobased chemicals. Retrieved August 16, 2021, from https://www.energy.gov/sites/prod/files/2018/06/f53/Performance-Advantaged%20Biobased%20Chemicals%20Workshop%20Report.pdf.

DOE. 2018b. R&D Opportunities for natural gas technologies in building applications. Retrieved August 16, 2021, from https://www.energy.gov/sites/prod/files/2018/08/f55/bto-Natural-Gas-RD-Opportunities-082918.pdf.

DOE. 2018c. Accelerating breakthrough innovation in carbon capture, utilization, and storage. Retrieved 2021, https://www.energy.gov/fe/downloads/accelerating-breakthrough-innovation-carbon-capture-utilization-and-storage.

DOE. 2021a. Solar energy technologies office multi-year program plan. Retrieved August 16, 2021, from https://www.energy.gov/eere/solar/articles/solar-energy-technologies-office-multi-year-program-plan.

DOE. 2021b. Shale research & development. Retrieved August 16, 2021, from https://www.energy.gov/fe/science-innovation/oil-gas-research/shale-gas-rd.

DOE. 2021c. Nuclear reactor technologies. Retrieved August 16, 2021, from https://www.energy.gov/ne/nuclear-reactor-technologies.

Doyle, F. J., 3rd, L. M. Huyett, J. B. Lee, H. C. Zisser, and E. Dassau. 2014. Closed-loop artificial pancreas systems: Engineering the algorithms. Diabetes Care 37(5):1191-1197. DOI: 10.2337/dc13-2108.

Du Bois, W. E. B. 1939. The negro scientist. The American Scholar 8(3):309-320. http://www.jstor.org/stable/41204425.

Eberle, A., A. Bhatt, Y. Zhang, and G. Heath. 2017. Potential air pollutant emissions and permitting classifications for two biorefinery process designs in the United States. Environmental Science & Technology 51(11):5879-5888. DOI: 10.1021/acs.est.7b00229.

Edwards, D. A., D. Ausiello, J. Salzman, T. Devlin, R. Langer, B. J. Beddingfield, A. C. Fears, L. A. Doyle-Meyers, R. K. Redmann, S. Z. Killeen, N. J. Maness, and C. J. Roy. 2021. Exhaled aerosol increases with COVID-19 infection, age, and obesity. Proceedings of the National Academy of Sciences 118(8). DOI: 10.1073/pnas.2021830118.

Eggleton, C. D., T.-M. Tsai, and K. J. Stebe. 2001. Tip streaming from a drop in the presence of surfactants. Physical Review Letters 87(4). DOI: 10.1103/PhysRevLett.87.048302.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

EIA (U.S. Energy Information Administration). 2013. Few transportation fuels surpass the energy densities of gasoline and diesel. Retrieved July 18, 2021, from https://www.eia.gov/todayinenergy/detail.php?id=9991.

EIA. 2020a. U.S. fuel ethanol production capacity increased by 3% in 2019. Retrieved August 16, 2021, from https://www.eia.gov/todayinenergy/detail.php?id=45316.

EIA. 2020b. International energy outlook 2020. Retrieved August 16, 2021, from https://www.eia.gov/outlooks/ieo/.

EIA. 2020c. Biomass explained: Waste-to-energy (municipal solid waste). Retrieved August 16, 2021, from https://www.eia.gov/energyexplained/biomass/waste-to-energy.php.

EIA. 2020d. U.S. coal-fired electricity generation in 2019 falls to 42-year low. Retrieved August 16, 2021, from https://www.eia.gov/todayinenergy/detail.php?id=43675#.

EIA. 2021a. Global ethanol production by country or region. Retrieved August 16, 2021, from https://afdc.energy.gov/data/10331.

EIA. 2021b. Annual energy outlook 2021. U.S. Department of Energy, Washington, DC.

EIA. 2021c. How much shale (tight) oil is produced in the United States? Retrieved August 16, 2021, from https://www.eia.gov/tools/faqs/faq.php?id=847&t=6.

EIA. 2021d. Short-term energy outlook: Global liquid fuels. Retrieved August 9, 2021, from https://www.eia.gov/outlooks/steo/report/global_oil.php.

EIA. 2021e. Natural gas explained: Use of natural gas. Retrieved August 31, 2021, from https://www.eia.gov/energyexplained/natural-gas/use-of-natural-gas.php.

EIA. 2021f. Natural gas explained: Delivery and storage of natural gas. Retrieved August 31, 2021, from https://www.eia.gov/energyexplained/natural-gas/delivery-and-storage.php.

EIA. 2021g. Natural gas explained. Retrieved September 11, 2021, from https://www.eia.gov/energyexplained/natural-gas.

EIA. 2021h. Monthly energy review, August 2021. Washington, DC: Office of Energy Statistics, U.S. Department of Energy.

EIA. 2021i. Frequently asked questions: How much carbon dioxide is produced when different fuels are burned? Retrieved January 31, 2022 from https://www.eia.gov/tools/faqs/faq.php?id=73&t=11.

EIA. 2021j. Oil and petroleum products explained: Where our oil comes from. Retrieved August 16, 2021, from https://www.eia.gov/energyexplained/oil-and-petroleum-products/where-our-oil-comes-from.php.

EIA. 2021k. Oil and petroleum products explained: Use of oil. Retrieved August 16, 2021, from https://www.eia.gov/energyexplained/oil-and-petroleum-products/use-of-oil.php.

Elbashier, E., A. Mussa, M. Hafiz, and A. H. Hawari. 2021. Recovery of rare earth elements from waste streams using membrane processes: An overview. Hydrometallurgy 204. DOI: 10.1016/j.hydromet.2021.105706.

Elhacham, E., L. Ben-Uri, J. Grozovski, Y. M. Bar-On, and R. Milo. 2020. Global human-made mass exceeds all living biomass. Nature 588(7838):442-444. DOI: 10.1038/s41586-020-3010-5.

Elton, D. C., Z. Boukouvalas, M. D. Fuge, and P. W. Chung. 2019. Deep learning for molecular design—A review of the state of the art. Molecular Systems Design & Engineering 4(4):828-849. DOI: 10.1039/c9me00039a.

EMF (Ellen MacArthur Foundation). 2013a. Towards the circular economy, volume 2: Opportunities for the consumer goods sector. Cowes, United Kingdom. https://emf.thirdlight.com/link/coj8yt1jogq8-hkhkq2/@/preview/1?o.

EMF. 2013b. Towards the circular economy, volume 1: Economic and business rationale for an accelerated transition. Cowes, United Kingdom. https://emf.thirdlight.com/link/x8ay372a3r11-k6775n/@/preview/1?o.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

EMF. 2014. Towards the circular economy, volume 3: Accelerating the scale up across global supply chains. Cowes, United Kingdom. https://emf.thirdlight.com/link/t4gb0fs4knot-n8nz6f/@/preview/1?o.

EMF. 2016. The new plastics economy: Rethinking the future of plastics. Retrieved September 14, 2021, 2021, from https://emf.thirdlight.com/link/faarmdpz93ds-5vmvdf/@/preview/1?o.

EMF. 2017a. What is the circular economy? Retrieved August 17, 2021, from https://archive.ellenmacarthurfoundation.org/circular-economy/what-is-the-circular-economy.

EMF. 2017b. The circular economy in detail. Retrieved August 17, 2021, from https://archive.ellenmacarthurfoundation.org/explore/the-circular-economy-in-detail.

EMF. 2019. Circular economy diagram. Retrieved 2021, from https://ellenmacarthurfoundation.org/circular-economy-diagram.

EMF. 2021. Circular economy introduction. Retrieved August 17, 2021, from https://www.ellenmacarthurfoundation.org/circular-economy/concept.

EPA (U.S. Environmental Protection Agency). 2018. Indoor air quality—What are the trends in indoor air quality and their effects on human health? Retrieved August 16, 2021, from https://www.epa.gov/report-environment/indoor-air-quality#note1.

EPA. 2020. Health, energy efficiency and climate change. Retrieved August 16, 2021, from https://www.epa.gov/indoor-air-quality-iaq/health-energy-efficiency-and-climate-change.

EPA. 2021a. Air pollution: Current and future challenges. Retrieved August 16, 2021, from https://www.epa.gov/clean-air-act-overview/air-pollution-current-and-future-challenges.

EPA. 2021b. The process of unconventional natural gas production. Retrieved September 11, 2021, 2021, from https://www.epa.gov/uog/process-unconventional-natural-gas-production.

Eris, O., D. Chachra, H. L. Chen, S. Sheppard, L. Ludlow, C. Rosca, T. Bailey, and G. Toye. 2010. Outcomes of a longitudinal administration of the persistence in engineering survey. Journal of Engineering Education 99(4):371-395. DOI: 10.1002/j.2168-9830.2010. tb01069.x.

Eun, C., and M. L. Berkowitz. 2011. Molecular dynamics simulation study of interaction between model rough hydrophobic surfaces. The Journal of Physical Chemistry A 115(23):6059-6067. DOI: 10.1021/jp110608p.

European Bioplastics. 2021. Bioplastic materials. Retrieved August 17, 2021, from https://www.european-bioplastics.org/bioplastics/materials.

Extance, A. 2020. IBM seeks to simplify robotic chemistry. Chemistry World. From https://www.chemistryworld.com/news/ibm-seeks-to-simplify-robotic-chemistry/4012359.article.

ExxonMobil. 2019. 2019 Outlook for energy: A perspective to 2040. Retrieved August 17, 2021, from https://corporate.exxonmobil.com/-/media/Global/Files/outlook-for-energy/2019-Outlook-for-Energy_v4.pdf.

Faller, C., M. Bracher, N. Dami, and R. Roguet. 2002. Predictive ability of reconstructed human epidermis equivalents for the assessment of skin irritation of cosmetics. Toxicology in Vitro 16(5):557-572. DOI: 10.1016/s0887-2333(02)00053-x.

FAO (Food and Agriculture Organization of the United Nations). 2020. Land use in agriculture by the numbers. Retrieved August 16, 2021, from http://www.fao.org/sustainability/news/detail/en/c/1274219.

FAO. 2021. Key facts and findings. Retrieved August 16, 2021, from http://www.fao.org/news/story/en/item/197623/icode.

Farrington, R. 2020. These states offer tuition-free community college. Forbes. https://www.forbes.com/sites/robertfarrington/2020/03/25/these-states-offer-tuition-free-community-college.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

FDA (U.S. Food and Drug Administration). 2021. Approved cellular and gene therapy products. Retrieved August 16, 2021, from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products.

Fenton, O. S., K. N. Olafson, P. S. Pillai, M. J. Mitchell, and R. Langer. 2018. Advances in biomaterials for drug delivery. Advanced Materials 30(29). DOI: 10.1002/adma.201 705328.

Finley, J. W., and J. N. Seiber. 2014. The nexus of food, energy, and water. Journal of Agricultural and Food Chemistry 62(27):6255-6262. DOI: 10.1021/jf501496r.

Flaga, C. T. 2006. The process of transition for community college transfer students. Community College Journal of Research and Practice 30(1):3-19. DOI: 10.1080/106689205 00248845.

Flavell-While, C. 2011. Arthur D Little—Dedicated to industrial progress. The Chemical Engineer. https://www.thechemicalengineer.com/features/cewctw-arthur-d-little-dedicated-to-industrial-progress.

Florey, H. W. 1949. Antibiotics: A survey of penicillin, streptomycin, and other antimicrobial substances from fungi, actinomycetes, bacteria, and plants. New York: Oxford University Press.

Ford, M. A. 1982. Computer control of equipment and data handling. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 307(1500):491-501. DOI: https://www.jstor.org/stable/37280.

Fortune. 1985. A database of 50 years of FORTUNE’s list of America’s largest corporations. Retrieved August 16, 2021, from https://archive.fortune.com/magazines/fortune/fortune500_archive/full/1985/.

Fortune. 2020. Fortune 500. Retrieved August 17, 2021, from https://fortune.com/fortune500/2020.

Franklin Associates. 2018. Life cycle impacts for postconsumer recycled resins: PET, HDPE, and PP. Retrieved August 17, 2021, from https://plasticsrecycling.org/images/library/2018-APR-LCI-report.pdf.

Franks, R. G. E. 1972. Modeling and simulation in chemical engineering. Hoboken, New Jersey: Wiley-Interscience.

Frenkel, D., and A. J. C. Ladd. 1984. New Monte Carlo method to compute the free energy of arbitrary solids. Application to the FCC and HCP phases of hard spheres. The Journal of Chemical Physics 81(7):3188-3193. DOI: 10.1063/1.448024.

Frueh, S. 2020. Engineering a response to the COVID-19 pandemic. National Academies of Sciences, Engineering, and Medicine. https://www.nationalacademies.org/news/2020/09/engineering-a-response-to-the-covid-19-pandemic.

Funk, C., and K. Parker. 2018. Women in STEM see more gender disparities at work, especially those in computer jobs, majority-male workplaces. In women and men in STEM often at odds over workplace equity. Washington, DC: Pew Research Center.

Furter, W., F., ed. 1983. History of chemical engineering: Advances in chemistry, series 190. Washington, DC: American Chemical Society.

Fuss, S., W. F. Lamb, M. W. Callaghan, J. Hilaire, F. Creutzig, T. Amann, T. Beringer, W. De Oliveira Garcia, J. Hartmann, T. Khanna, G. Luderer, G. F. Nemet, J. Rogelj, P. Smith, J. V. Vicente, J. Wilcox, M. Del Mar Zamora Dominguez, and J. C. Minx. 2018. Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters 13(6). DOI: 10.1088/1748-9326/aabf9f.

Gagliano, E., M. Sgroi, P. P. Falciglia, F. G. A. Vagliasindi, and P. Roccaro. 2020. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

chain length, effect of organic matter and challenges in adsorbent regeneration. Water Research 171. DOI: 10.1016/j.watres.2019.115381.

Galán, G., M. Martín, and I. E. Grossmann. 2021. Integrated renewable production of sorbitol and xylitol from switchgrass. Industrial & Engineering Chemistry Research 60(15):5558-5573. DOI: 10.1021/acs.iecr.1c00397.

Gallo, P., K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty, E. Lascaris, T. Loerting, A. Z. Panagiotopoulos, J. Russo, J. A. Sellberg, H. E. Stanley, H. Tanaka, C. Vega, L. Xu, and L. G. Pettersson. 2016. Water: A tale of two liquids. Chemical Reviews 116(13):7463-7500. DOI: 10.1021/acs.chemrev.5b00750.

Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M. A. Sutton. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320(5878):889-892. DOI: 10.1126/science.1136674.

Gao, Z., S. Rohani, J. Gong, and J. Wang. 2017. Recent developments in the crystallization process: Toward the pharmaceutical industry. Engineering 3(3):343-353. DOI: 10.1016/J.ENG.2017.03.022.

Gao, W., H. Ota, D. Kiriya, K. Takei, and A. Javey. 2019. Flexible electronics toward wearable sensing. Accounts of Chemical Research 52(3):523-533. DOI: 10.1021/acs.accounts. 8b00500.

Garcia, D. J., and F. You. 2016. The water-energy-food nexus and process systems engineering: A new focus. Computers & Chemical Engineering 91:49-67. DOI: 10.1016/j.comp chemeng.2016.03.003.

Gargini, P., F. Balestra, and Y. Hayashi. 2020. The international roadmap for devices and systems (IRDS). IEEE Electron Devices Society Newsletter 27(3).

Garnier, G. 2014. Grand challenges in chemical engineering. Frontiers in Chemistry 2, Article 17. DOI: 10.3389/fchem.2014.00017.

Gartner. 2020. Gartner says worldwide PC shipments grew 2.3% in 4Q19 and 0.6% for the year. Gartner Newsroom. Press release https://www.gartner.com/en/newsroom/press-releases/2020-01-13-gartner-says-worldwide-pc-shipments-grew-2-point-3-percent-in-4q19-and-point-6-percent-for-the-year.

Gaynes, R. 2017. The discovery of penicillin—New insights after more than 75 years of clinical use. Emerging Infectious Diseases 23(5):849-853. DOI: 10.3201/eid2305.161556.

Geoscience News and Information. 2021. Hydraulic fracturing fluids—Composition and additives. Retrieved August 17, 2021, from https://geology.com/energy/hydraulic-fracturing-fluids.

Gerber, C., R. Vaikmäe, W. Aeschbach, A. Babre, W. Jiang, M. Leuenberger, Z.-T. Lu, R. Mokrik, P. Müller, V. Raidla, T. Saks, H. N. Waber, T. Weissbach, J. C. Zappala, and R. Purtschert. 2017. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochimica et Cosmochimica Acta 205:187-210. DOI: 10.1016/j.gca.2017.01.033.

Geyer, R. 2021. Plastic: Too much of a good thing? Presented at Wallace Stegner Center 26th Annual Symposium—The Plastics Paradox: Societal Boon or Environmental Bane?. Salt Lake City, UT.

Geyer, R., J. R. Jambeck, and K. L. Law. 2017. Production, use, and fate of all plastics ever made. Science Advances 3(7). DOI: 10.1126/sciadv.1700782.

Ghaemmaghami, A. M., M. J. Hancock, H. Harrington, H. Kaji, and A. Khademhosseini. 2012. Biomimetic tissues on a chip for drug discovery. Drug Discovery Today 17:173-181. DOI: 10.1016/j.drudis.2011.10.029.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Ghosal, S. 2005. Electron spectroscopy of aqueous solution interfaces reveals surface enhancement of halides. Science 307(5709):563-566. DOI: 10.1126/science.1106525.

Glasser, W. G. 2019. About making lignin great again—Some lessons from the past. Frontiers in Chemistry 7, Article 565. DOI: 10.3389/fchem.2019.00565.

Glotzer, S. C., and M. J. Solomon. 2007. Anisotropy of building blocks and their assembly into complex structures. Nature Materials 6(8):557-562. DOI: 10.1038/nmat1949.

Godlewski, J. E., J. Villalobos, D. I. Collias, J. E. and Velasquez. 2014. Process for production of acrylic acid or its derivatives from hydroxypropionic acid or its derivatives. U.S. Patent No. 8,884,050. Washington, DC: U.S. Patent and Trademark Office.

Gong, K., Y. Cheng, L. L. Daemen, and C. E. White. 2019. In situ quasi-elastic neutron scattering study on the water dynamics and reaction mechanisms in alkali-activated slags. Physical Chemistry Chemical Physics 21(20):10277-10292. DOI: 10.1039/c9cp00889f.

Gonzalez-Portillo, L. F., K. Albrecht, and C. K. Ho. 2021. Techno-economic optimization of CSP plants with free-falling particle receivers. Entropy 23(1). DOI: 10.3390/e23010076.

Goto, Y., T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada, and K. Domen. 2018. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2(3):509-520. DOI: 10.1016/j.joule.2017.12.009.

Gove, J. M., J. L. Whitney, M. A. McManus, J. Lecky, F. C. Carvalho, J. M. Lynch, J. Li, P. Neubauer, K. A. Smith, J. E. Phipps, D. R. Kobayashi, K. B. Balagso, E. A. Contreras, M. E. Manuel, M. A. Merrifield, J. J. Polovina, G. P. Asner, J. A. Maynard, and G. J. Williams. 2019. Prey-size plastics are invading larval fish nurseries. Proceedings of the National Academy of Sciences 116(48):24143-24149. DOI: 10.1073/pnas.1907496116.

Goyal, H., A. Mehdad, R. F. Lobo, G. D. Stefanidis, and D. G. Vlachos. 2019. Scaleup of a single-mode microwave reactor. Industrial & Engineering Chemistry Research 59(6):2516-2523. DOI: 10.1021/acs.iecr.9b04491.

Grand View Research. 2021. Artificial intelligence market size, share & trends analysis report by solution, by technology (deep learning, machine learning, natural language processing, machine vision), by end use, by region, and segment forecasts, 2021-2028. Retrieved 2021, from https://www.researchandmarkets.com/reports/4375395/global-artificial-intelligence-market-size-share.

Grätzel, M., and J. Milić. 2019. The advent of molecular photovoltaics and hybrid perovskite solar cells. Substantia 3(2):27-43. DOI: 10.13128/Substantia-697.

Green, D. W., and M. Z. Southard, eds. 2019. Perry’s chemical engineers’ handbook. New York: McGraw Hill Education.

Greenstein, K. E., N. V. Myung, G. F. Parkin, and D. M. Cwiertny. 2019. Performance comparison of hematite (α-Fe2O3)-polymer composite and core-shell nanofibers as point-of-use filtration platforms for metal sequestration. Water Research 148:492-503. DOI: 10.1016/j.watres.2018.10.048.

Gumpertz, M., R. Durodoye, E. Griffith, and A. Wilson. 2017. Retention and promotion of women and underrepresented minority faculty in science and engineering at four large land grant institutions. PLoS One 12(11). DOI: 10.1371/journal.pone.0187285.

Gupta, A. 2018. Introduction to deep learning: Part 1. CEP Magazine. From https://www.aiche.org/resources/publications/cep/2018/june/introduction-deep-learning-part-1.

Gutowski, T. G., S. Sahni, J. M. Allwood, M. F. Ashby, and E. Worrell. 2013. The energy required to produce materials: Constraints on energy-intensity improvements, parameters of demand. Philosophical Transactions of the Royal Society A 371(1986):20120003. DOI: 10.1098/rsta.2012.0003.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Haegel, N. M., H. Atwater, Jr., T. Barnes, C. Breyer, A. Burrell, Y. M. Chiang, S. De Wolf, B. Dimmler, D. Feldman, S. Glunz, J. C. Goldschmidt, D. Hochschild, R. Inzunza, I. Kaizuka, B. Kroposki, S. Kurtz, S. Leu, R. Margolis, K. Matsubara, A. Metz, W. K. Metzger, M. Morjaria, S. Niki, S. Nowak, I. M. Peters, S. Philipps, T. Reindl, A. Richter, D. Rose, K. Sakurai, R. Schlatmann, M. Shikano, W. Sinke, R. Sinton, B. J. Stanbery, M. Topic, W. Tumas, Y. Ueda, J. van de Lagemaat, P. Verlinden, M. Vetter, E. Warren, M. Werner, M. Yamaguchi, and A. W. Bett. 2019. Terawatt-scale photovoltaics: Transform global energy. Science 364(6443):836-838. DOI: 10.1126/science.aaw1845.

Hafner, J., C. Wolverton, and G. Ceder. 2006. Toward computational materials design: The impact of density functional theory on materials research. MRS Bulletin 31(9):659-668. DOI: 10.1557/mrs2006.174.

Hamilton, S. R., R. C. Davidson, N. Sethuraman, J. H. Nett, Y. Jiang, S. Rios, P. Bobrowicz, T. A. Stadheim, H. Li, B.-K. Choi, D. Hopkins, H. Wischnewski, J. Roser, T. Mitchell, R. R. Strawbridge, J. Hoopes, S. Wildt, and T. U. Gerngross. 2006. Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313(5792):1441-1443. DOI: 10.1126/science.1130256.

Han, K., C. W. Shields Iv, and O. D. Velev. 2018. Engineering of self-propelling microbots and microdevices powered by magnetic and electric fields. Advanced Functional Materials 28(25). DOI: 10.1002/adfm.201705953.

Handle, P. H., T. Loerting, and F. Sciortino. 2017. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man’s land. Proceedings of the National Academy of Sciences 114(51):13336-13344. DOI: 10.1073/pnas.1700103114.

Hanson, M. 2021. Average cost of college & tuition. Retreived 2021, from https://educationdata.org/average-cost-of-college.

Hao, Y., W. Li, X. Zhou, F. Yang, and Z. Qian. 2017. Microneedles-based transdermal drug delivery systems: A review. Journal of Biomedical Nanotechnology 13(12):1581-1597. DOI: 10.1166/jbn.2017.2474.

Hardin, B. E., H. J. Snaith, and M. D. McGehee. 2012. The renaissance of dye-sensitized solar cells. Nature Photonics 6(3):162-169. DOI: 10.1038/nphoton.2012.22.

Harimoto, T., and T. Danino. 2019. Engineering bacteria for cancer therapy. Emerging Topics in Life Sciences 3(5):623-629. DOI: 10.1042/etls20190096.

Harmsen, G. J. 2007. Reactive distillation: The front-runner of industrial process intensification. Chemical Engineering and Processing: Process Intensification 46(9):774-780. DOI: 10.1016/j.cep.2007.06.005.

Hart, J., R. M. Machado, H. Withers Jr., S. Lo, E. Cialkowski, K. Jambunathan. 2015. Electrolytic apparatus, system and method for the safe production of nitrogen trifluoride. U.S. Patent No. 8945367. Washington, DC: U.S. Patent and Trademark Office.

Hasanbeigi, A., and C. Springer. 2019. Deep decarbonization roadmap for the cement and concrete industries in California. San Fransisco, CA: Global Efficiency Intelligence. https://www.climateworks.org/wp-content/uploads/2019/09/Decarbonization-Roadmap-CA-Cement-Final.pdf.

Häuβler, M., M. Eck, D. Rothauer, and S. Mecking. 2021. Closed-loop recycling of polyethylene-like materials. Nature 590(7846):423-427. DOI: 10.1038/s41586-020-03149-9.

Hautier, G., A. Jain, and S. P. Ong. 2012. From the computer to the laboratory: Materials discovery and design using first-principles calculations. Journal of Materials Science 47(21):7317-7340. DOI: 10.1007/s10853-012-6424-0.

Haywood, J. 2016. Chapter 27—Atmospheric aerosols and their role in climate change. In Climate Change (Second Edition). T. M. Letcher, ed. Boston: Elsevier.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Heinken, A., G. Acharya, D. A. Ravcheev, J. Hertel, M. Nyga, O. E. Okpala, M. Hogan, S. Magnúsdóttir, F. Martinelli, G. Preciat, J. N. Edirisinghe, C. S. Henry, R. M. T. Fleming, and I. Thiele. 2020. AGORA2: Large scale reconstruction of the microbiome highlights wide-spread drug-metabolising capacities. bioRxiv. DOI: 10.1101/2020.11.09.375451.

Helgeson, M. E. 2016. Colloidal behavior of nanoemulsions: Interactions, structure, and rheology. Current Opinion in Colloid & Interface Science 25:39-50. DOI: 10.1016/j.cocis. 2016.06.006.

Heney, P. 2020. Global R&D investments unabated in spending growth. Global funding forecast. Cleveland, OH: R&D World. From https://www.rdworldonline.com/global-rd-investments-unabated-in-spending-growth.

Hepburn, C., E. Adlen, J. Beddington, E. A. Carter, S. Fuss, N. Mac Dowell, J. C. Minx, P. Smith, and C. K. Williams. 2019. The technological and economic prospects for CO2 utilization and removal. Nature 575(7781):87-97. DOI: 10.1038/s41586-019-1681-6.

Higman, C., and M. van der Burgt. 2008. Gasification. Oxford, UK: Gulf Professional Publishing.

Himmelblau, D. M., and K. B. Bischoff. 1968. Process analysis and simulation: Deterministic systems. New York: John Wiley & Sons, Inc.

Hoit, M., and M. Ohland. 1998. The impact of a discipline-based introduction to engineering course on improving retention. Journal of Engineering Education 87(1):79-85. DOI: 10.1002/j.2168-9830.1998.tb00325.x.

Holt, J. K., H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin. 2006. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776):1034-1037. DOI: 10.1126/science.1126298.

Hoornweg, D., P. Bhada-Tata, and C. Kennedy. 2013. Environment: Waste production must peak this century. Nature 502(7473):615-617. DOI: 10.1038/502615a.

Hori, Y. 2008. Electrochemical CO2 Reduction on metal electrodes. In Modern aspects of electrochemistry. C. G., Vayenas, R. E. White, and M. E. Gamboa-Aldeco, eds. New York: Springer.

Hougen, O. A., and K. M. Watson. 1943. Chemical process principles. Part I: Material and energy balances. New York: John Wiley and Sons, Inc.

Hougen, O. A., and K. M. Watson. 1947a. Chemical process principles. Part III: Kinetics and catalysis. New York: John Wiley and Sons, Inc.

Hougen, O. A., and K. M. Watson. 1947b. Chemical process principles. Part II: Thermodynamics. New York: John Wiley and Sons, Inc.

Hsieh, C.-T., M.-J. Lee, and H.-m. Lin. 2006. Multiphase equilibria for mixtures containing acetic acid, water, propylene glycol monomethyl ether, and propylene glycol methyl ether acetate. Industrial & Engineering Chemistry Research 45(6):2123-2130. DOI: 10.1021/ie051245t.

Hua, L., R. Zangi, and B. J. Berne. 2009. Hydrophobic interactions and dewetting between plates with hydrophobic and hydrophilic domains. The Journal of Physical Chemistry C 113(13):5244-5253. DOI: 10.1021/jp8088758.

Hubbs, C. D., C. Li, N. V. Sahinidis, I. E. Grossmann, and J. M. Wassick. 2020. A deep reinforcement learning approach for chemical production scheduling. Computers & Chemical Engineering 141. DOI: 10.1016/j.compchemeng.2020.106982.

Hussain, A., Y. D. Chaniago, A. Riaz, and M. Lee. 2019. Process design alternatives for producing ultra-high-purity electronic-grade propylene glycol monomethyl ether acetate. Industrial & Engineering Chemistry Research 58(6):2246-2257. DOI: 10.1021/acs.iecr.8b04052.

Hwang, I. Y., H. L. Lee, J. G. Huang, Y. Y. Lim, W. S. Yew, Y. S. Lee, and M. W. Chang. 2018. Engineering microbes for targeted strikes against human pathogens. Cellular and Molecular Life Sciences 75(15):2719-2733. DOI: 10.1007/s00018-018-2827-7.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Hydrogen Council. 2019. Hydrogen decarbonization pathways. Retrieved August 17, 2021, from https://hydrogencouncil.com/en/hydrogen-decarbonization-pathways.

IChemE (Institution of Chemical Engineers). 2015. Ten ways chemical engineers can save the world from climate change #COP21. Retrieved January 18, 2021, from https://ichemeblog.org/2015/12/21/ten-ways-chemical-engineers-can-save-the-world-from-climate-change-cop21.

IEA (International Energy Agency). 2012. Technology roadmap—High-efficiency, low-emissions coal-fired power generation. Retrieved August 18, 2021, from https://www.iea.org/reports/technology-roadmap-high-efficiency-low-emissions-coal-fired-power-generation.

IEA. 2019. The future of hydrogen. Retrieved August 16, 2021, from https://www.iea.org/reports/the-future-of-hydrogen.

IEA. 2020a. Global EV outlook 2020. Retrieved August 16, 2021, from https://www.iea.org/reports/global-ev-outlook-2020.

IEA. 2020b. Bio-based chemicals—A 2020 update. Retrieved August 16, 2021, from https://www.ieabioenergy.com/blog/publications/new-publication-bio-based-chemicals-a-2020-update.

IEA. 2020c. Coal-fired power. https://prod.iea.org/reports/coal-fired-power.

IEA. 2020d. Energy technology perspectives 2020. Retrieved August 16, 2021, from https://www.iea.org/reports/energy-technology-perspectives-2020.

IEA. 2020e. Global hydrogen demand by sector in the Sustainable Development Scenario, 2019-2070. Retrieved August 16, 2021, from https://www.iea.org/data-and-statistics/charts/global-hydrogen-demand-by-sector-in-the-sustainable-development-scenario-2019-2070.

IEA. 2021a. Transport. Retrieved August 16, 2021, from https://www.iea.org/topics/transport.

IEA. 2021b. Net zero by 2050: A roadmap for the global energy sector. Retrieved August 16, 2021, from https://www.iea.org/reports/net-zero-by-2050.

IEA. 2021c. Coal Information: Overview. Retrieved August 9, 2021, from https://www.iea.org/reports/coal-information-overview.

IEA. 2021d. Natural gas information: Overview. Retrieved August 9, 2021, from https://www.iea.org/reports/natural-gas-information-overview.

IEA. 2021e. World energy balances: Overview. Retrieved August 16, 2021, from https://www.iea.org/reports/world-energy-balances-overview.

IEA, ICCA, and DECHEMA (International Council of Chemical Associations, and German Society for Chemical Engineering and Biotechnology). 2013. Technology roadmap: Energy and GHG Reductions in the chemical industry via catalytic processes. https://iea.blob.core.windows.net/assets/d0f7ff3a-0612-422d-ad7d-a682091cb500/TechnologyRoadmapEnergyandGHGReductionsintheChemicalIndustryviaCatalyticProcesses.pdf.

IndustryARC. 2021. Protein therapeutics market—Forecast (2021–2026). Retrieved August 17, 2021, from https://www.industryarc.com/Report/16207/protein-therapeutics-market.html.

IRENA (International Renewable Energy Agency). 2018. Hydrogen from renewable power technology outlook for the energy transition. Retrieved August 18, 2021, from https://www.irena.org/publications/2018/sep/hydrogen-from-renewable-power.

IRENA. 2020. Innovation outlook: Ocean energy technologies. Retrieved August 18, 2021, from https://www.irena.org/publications/2020/Dec/Innovation-Outlook-Ocean-Energy-Technologies.

IRENA. 2021. World energy transitions outlook: 1.5°C pathway. Retrieved August 16, 2021, from https://irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Irwin, D. A., and P. J. Klenow. 1996. High-tech R&D subsidies estimating the effects of Sematech. Journal of International Economics 40(3):323-344. DOI: 10.1016/0022-1996(95)01408-X.

ISO (International Standards Organization). 2006. Environmental management—Life cycle assessment—Principles and framework. https://www.iso.org/standard/37456.html.

Iulianelli, A., S. Liguori, J. Wilcox, and A. Basile. 2016. Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review. Catalysis Reviews 58(1):1-35. DOI: 10.1080/01614940.2015.1099882.

Iyare, P. U., S. K. Ouki, and T. Bond. 2020. Microplastics removal in wastewater treatment plants: A critical review. Environmental Science: Water Research & Technology 6(10):2664-2675. DOI: 10.1039/d0ew00397b.

Jagschies, G. 2020. Hierarchy of high impact improvements in biomanufacturing. Presented at Workshop on Innovations in Pharmaceutical Manufacturing, National Academies of Sciences, Engineering, and Medicine. Washington, DC.

Jain, A., S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson. 2013. The materials project: A materials genome approach to accelerating materials innovation. APL Materials 1. DOI: 10.1063/1.481 2323.

Jama-Rodzenska, A., A. Bialowiec, J. A. Koziel, and J. Sowinski. 2021. Waste to phosphorus: A transdisciplinary solution to P recovery from wastewater based on the TRIZ approach. Journal of Environmental Economics and Management 287. DOI: 10.1016/j. jenvman.2021.112235.

Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law. 2015. Plastic waste inputs from land into the ocean. Science 347(6223):768-771. DOI: 10.1126/science.1260352.

Janes, K. A., P. L. Chandran, R. M. Ford, M. J. Lazzara, J. A. Papin, S. M. Peirce, J. J. Saucerman, and D. A. Lauffenburger. 2017. An engineering design approach to systems biology. Integrative Biology 9(7):574-583. DOI: 10.1039/c7ib00014f.

Jayapal, K. P., K. F. Wlaschin, W. S. Hu, and M. G. S. Yap. 2007. Recombinant protein therapeutics from CHO cells—20 years and counting. Chemical Engineering Progress 103(10):40-47.

Jiang, H., A. A. Horwitz, C. Wright, A. Tai, E. A. Znameroski, Y. Tsegaye, H. Warbington, B. S. Bower, C. Alves, C. Co, K. Jonnalagadda, D. Platt, J. M. Walter, V. Natarajan, J. A. Ubersax, J. R. Cherry, and J. C. Love. 2019. Challenging the workhorse: Comparative analysis of eukaryotic micro-organisms for expressing monoclonal antibodies. Biotechnology and Bioengineering 116(6):1449-1462. DOI: 10.1002/bit.26951.

Johnson, E. F. 1967. Automatic process control. New York: McGraw Hill.

Jones, P. T., P. H. Dear, J. Foote, M. S. Neuberger, and G. Winter. 1986. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321(6069):522-525. DOI: 10.1038/321522a0.

Jungwirth, P., and D. J. Tobias. 2006. Specific ion effects at the air/water interface. Chemical Reviews 106(4):1259-1281. DOI: 10.1021/cr0403741.

Jyothi, R. K., T. Thenepalli, J. W. Ahn, P. K. Parhi, K. W. Chung, and J.-Y. Lee. 2020. Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste. Journal of Cleaner Production 267. DOI: 10.1016/j.jclepro.2020.122048.

Kamm, R. D., R. Bashir, N. Arora, R. D. Dar, M. U. Gillette, L. G. Griffith, M. L. Kemp, K. Kinlaw, M. Levin, A. C. Martin, T. C. McDevitt, R. M. Nerem, M. J. Powers, T. A. Saif, J. Sharpe, S. Takayama, S. Takeuchi, R. Weiss, K. Ye, H. G. Yevick, and M. H. Zaman.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

2018. Perspective: The promise of multi-cellular engineered living systems. APL Bioengineering 2(4). DOI: 10.1063/1.5038337.

Kang, F., D. Wang, Y. Pu, X.-F. Zeng, J.-X. Wang, and J.-F. Chen. 2018. Efficient preparation of monodisperse CaCO3 nanoparticles as overbased nanodetergents in a high-gravity rotating packed bed reactor. Powder Technology 325:405-411. DOI: 10.1016/j.powtec. 2017.11.036.

Kantor, E. D., C. D. Rehm, J. S. Haas, A. T. Chan, and E. L. Giovannucci. 2015. Trends in prescription drug use among adults in the United States From 1999-2012. The Journal of the American Medical Association 314(17):1818-1830. DOI: 10.1001/jama.2015.13766.

Kapoor, R. 2012. Collaborative innovation in the global semiconductor industry: A report on the findings from the 2010 Wharton-GSA semiconductor ecosystem survey. https://faculty.wharton.upenn.edu/wp-content/uploads/2012/05/SemiconductorEcosystemStudyFinal.pdf.

Kapteijn, F., and J. A. Moulijn. 2020. Structured catalysts and reactors—Perspectives for demanding applications. Catalysis Today 383:5-14. DOI: 10.1016/j.cattod.2020.09.026.

Karabasz, A., M. Bzowska, and K. Szczepanowicz. 2020. Biomedical applications of multifunctional polymeric nanocarriers: A review of current literature. International Journal of Nanomedicine 15:8673-8696. DOI: 10.2147/IJN.S231477.

Karsch-Mizrachi, I., Y. Nakamura, and G. Cochrane. 2012. The international nucleotide sequence database collaboration. Nucleic Acids Research 40(D1):D33-37. DOI: 10.1093/nar/gkr1006.

Kass, I., C. F. Reboul, and A. M. Buckle. 2011. Chapter 14—Computational methods for studying serpin conformational change and structural plasticity. In Methods in enzymology. J.C. Whisstock and P. I. Bird, eds. San Diego, CA: Academic Press.

Kastner, M. 2018. Philanthropy: A critical player in supporting scientific research. Science Philanthropy Alliance News. https://sciencephilanthropyalliance.org/philanthropy-a-critical-player-in-supporting-scientific-research-alliance-blog.

Katz, D. L. 1966. Computers in engineering design education. Ann Arbor, MI: University of Michigan.

Kaya, M. 2016. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Management 57:64-90. DOI: 10.1016/j.wasman.2016.08.004.

Kaz, D. M., R. McGorty, M. Mani, M. P. Brenner, and V. N. Manoharan. 2012. Physical ageing of the contact line on colloidal particles at liquid interfaces. Nature Materials 11(2):138-142. DOI: 10.1038/nmat3190.

Kaza, S., L. Yao, P. Bhada-Tata, and F. Van Woerden. 2018. What a waste 2.0—A global snapshot of solid waste management to 2050. Washington, DC: The World Bank.

Kekicheff, P., J. Iss, P. Fontaine, and A. Johner. 2018. Direct measurement of lateral correlations under controlled nanoconfinement. Physical Review Letters 120(11). DOI: 10.1103/PhysRevLett.120.118001.

Kellett, P. J., and D. I. Collias. 2016. Catalysts and processes for the production of aromatic compounds from lignin. U.S. Patent No. 9452422. Washington, DC: U.S. Patent and Trademark Office.

Kevrekidis, I. G., and G. Samaey. 2009. Equation-free multiscale computation: Algorithms and applications. Annual Review of Physical Chemistry 60(1):321-344. DOI: 10.1146/annurev.physchem.59.032607.093610.

Khalilpour, R., and I. A. Karimi. 2012. Evaluation of utilization alternatives for stranded natural gas. Energy 40(1):317-328. DOI: 10.1016/j.energy.2012.01.068.

Kim, A. J., P. L. Biancaniello, and J. C. Crocker. 2006. Engineering DNA-mediated colloidal crystallization. Langmuir 22(5):1991-2001. DOI: 10.1021/la0528955.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Kim, S. B., J. C. Palmer, and P. G. Debenedetti. 2015. A computational study of the effect of matrix structural order on water sorption by TRP-cage miniproteins. The Journal of Physical Chemistry B 119(5):1847-1856. DOI: 10.1021/jp510172w.

Kim, T. H., Y. Wang, C. R. Oliver, D. H. Thamm, L. Cooling, C. Paoletti, K. J. Smith, S. Nagrath, and D. F. Hayes. 2019. A temporary indwelling intravascular aphaeretic system for in vivo enrichment of circulating tumor cells. Nature Communications 10(1). DOI: 10.1038/s41467-019-09439-9.

Kinney, M. A., L. T. Vo, J. M. Frame, J. Barragan, A. J. Conway, S. Li, K. K. Wong, J. J. Collins, P. Cahan, T. E. North, D. A. Lauffenburger, and G. Q. Daley. 2019. A systems biology pipeline identifies regulatory networks for stem cell engineering. Nature Biotechnology 37(7):810-818. DOI: 10.1038/s41587-019-0159-2.

Kleiner, L. W., J. C. Wright, and Y. Wang. 2014. Evolution of implantable and insertable drug delivery systems. Journal of Controlled Release 181:1-10. DOI: 10.1016/j.jconrel.2014. 02.006.

Knight, D., J. Sullivan, and L. Carlson. 2003. Staying in engineering: Effects of a hands on, team based, first year projects course on student retention. Presented at American Society for Engineering Education Annual Conference, 2003. Nashville, TN.

Kofke, D. A. 1993. Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line. The Journal of Chemical Physics 98(5):4149-4162. DOI: 10.1063/1.465023.

König, A., W. Marquardt, A. Mitsos, J. Viell, and M. Dahmen. 2020. Integrated design of renewable fuels and their production processes: Recent advances and challenges. Current Opinion in Chemical Engineering 27:45-50. DOI: 10.1016/j.coche.2019.11.001.

Koros, W. J., and R. P. Lively. 2012. Water and beyond: Expanding the spectrum of large-scale energy efficient separation processes. American Institute of Chemical Engineers Journal 58(9):2624-2633. DOI: 10.1002/aic.13888.

Koros, W. J., and C. Zhang. 2017. Materials for next-generation molecularly selective synthetic membranes. Nature Materials 16(3):289-297. DOI: 10.1038/nmat4805.

Kriegler, E., J. P. Weyant, G. J. Blanford, V. Krey, L. Clarke, J. Edmonds, A. Fawcett, G. Luderer, K. Riahi, R. Richels, S. K. Rose, M. Tavoni, and D. P. van Vuuren. 2014. The role of technology for achieving climate policy objectives: Overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change 123(3):353-367. DOI: 10.1007/s10584-013-0953-7.

Kromdijk, J., K. Głowacka, L. Leonelli, S. T. Gabilly, M. Iwai, K. K. Niyogi, and S. P. Long. 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354(6314):857-861. DOI: 10.1126/science.aai8878.

Krouse, S., R. M. Machado, J. Hart, and J. Nehlsen. 2016. Electrolytic apparatus, system, and method for the efficient production of nitrogen trifluoride. U.S. Patent 9528191. Washington, DC: U.S. Patent and Trademark Office.

Kumar, A., H. Fukuda, T. A. Hatton, and J. H. Lienhard. 2019. Lithium recovery from oil and gas produced water: A need for a growing energy industry. ACS Energy Letters 4(6):1471-1474. DOI: 10.1021/acsenergylett.9b00779.

Lachance, J. C., D. Matteau, J. Brodeur, C. J. Lloyd, N. Mih, Z. A. King, T. F. Knight, A. M. Feist, J. M. Monk, B. O. Palsson, P. E. Jacques, and S. Rodrigue. 2021. Genome-scale metabolic modeling reveals key features of a minimal gene set. Molecular Systems Biology 17(7). DOI: 10.15252/msb.202010099.

Landsman, M. R., R. Sujanani, S. H. Brodfuehrer, C. M. Cooper, A. G. Darr, R. J. Davis, K. Kim, S. Kum, L. K. Nalley, S. M. Nomaan, C. P. Oden, A. Paspureddi, K. K. Reimund, L. S. Rowles 3rd, S. Yeo, D. F. Lawler, B. D. Freeman, and L. E. Katz. 2020. Water treatment:

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Are membranes the panacea? Annual Review of Chemical and Biomolecular Engineering 11:559-585. DOI: 10.1146/annurev-chembioeng-111919-091940.

Langhoff, S. R., ed. 1995. Quantum mechanical electronic structure calculations with chemical accuracy. Dordrecht, Netherlands: Springer.

Lapidus, L. 1962. Digital computation for chemical engineers. New York: McGraw-Hill.

Lapointe, M., J. M. Farner, L. M. Hernandez, and N. Tufenkji. 2020. Understanding and improving microplastic removal during water treatment: Impact of coagulation and flocculation. Environmental Science & Technology 54(14):8719-8727. DOI: 10.1021/acs.est.0c00712.

Laramy, C. R., M. N. O’Brien, and C. A. Mirkin. 2019. Crystal engineering with DNA. Nature Reviews Materials 4(3):201-224. DOI: 10.1038/s41578-019-0087-2.

Larson, R. G. 1999. The structure and rheology of complex fluids. New York: Oxford University Press.

Layman, J. M., D. I. Collias, H. Schonemann, and K. Williams. 2019a. Method for purifying reclaimed polypropylene. U.S. Patent No. 10450436. Washington, DC: U.S. Patent and Trademark Office.

Layman, J. M., D. I. Collias, H. Schonemann, and K. Williams. 2019b. Method for purifying reclaimed polymers. U.S. Patent No. 10465058. Washington, DC:U.S. Patent and Trademark Office.

Lazard. 2019. Lazard’s levelized cost of energy analysis—Version 13.0. Retrieved August 18, 2021, from https://www.lazard.com/media/451086/lazards-levelized-cost-of-energyversion-130-vf.pdf.

Leader, B., Q. J. Baca, and D. E. Golan. 2008. Protein therapeutics: A summary and pharmacological classification. Nature Reviews Drug Discovery 7(1):21-39. DOI: 10. 1038/nrd2399.

Lebreton, L., B. Slat, F. Ferrari, B. Sainte-Rose, J. Aitken, R. Marthouse, S. Hajbane, S. Cunsolo, A. Schwarz, A. Levivier, K. Noble, P. Debeljak, H. Maral, R. Schoeneich-Argent, R. Brambini, and J. Reisser. 2018. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports 8(1). DOI: 10.1038/s41598-018-22939-w.

Lenaburg, L., O. Aguirre, F. Goodchild, and J.-U. Kuhn. 2012. Expanding pathways: A summer bridge program for community college STEM students. Community College Journal of Research and Practice 36(3):153-168. DOI: 10.1080/10668921003609210.

Leslie, S.-J., A. Cimpian, M. Meyer, and E. Freeland. 2015. Expectations of brilliance underlie gender distributions across academic disciplines. Science 347(6219):262-265. DOI: 10.1126/science.1261375.

Lewis, N. S. 2016. Research opportunities to advance solar energy utilization. Science 351(6271). DOI: 10.1126/science.aad1920.

Li, Z., T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu. 2018. Scalable fabrication of perovskite solar cells. Nature Reviews Materials 3(4). DOI: 10.1038/natrevmats.2018.17.

Li, L., J. Zhong, Y. Yan, J. Zhang, J. Xu, J. S. Francisco, and X. C. Zeng. 2020a. Unraveling nucleation pathway in methane clathrate formation. Proceedings of the National Academy of Sciences 117(40):24701-24708. DOI: 10.1073/pnas.2011755117.

Li, Y., Y. Sun, Y. Qin, W. Zhang, L. Wang, M. Luo, H. Yang, and S. Guo. 2020b. Recent advances on water‐splitting electrocatalysis mediated by noble‐metal‐based nanostructured materials. Advanced Energy Materials 10(11). DOI: 10.1002/aenm.201903120.

Li, X., J. Peoples, P. Yao, and X. Ruan. 2021a. Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Applied Materials & Interfaces 13(18): 21733-21739. DOI: 10.1021/acsami.1c02368.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Li, C., D. L. Ramasamy, M. Sillanpää, and E. Repo. 2021b. Separation and concentration of rare earth elements from wastewater using electrodialysis technology. Separation and Purification Technology 254, Article 117442. DOI: 10.1016/j.seppur.2020.117442.

Liang, R., H. Xu, Y. Shen, S. Sun, J. Xu, S. Meng, Y. R. Shen, and C. Tian. 2019. Nucleation and dissociation of methane clathrate embryo at the gas-water interface. Proceedings of the National Academy of Sciences 116(47):23410-23415. DOI: 10.1073/pnas.1912592116.

Lin, H., S. Lee, L. Sun, M. Spellings, M. Engel, C. Glotzer Sharon, and A. Mirkin Chad. 2017. Clathrate colloidal crystals. Science 355(6328):931-935. DOI: 10.1126/science.aal3919.

Lipani, L., B. G. R. Dupont, F. Doungmene, F. Marken, R. M. Tyrrell, R. H. Guy, and A. Ilie. 2018. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nature Nanotechnology 13(6):504-511. DOI: 10.1038/s41565-018-0112-4.

Litzler, E., and J. Young. 2012. Understanding the risk of attrition in undergraduate engineering: Results from the project to assess climate in engineering. Journal of Engineering Education 101(2):319-345. DOI: 10.1002/j.2168-9830.2012.tb00052.x.

Logar, N., L. D. Anadon, and V. Narayanamurti. 2014. Semiconductor research corporation: A case study in cooperative innovation partnerships. Minerva 52(2):237-261. DOI: 10.1007/s11024-014-9253-2.

Low, L. A., C. Mummery, B. R. Berridge, C. P. Austin, and D. A. Tagle. 2021. Organs-on-chips: Into the next decade. Nature Reviews Drug Discovery 20(5):345-361. DOI: 10.1038/s41573-020-0079-3.

Lu, R.-M., Y.-C. Hwang, I. J. Liu, C.-C. Lee, H.-Z. Tsai, H.-J. Li, and H.-C. Wu. 2020. Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science 27(1). DOI: 10.1186/s12929-019-0592-z.

Luo, Y., P. R. Westmoreland, D. Alkaya, R.V. Alves da Cruz, I.E. Grossmann, W.D. Provine, D.L. Silverstein, R.J. Steininger II, J.B. Talbot, A. Varma, T. McCreight, K. Chin, D. Schuster. 2015. Chemical engineering academia-industry alignment: Expectations about new graduates. American Institute of Chemical Engineers. https://www.aiche.org/sites/default/files/docs/conferences/2015che_academicindustryalignmentstudy.compressed.pdf.

Luo, X., B. Guo, J. Luo, F. Deng, S. Zhang, S. Luo, and J. Crittenden. 2015. Recovery of lithium from wastewater using development of li ion-imprinted polymers. ACS Sustainable Chemistry & Engineering 3(3):460-467. DOI: 10.1021/sc500659h.

Luo, S., T. Li, X. Wang, M. Faizan, and L. Zhang. 2020. High‐throughput computational materials screening and discovery of optoelectronic semiconductors. WIREs Computational Molecular Science 11(1). DOI: 10.1002/wcms.1489.

Lutz, J.-F., M. Ouchi, D. R. Liu, and M. Sawamoto. 2013. Sequence-controlled polymers. Science 341(6146). DOI: 10.1126/science.1238149.

Lynd, L. R., J. H. Cushman, R. J. Nichols, and C. E. Wyman. 1991. Fuel ethanol from cellulosic biomass. Science 251(4999):1318-1323. DOI: 10.1126/science.251.4999.1318.

Ma, C. D., C. Wang, C. Acevedo-Velez, S. H. Gellman, and N. L. Abbott. 2015. Modulation of hydrophobic interactions by proximally immobilized ions. Nature 517(7534):347-350. DOI: 10.1038/nature14018.

Machado, R. M., and R. R. Broekhuis. 2003. Gas-liquid reaction process including ejector and monolith catalyst. U.S. Patent No. 6506361. Washington, DC: U.S. Patent and Trademark Office.

Machado, R. M., R. R. Broekhuis, A. F. Nordquist, B. P. Roy, and S. R. Carney. 2005. Applying monolith reactors for hydrogenations in the production of specialty chemicals—Process and economic considerations. Catalysis Today 105:305-317. DOI: 10.1016/j.cattod. 2005.06.036.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Macrotrends. 2021a. Exxon research and development expenses 2006-2021. Retrieved December 3, 2021, from https://www.macrotrends.net/stocks/charts/XOM/exxon/research-development-expenses.

Macrotrends. 2021b. Corteva research and development expenses 2018-2021. Retrieved December 3, 2021, from https://www.macrotrends.net/stocks/charts/CTVA/corteva/research-development-expenses.

Maeurer, A., M. Schlummer, and O. Beck. 2012. Method for recycling plastic materials and use thereof. U.S. Patent No. 8138232. Washington, DC: U.S. Patent and Trademark Office.

Magnusdottir, S., A. Heinken, L. Kutt, D. A. Ravcheev, E. Bauer, A. Noronha, K. Greenhalgh, C. Jager, J. Baginska, P. Wilmes, R. M. Fleming, and I. Thiele. 2017. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nature Biotechnology 35(1):81-89. DOI: 10.1038/nbt.3703.

Mahmood, A., M. Eqan, S. Pervez, H. A. Alghamdi, A. B. Tabinda, A. Yasar, K. Brindhadevi, and A. Pugazhendhi. 2020. COVID-19 and frequent use of hand sanitizers: Human health and environmental hazards by exposure pathways. Science of the Total Environment 742. DOI: 10.1016/j.scitotenv.2020.140561.

Makurvet, F. D. 2021. Biologics vs. small molecules: Drug costs and patient access. Medicine in Drug Discovery 9. DOI: 10.1016/j.medidd.2020.100075.

Malcom, S. M. 1996. Science and diversity: A compelling national interest. Science. 271(5257):1817-1819. http://www.jstor.org/stable/2889362.

Malcom, S., and L. Malcom-Piqueux. 2020. Institutional transformation: Supporting equity and excellence in STEMM. Change: The Magazine of Higher Learning 52(2):79-82. DOI: 10.1080/00091383.2020.1732792.

Mandal, J., Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang. 2018. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412):315-319. DOI: 10.1126/science.aat9513.

Marbach, S., D. S. Dean, and L. Bocquet. 2018. Transport and dispersion across wiggling nanopores. Nature Physics 14(11):1108-1113. DOI: 10.1038/s41567-018-0239-0.

Marchetti, M. C., J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha. 2013. Hydrodynamics of soft active matter. Reviews of Modern Physics 85(3):1143-1189. DOI: 10.1103/RevModPhys.85.1143.

Marshall, J. 2007. Who needs oil? New Scientist 195(2611):28-31. DOI: https://doi.org/10.1016/S0262-4079(07)61712-6.

Martin, A. B., M. Hartman, D. Lassman, A. Catlin, and T. National Health Expenditure Accounts. 2021. National health care spending in 2019: Steady growth for the fourth consecutive year. Health Affairs 40(1):14-24. DOI: 10.1377/hlthaff.2020.02022.

Masias, A., J. Marcicki, and W. A. Paxton. 2021. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Letters 6(2):621-630. DOI: 10.1021/acsenergylett.0c02584.

Matthews, A. A., P. L. R. Ee, and R. Ge. 2020. Developing inhaled protein therapeutics for lung diseases. Molecular Biomedicine 1. DOI: 10.1186/s43556-020-00014-z.

Matthews, C. B., C. Wright, A. Kuo, N. Colant, M. Westoby, and J. C. Love. 2017. Reexamining opportunities for therapeutic protein production in eukaryotic microorganisms. Biotechnology and Bioengineering 114(11):2432-2444. DOI: 10.1002/bit.26378.

Maxson, A., and J. Phillips. 2011. Research and development for future coal generation. Retrieved August 16, 2021, from https://www.powermag.com/research-and-development-for-future-coal-generation.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Maziarka, Ł., A. Pocha, J. Kaczmarczyk, K. Rataj, T. Danel, and M. Warchoł. 2020. Mol-CycleGAN: A generative model for molecular optimization. Journal of Cheminformatics 12(1). DOI: 10.1186/s13321-019-0404-1.

Mbow, C., C. Rosenzweig, L.G. Barioni, T.G. Benton, M. Herrero, M. Krishnapillai, E. Liwenga, P. Pradhan, M.G. Rivera-Ferre,, and F. N. T. T. Sapkota, and Y. Xu. 2019. Food security. In Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. P.R. Shukla, J. S., E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, eds. Geneva: Intergovernmental Panel on Climate Change.

McBride, J., and A. Chatzky. 2019. Is ‘Made in China 2025’ a threat to global trade? Retrieved September 13, 2021, from https://www.cfr.org/backgrounder/made-china-2025-threat-global-trade.

McCarty, N. S., and R. Ledesma-Amaro. 2019. Synthetic biology tools to engineer microbial communities for biotechnology. Trends in Biotechnology 37(2):181-197. DOI: 10.1016/j.tibtech.2018.11.002.

McCullough, M. B. A., and K. Williams. 2018. STEM researchers are needed to advance multilevel interventions for health disparities. Journal of Public Health Policy and Planning 2(1):71-73. https://www.alliedacademies.org/download.php?download=articles/stem-researchers-are-needed-to-advance-multilevel-interventions-for-health-disparities.pdf.

McGann, P. T., and C. Hoppe. 2017. The pressing need for point-of-care diagnostics for sickle cell disease: A review of current and future technologies. Blood Cells, Molecules and Diseases 67:104-113. DOI: 10.1016/j.bcmd.2017.08.010.

McGee, E. O. 2020. Interrogating structural racism in STEM higher education. Educational Researcher 49(9):633-644. DOI: 10.3102/0013189X20972718.

McKinsey Sustainability. 2016. The circular economy: Moving from theory to practice. Retrieved August 18, 2021, from https://www.mckinsey.com/business-functions/sustainability/our-insights/the-circular-economy-moving-from-theory-to-practice.

McMichael, S., P. Fernández-Ibáñez, and J. A. Byrne. 2021. A review of photoelectrocatalytic reactors for water and wastewater treatment. Water 13(9). DOI: 10.3390/w13091198.

McMurtrie, B. 2018. This is what Georgia Tech thinks college will look like in 2040. The Chronicle of Higher Education. https://www.chronicle.com/article/this-is-what-georgia-tech-thinks-college-will-look-like-in-2040.

McNeill, V. F. 2020. COVID-19 and the air we breathe. ACS Earth and Space Chemistry 4(5):674-675. DOI: 10.1021/acsearthspacechem.0c00093.

Mester, Z., and A. Z. Panagiotopoulos. 2015. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations. The Journal of Chemical Physics 143(4). DOI: 10.1063/1.4926840.

Miandad, R., M. A. Barakat, A. S. Aburiazaiza, M. Rehan, and A. S. Nizami. 2016. Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection 102:822-838. DOI: 10.1016/j.psep.2016.06.022.

Middleton, C. T., P. Marek, P. Cao, C. C. Chiu, S. Singh, A. M. Woys, J. J. de Pablo, D. P. Raleigh, and M. T. Zanni. 2012. Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor. Nature Chemistry 4(5):355-360. DOI: 10.1038/nchem.1293.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Milbrandt, A., T. Seiple, D. Heimiller, R. Skaggs, and A. Coleman. 2018. Wet waste-to-energy resources in the United States. Resources, Conservation and Recycling 137:32-47. DOI: 10.1016/j.resconrec.2018.05.023.

Miller, K. K., and H. S. Alper. 2019. Yarrowia lipolytica: More than an oleaginous workhorse. Applied Microbiology and Biotechnology 103:9251-9262. DOI: 10.1007/s00253-019-10200-x.

MIT (Massachusetts Institute of Technology). 2021. Department of chemical engineering—History. Retrieved August 17, 2021, from https://cheme.mit.edu/about/history.

Mitchell, M. J., M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas, and R. Langer. 2021. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery 20(2):101-124. DOI: 10.1038/s41573-020-0090-8.

Monroe, J., M. Barry, A. DeStefano, P. Aydogan Gokturk, S. Jiao, D. Robinson-Brown, T. Webber, E. J. Crumlin, S. Han, and M. S. Shell. 2020. Water structure and properties at hydrophilic and hydrophobic surfaces. Annual Review of Chemical and Biomolecular Engineering 11:523-557. DOI: 10.1146/annurev-chembioeng-120919-114657.

Montoya, J. H., L. C. Seitz, P. Chakthranont, A. Vojvodic, T. F. Jaramillo, and J. K. Nørskov. 2017. Materials for solar fuels and chemicals. Nature Materials 16(1):70-81. DOI: 10.1038/nmat4778.

Morishita, M., and N. A. Peppas. 2006. Is the oral route possible for peptide and protein drug delivery? Drug Discovery Today 11:905-910. DOI: 10.1016/j.drudis.2006.08.005.

Morrow, W. R., J. Marano, A. Hasanbeigi, E. Masanet, and J. Sathaye. 2015. Efficiency improvement and CO2 emission reduction potentials in the United States petroleum refining industry. Energy 93:95-105. DOI: 10.1016/j.energy.2015.08.097.

Moss, B., O. Babacan, A. Kafizas, and A. Hankin. 2021. A review of inorganic photoelectrode developments and reactor scale‐up challenges for solar hydrogen production. Advanced Energy Materials 11(13). DOI: 10.1002/aenm.202003286.

Moya, X., and N. D. Mathur. 2020. Caloric materials for cooling and heating. Science 370(6518):797-803. DOI: 10.1126/science.abb0973.

Mozur, P., and S. L. Myers. 2021. Xi’s gambit: China plans for a world without American technology. New York Times. https://www.nytimes.com/2021/03/10/business/china-us-tech-rivalry.html.

Mullin, R. 2021. Cell and gene therapy: The next frontier in pharmaceutical services. Chemical and Engineering News Digital Magazine 99(14). https://cen.acs.org/business/outsourcing/Cell-and-gene-therapy-The-next-frontier-in-pharmaceutical-services/99/i14.

Muralikrishna, I. V., and V. Manickam. 2017. Chapter 5—Life cycle assessment. In Environmental management. Oxford: Butterworth-Heinemann.

Murphy, S. V., and A. Atala. 2014. 3D bioprinting of tissues and organs. Nature Biotechnology 32(8):773-785. DOI: 10.1038/nbt.2958.

NAE (National Academy of Engineering). 2008. Changing the conversation: Messages for improving public understanding of engineering. Washington, DC: The National Academies Press. DOI: 10.17226/12187.

NAE. 2018. Understanding the educational and career pathways of engineers. Washington, DC: The National Academies Press. DOI: 10.17226/25284.

Naidu, G., S. Ryu, R. Thiruvenkatachari, Y. Choi, S. Jeong, and S. Vigneswaran. 2019. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environmental Pollution 247:1110-1124. DOI: 10.1016/j.envpol.2019.01.085.

Napoli, M. T., E. Sciaky, D. J. Arya, and N. Balos. 2017. PIPELINES: Fostering university-community college partnerships and STEM professional success for underrepresented populations. Presented at ASEE Annual Conference & Exposition. Columbus, Ohio.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

NASEM (National Academies of Sciences, Engineering, and Medicine). 2016. Barriers and opportunities for 2-year and 4-year STEM degrees: Systemic change to support students’ diverse pathways. Washington, DC: The National Academies Press. DOI: 10.17226/21739.

NASEM. 2017. Communities in action: Pathways to health equity. Washington, DC: The National Academies Press. DOI: 10.17226/24624.

NASEM. 2018. Sexual harassment of women: Climate, culture, and consequences in academic sciences, engineering, and medicine. Washington, DC: The National Academies Press. DOI: 10.17226/24994.

NASEM. 2019a. Gaseous carbon waste streams utilization: Status and research needs. Washington, DC: The National Academies Press. DOI: 10.17226/25232.

NASEM. 2019b. Negative emissions technologies and reliable sequestration: A research agenda. Washington, DC: The National Academies Press. DOI: 10.17226/25259.

NASEM. 2019c. Environmental engineering for the 21st century: Addressing grand challenges. Washington, DC: The National Academies Press. DOI: 10.17226/25121.

NASEM. 2019d. Frontiers of materials research: A decadal survey. Washington, DC: The National Academies Press. DOI: 10.17226/25244.

NASEM. 2019e. The science of effective mentorship in STEMM. Washington, DC: The National Academies Press. DOI: 10.17226/25568.

NASEM. 2019f. Deployment of deep decarbonization technologies: Proceedings of a workshop. Washington, DC: The National Academies Press. DOI: 10.17226/25656.

NASEM. 2020a. Promising practices for addressing the underrepresentation of women in science, engineering, and medicine: Opening doors. Washington, DC: The National Academies Press. DOI: 10.17226/25585.

NASEM. 2020b. The impacts of racism and bias on Black people pursuing careers in science, engineering, and medicine: Proceedings of a workshop. Washington, DC: The National Academies Press. DOI: 10.17226/25849.

NASEM. 2021a. Accelerating decarbonization of the U.S. energy system. Washington, DC: The National Academies Press. DOI: 10.17226/25932.

NASEM. 2021b. Innovations in pharmaceutical manufacturing on the horizon: Technical challenges, regulatory issues, and recommendations. Washington, DC: The National Academies Press. DOI: 10.17226/26009.

NASEM. 2021c. Diversity, equity, and inclusion in chemistry and chemical engineering: Proceedings of a workshop-in-brief. Washington, DC: The National Academies Press. DOI: 10.17226/26334.

Nature. 2019. Human Microbiome Project, part 2. Retrieved August 16, 2021, from https://www.nature.com/collections/fiabfcjbfj.

NCES (National Center for Education Statistics). 2021. Expenditures. Retrieved March 18, 2021, 2021, from https://nces.ed.gov/fastfacts/display.asp?id=75.

NCSES (National Center for Science and Engineering Statistics). 2018. Science and engineering degrees, by race and ethnicity of receipts: 2008-18. Alexandria, VA: NCSES. https://ncsesdata.nsf.gov/sere/2018/index.html.

NCSES. 2020. National patterns of R&D resources: 2017-18 data update. Alexandria, VA: NCSES. https://ncses.nsf.gov/pubs/nsf20307/#general-notes.

NCSES. 2021. Explore data. Retreived 2021, from https://www.nsf.gov/statistics/data.cfm.

NIMS (National Institute for Materials Science). 2021. Polymer database (polyinfo). Retrieved August 27, 2021, from https://polymer.nims.go.jp/en.

NIST (National Institute of Standards and Technology). 2021. Thermophysical properties of fluid systems. Retrieved August 27, 2021, from https://webbook.nist.gov/chemistry/fluid.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

NOAA (National Oceanic and Atmospheric Administration). 2020. Climate change: Atmospheric carbon dioxide. Retrieved September 11, 2021, from https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide.

NOAA. 2021a. Deepwater Horizon. Retrieved August 16, 2021, from https://darrp.noaa.gov/oil-spills/deepwater-horizon.

NOAA. 2021b. A guide to plastic in the ocean. Retrieved August 16, 2021, from https://oceanservice.noaa.gov/hazards/marinedebris/plastics-in-the-ocean.html.

NREL (National Renewable Energy Laboratory). 2017. Concentrating solar power gen3 demonstration roadmap. Retrieved August 16, 2021, from https://www.nrel.gov/docs/fy17osti/67464.pdf.

NREL. 2020. NREL’s top 2020 wind program accomplishments demonstrate a clear vision for wind energy advancement. Retrieved August 17, 2021, from https://www.nrel.gov/news/program/2020/2020-top-wind-accomplishments.html.

NRC (National Research Council). 1988. Frontiers in chemical engineering: Research needs and opportunities. Washington, DC: The National Academies Press. DOI: 10.17226/1095.

NRC. 2007. International benchmarking of U.S. chemical engineering research competitiveness. Washington, DC: The National Academies Press. DOI: 10.17226/11867.

NRC. 2012. Discipline-based education research: Understanding and improving learning in undergraduate science and engineering. Washington, DC: The National Academies Press. DOI: 10.17226/13362.

NRC. 2015. Cost, effectiveness, and deployment of fuel economy technologies for light-duty vehicles. Washington, DC: The National Academies Press. DOI: 10.17226/21744.

NSB (National Science Board). 2018. Science and engineering indicators NSB-2018-1. Alexandria, VA: National Science Foundation.

NSB. 2020. Merit review process fiscal year 2019 digest. Retrieved August 16, 2021, from https://www.nsf.gov/nsb/publications/2020/merit_review/FY-2019/nsb202038.pdf.

NSF (National Science Foundation). 2016. U.S. science and technology leadership increasingly challenged by advances in Asia. Retrieved 2021, from https://nsf.gov/news/news_summ.jsp?cntn_id=137394&org=NSF&from=news.

NSF. 2020. NSF & Congress. Retrieved August 16, 2021, from https://www.nsf.gov/about/congress/117/highlights/cu20.jsp.

Nelson, M. J., G. Nakhla, and J. Zhu. 2017. Fluidized-bed bioreactor applications for biological wastewater treatment: A review of research and developments. Engineering 3(3):330-342. DOI: 10.1016/j.Eng.2017.03.021.

Neri, G., P. M. Donaldson, and A. J. Cowan. 2017. The role of electrode-catalyst interactions in enabling efficient CO2 reduction with Mo(bpy)(CO)4 as revealed by vibrational sum-frequency generation spectroscopy. Journal of the American Chemical Society 139(39):13791-13797. DOI: 10.1021/jacs.7b06898.

Ng, A. 2016. What artificial intelligence can and can’t do right now. Harvard Business Review. https://hbr.org/2016/11/what-artificial-intelligence-can-and-cant-do-right-now.

Ng, W. L., C. K. Chua, and Y.-F. Shen. 2019. Print me an organ! Why we are not there yet. Progress in Polymer Science 97. DOI: 10.1016/j.progpolymsci.2019.101145.

Nielsen. 2015. The sustainability imperative—New insights on consumer expectations. Retrieved August 18, 2021, from https://www.nielsen.com/wp-content/uploads/sites/3/2019/04/Global20Sustainability20Report_October202015.pdf.

Nietzel, M. T. 2021. Georgia Tech’s online MS in computer science continues to thrive. Why that’s important for the future of MOOCs. Retrieved September 8, 2021, from https://www.forbes.com/sites/michaeltnietzel/2021/07/01/georgia-techs-online-ms-in-co

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

mputer-science-continues-to-thrive-what-that-could-mean-for-the-future-of-moocs/?sh=750c608aa277.

Nikolau, B. J., M. A. D. N. Perera, L. Brachova, and B. Shanks. 2008. Platform biochemicals for a biorenewable chemical industry. The Plant Journal 54(4):536-545. DOI: 10.1111/j.1365-313X.2008.03484.x.

Nimpuno, N., and C. Scruggs. 2011. Information on chemicals in electronic products: A study of needs, gaps, obstacles and solutions to provide and access information on chemicals in electronic products. Copenhagen: Nordic Council of Ministers.

Nisbet, E. G., M. R. Manning, E. J. Dlugokencky, R. E. Fisher, D. Lowry, S. E. Michel, C. L. Myhre, S. M. Platt, G. Allen, P. Bousquet, R. Brownlow, M. Cain, J. L. France, O. Hermansen, R. Hossaini, A. E. Jones, I. Levin, A. C. Manning, G. Myhre, J. A. Pyle, B. H. Vaughn, N. J. Warwick, and J. W. C. White. 2019. Very strong atmospheric methane growth in the 4 years 2014–2017: Implications for the Paris Agreement. Global Biogeochemical Cycles 33(3):318-342. DOI: 10.1029/2018gb006009.

Nitopi, S., E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Norskov, T. F. Jaramillo, and I. Chorkendorff. 2019. Progress and perspectives of electrochemical CO2 Reduction on copper in aqueous electrolyte. Chemical Reviews 119(12):7610-7672. DOI: 10.1021/acs.chemrev.8b00705.

Nnodu, O., H. Isa, M. Nwegbu, C. Ohiaeri, S. Adegoke, R. Chianumba, N. Ugwu, B. Brown, J. Olaniyi, E. Okocha, J. Lawson, A. A. Hassan, I. Diaku-Akinwumi, A. Madu, O. Ezenwosu, Y. Tanko, U. Kangiwa, A. Girei, Y. Israel-Aina, A. Ladu, P. Egbuzu, U. Abjah, A. Okolo, N. Akbulut-Jeradi, M. Fernandez, F. B. Piel, and A. Adekile. 2019. HemoTypeSC, a low-cost point-of-care testing device for sickle cell disease: Promises and challenges. Blood Cells, Molecules and Diseases 78:22-28. DOI: 10.1016/j.bcmd. 2019.01.007.

Noé, F., A. Tkatchenko, K. R. Müller, and C. Clementi. 2020. Machine learning for molecular simulation. Annual Review of Physical Chemistry 71:361-390. DOI: 10.1146/annurev-physchem-042018-052331.

Nordquist, A. F., F. C. Wilhelm, F. J. Waller, and R. M. Machado. 2002. Hydrogenation with monolith reactor under conditions of immiscible liquid phases. U.S. Patent No. 6479704. Washington, DC: U.S. Patent and Trademark Office.

Nuss, P. 2015. Book review: Life cycle assessment handbook: A guide for environmentally sustainable products. M. A. Curran, ed. Hoboken, NJ: PB - John Wiley & Sons, Inc., and Salem, MA: Scrivener Publishing LLC.

O’Brien, E. J., J. M. Monk, and B. O. Palsson. 2015. Using genome-scale models to predict biological capabilities. Cell 161(5):971-987. DOI: 10.1016/j.cell.2015.05.019.

Ochedi, F. O., D. Liu, J. Yu, A. Hussain, and Y. Liu. 2020. Photocatalytic, electrocatalytic and photoelectrocatalytic conversion of carbon dioxide: A review. Environmental Chemistry Letters 19(2):941-967. DOI: 10.1007/s10311-020-01131-5.

OECD (Organisation for Economic Co-operation and Development). 2012. OECD environmental outlook to 2050. OECD Publishing. DOI: 10.1787/9789264122246-en.

Ogden, J., L. Fulton, and D. Sperling. 2016. Making the transition to light-duty electric-drive vehicles in the U.S.: Costs in perspective to 2035. Davis: University of California, Davis. https://trid.trb.org/view/1441689.

Ogunnaike, B. A. 2019. 110th anniversary: Process and systems engineering perspectives on personalized medicine and the design of effective treatment of diseases. Industrial & Engineering Chemistry Research 58(44):20357-20369. DOI: 10.1021/acs.iecr.9b04228.

Ohio History Central. 2021. Standard oil company. Retrieved August 17, 2021, from https://ohiohistorycentral.org/w/Standard_Oil_Company.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Olivetti, E. A., J. M. Cole, E. Kim, O. Kononova, G. Ceder, T. Y.-J. Han, and A. M. Hiszpanski. 2020. Data-driven materials research enabled by natural language processing and information extraction. Applied Physics Reviews 7(4). DOI: 10.1063/5.0021106.

Olson, J., Y. Cao, J. Romero, P. Johnson, P.-L. Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan, M. Wasielewski, and A. Aspuru-Guzik. 2016. Quantum information and computation for chemistry, report of an NSF workshop. arXiv. DOI: 1706.05413.

Oluwole, E. O., T. A. Adeyemo, G. E. Osanyin, O. O. Odukoya, P. J. Kanki, and B. B. Afolabi. 2020. Feasibility and acceptability of early infant screening for sickle cell disease in Lagos, Nigeria—A pilot study. PLoS One 15(12). DOI: 10.1371/journal.pone.0242861.

O’Neill, J., and J.-F. Zheng. 2019. The holistic approach to materials and processing for new and scaled devices. Semiconductor Digest. https://www.semiconductor-digest.com/the-holistic-approach-to-materials-and-processing-for-new-and-scaled-devices.

O’Regan, B., and M. Grätzel. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737-740. DOI: 10.1038/353737a0.

Our World in Data. 2019. Number of deaths by risk factor, world, 2017. Retrieved August 17, 2021 from https://ourworldindata.org/grapher/number-of-deaths-by-risk-factor.

Our World in Data. 2021a. Emissions of air pollutants, United States, 1970 to 2016. Retrieved August 17, 2021, from https://ourworldindata.org/grapher/emissions-of-air-pollutants?country=~USA.

Our World in Data. 2021b. Food: Greenhouse gas emissions across the supply chain. Retrieved August 17, 2021, from https://ourworldindata.org/grapher/food-emissions-supply-chain?country=Beef+%28beef+herd%29~Cheese~Poultry+Meat~Milk~Eggs~Rice~Pig+Meat~Peas~Bananas~Wheat+%26+Rye~Fish+%28farmed%29~Lamb+%26+Mutton~Beef+%28dairy+herd%29~Shrimps+%28farmed%29~Tofu~Maize.

Owoseni, O., E. Nyankson, Y. Zhang, S. J. Adams, J. He, G. L. McPherson, A. Bose, R. B. Gupta, and V. T. John. 2014. Release of surfactant cargo from interfacially-active halloysite clay nanotubes for oil spill remediation. Langmuir 30(45):13533-13541. DOI: 10.1021/la 503687b.

Pacala, S., and R. Socolow. 2004. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305(5686):968-972. DOI: 10.1126/science. 1100103.

Padervand, M., E. Lichtfouse, D. Robert, and C. Wang. 2020. Removal of microplastics from the environment. A review. Environmental Chemistry Letters 18(3):807-828. DOI: 10.1007/s10311-020-00983-1.

Pal, S., and K. A. Fichthorn. 1999. Accelerated molecular dynamics of infrequent events. Chemical Engineering Journal 74(1):77-83. DOI: 10.1016/S1385-8947(99)00055-8.

Palmer, J. C., P. H. Poole, F. Sciortino, and P. G. Debenedetti. 2018. Advances in computational studies of the liquid-liquid transition in water and water-like models. Chemical Reviews 118(18):9129-9151. DOI: 10.1021/acs.chemrev.8b00228.

Panagiotopoulos, A. Z. 1987. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Molecular Physics 61(4):813-826. DOI: 10.1080/00268978700101491.

Panuwatsuk, W., and N. A. Da Silva. 2003. Application of a gratuitous induction system in Kluyveromyces lactis for the expression of intracellular and secreted proteins during fed-batch culture. Biotechnology and Bioengineering 81(6):712-718. DOI: 10.1002/bit. 10518.

Pappa, G., C. Boukouvalas, C. Giannaris, N. Ntaras, V. Zografos, K. Magoulas, A. Lygeros, and D. Tassios. 2001. The selective dissolution/precipitation technique for polymer recycling:

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

A pilot unit application. Resources, Conservation and Recycling 34(1):33-44. DOI: 10.1016/s0921-3449(01)00092-1.

Park, H., and K. Park. 1996. Biocompatibility issues of implantable drug delivery systems. Pharmaceutical Research 13(12):1770-1776. DOI: 10.1023/a:1016012520276.

Park, D. S., K. E. Joseph, M. Koehle, C. Krumm, L. Ren, J. N. Damen, M. H. Shete, H. S. Lee, X. Zuo, B. Lee, W. Fan, D. G. Vlachos, R. F. Lobo, M. Tsapatsis, and P. J. Dauenhauer. 2016. Tunable oleo-furan surfactants by acylation of renewable furans. ACS Central Science 2(11):820-824. DOI: 10.1021/acscentsci.6b00208.

Park, S.-Y., C.-H. Park, D.-H. Choi, J. K. Hong, and D.-Y. Lee. 2021. Bioprocess digital twins of mammalian cell culture for advanced biomanufacturing. Current Opinion in Chemical Engineering 33. DOI: 10.1016/j.coche.2021.100702.

Parsons, S., S. Raikova, and C. J. Chuck. 2020. The viability and desirability of replacing palm oil. Nature Sustainability 3(6):412-418. DOI: 10.1038/s41893-020-0487-8.

Paul, R., and R. Brennan. 2019. Discipline-based education research (DBER)—What is it, and why should engineering education research scholars be talking about it more? Presented at Canadian Engineering Education Association Conference. Ottawa, Ontario.

Peng, L., H. Dai, Y. Wu, Y. Peng, and X. Lu. 2018. A comprehensive review of the available media and approaches for phosphorus recovery from wastewater. Water, Air, & Soil Pollution 229(4). DOI: 10.1007/s11270-018-3706-4.

Pereao, O., C. Bode-Aluko, O. Fatoba, L. Petrik, and K. Laatikainen. 2018. Rare earth elements removal techniques from water/wastewater: A review. Desalination and Water Treatment 130:71-86. DOI: 10.5004/dwt.2018.22844.

Perlmutter, D. D. 1975. Introduction to chemical process control. Malabar, FL: Robert E. Krieger Publishing Company.

Peters, M., K. Timmerhaus, R. West, and M. Peters. 2002. Plant design and economics for chemical engineers. New York: McGraw-Hill Education.

Plastics Hall of Fame. 2021. Daniel Wayne Fox. Retrieved August 17, 2021, from https://www.plasticshof.org/members/daniel-wayne-fox.

PlasticsEurope. 2019. Plastics—The facts 2019: An analysis of European plastics production, demand and waste data. Retrieved 2021, from https://plasticseurope.org/wp-content/uploads/2021/10/2019-Plastics-the-facts.pdf.

Pozrikidis, C. 1997. Numerical studies of singularity formation at free surfaces and fluid interfaces in two-dimensional Stokes flow. Journal of Fluid Mechanics 331:145-167. DOI: 10.1017/S0022112096003813.

Prather, K. A., C. C. Wang, and R. T. Schooley. 2020. Reducing transmission of SARS-CoV-2. Science 368(6498):1422-1424. DOI: 10.1126/science.abc6197.

Prausnitz, M. R. 2017. Engineering microneedle patches for vaccination and drug delivery to skin. Annual Review of Chemical and Biomolecular Engineering 8:177-200. DOI: 10.1146/annurev-chembioeng-060816-101514.

Prausnitz, M. R., and R. Langer. 2008. Transdermal drug delivery. Nature Biotechnology 26(11):1261-1268. DOI: 10.1038/nbt.1504.

PRISMS Center (Center for Predictive Integrated Structural Materials Science). 2021. Materials common 2.0. Retrieved August 27, 2021, from https://materialscommons.org.

Ragauskas, A. J., G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen, M. F. Davis, B. H. Davison, R. A. Dixon, P. Gilna, M. Keller, P. Langan, A. K. Naskar, J. N. Saddler, T. J. Tschaplinski, G. A. Tuskan, and C. E. Wyman. 2014. Lignin valorization: Improving lignin processing in the biorefinery. Science 344(6185). DOI: 10.1126/science.1246843.

Rahimi, A., and J. M. García. 2017. Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry 1(6). DOI: 10.1038/s41570-017-0046.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Raišienė, A. G., V. Rapuano, and K. Varkulevičiūtė. 2021. Sensitive men and hardy women: How do millennials, xennials and gen X manage to work from home? Journal of Open Innovation: Technology, Market, and Complexity 7(2). DOI: 10.3390/joitmc7020106.

Ramadan, Q., and M. Zourob. 2020. Organ-on-a-chip engineering: Toward bridging the gap between lab and industry. Biomicrofluidics 14(4). DOI: 10.1063/5.0011583.

Raman, A. P., M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan. 2014. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528):540-544. DOI: 10.1038/nature13883.

Rao, D. P. 2015. The Story of “HIGEE”. Indian Chemical Engineer 57(3-4):282-299. DOI: 10.1080/00194506.2015.1026946.

Ratnasari, D. K., M. A. Nahil, and P. T. Williams. 2017. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. Journal of Analytical and Applied Pyrolysis 124:631-637. DOI: 10.1016/j.jaap.2016.12.027.

Renzulli, K. A. 2019. Women reach leadership roles earlier than men do—But fewer make it to the top, according to LinkedIn. Retrieved September 8, 2021, from https://www.cnbc.com/2019/06/24/women-reach-leadership-roles-1point4-years-earlier-than-men-says-linkedin.html.

Rephaeli, E., A. Raman, and S. Fan. 2013. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Letters 13(4):1457-1461. DOI: 10.1021/nl4004283.

Reynaert, S., C. F. Brooks, P. Moldenaers, J. Vermant, and G. G. Fuller. 2008. Analysis of the magnetic rod interfacial stress rheometer. Journal of Rheology 52(1):261-285. DOI: 10.1122/1.2798238.

Rezaiyan, J., and N. P. Cheremisinoff. 2005. Gasification technologies: A primer for engineers and scientists. Boca Raton, FL: CRC Press.

Richards, G. 1979. Third age of quantum chemistry. Nature 278(5704):507-507. DOI: 10.1038/278507a0.

Richardson, J., and J. Dantzler. 2002. Effect of a freshman engineering program on retention and academic performance. Presented at 32nd Annual Frontiers in Education. Boston, MA..

Ritger, P. L., and N. A. Peppas. 1987. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release 5(1):23-36. DOI: 10.1016/0168-3659(87)90034-4.

Roh, S., A. H. Williams, R. S. Bang, S. D. Stoyanov, and O. D. Velev. 2019. Soft dendritic microparticles with unusual adhesion and structuring properties. Nature Materials 18(12):1315-1320. DOI: 10.1038/s41563-019-0508-z.

Rong, Y., Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, and H. Han. 2018. Challenges for commercializing perovskite solar cells. Science 361(6408). DOI: 10.1126/science.aat8235.

Roque, B. M., M. Venegas, R. D. Kinley, R. de Nys, T. L. Duarte, X. Yang, and E. Kebreab. 2021. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS One 16(3). DOI: 10.1371/journal.pone.0247820.

Rorrer, J. E., G. T. Beckham, and Y. Román-Leshkov. 2021. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions. Journal of the American Chemical Society: Au 1(1):8-12. DOI: 10.1021/jacsau.0c00041.

Rosales, A. M., and K. S. Anseth. 2016. The design of reversible hydrogels to capture extracellular matrix dynamics. Nature Reviews Materials 1(2). DOI: 10.1038/natrevmats.2015.12.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Rosales, A. M., R. A. Segalman, and R. N. Zuckermann. 2013. Polypeptoids: A model system to study the effect of monomer sequence on polymer properties and self-assembly. Soft Matter 9(35):8400-8414. DOI: 10.1039/C3SM51421H.

Ross, I., J. McDonough, J. Miles, P. Storch, P. Thelakkat Kochunarayanan, E. Kalve, J. Hurst, S. S. Dasgupta, and J. Burdick. 2018. A review of emerging technologies for remediation of PFASs. Remediation Journal 28(2):101-126. DOI: 10.1002/rem.21553.

Ruiz-Lopez, M. F., J. S. Francisco, M. T. C. Martins-Costa, and J. M. Anglada. 2020. Molecular reactions at aqueous interfaces. Nature Reviews Chemistry 4(9):459-475. DOI: 10.1038/s41570-020-0203-2.

Rzhetsky, A., J. G. Foster, I. T. Foster, and J. A. Evans. 2015. Choosing experiments to accelerate collective discovery. Proceedings of the National Academy of Sciences 112(47):14569-14574. DOI: 10.1073/pnas.1509757112.

Samet, J. M., K. Prather, G. Benjamin, S. Lakdawala, J. M. Lowe, A. Reingold, J. Volckens, and L. Marr. 2021. Airborne transmission of SARS-CoV-2: What we know. Clinical Infectious Diseases 73(10):1924-1926. DOI: 10.1093/cid/ciab039.

Samuel, M., D. Polson, D. Graham, W. Kordziel, T. Waite, G. Waters, P. S. Vinod, D. Fu, and R. Downey. 2000. Viscoelastic surfactant fracturing fluids: Applications in low permeability reservoirs. Presented at SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium and Exhibition. Denver, CO.

Sánchez, A. 2019. The current role of chemical engineering in solving environmental problems. Frontiers in Chemical Engineering 1, Article 1. DOI: 10.3389/fceng.2019.00001.

Sanchez-Lengeling, B., and A. Aspuru-Guzik. 2018. Inverse molecular design using machine learning: Generative models for matter engineering. Science 361(6400):360-365. DOI: 10.1126/science.aat2663.

Sanderson, K. 2019. Automation: Chemistry shoots for the moon. Nature 568(7753):577-579. DOI: 10.1038/d41586-019-01246-y.

Santiesteban, J. G. and T. F. Degnan., Jr. 2021. Catalysis and the future of transportation fuels. The Bridge 50th Anniversary Issue. https://www.nae.edu/244855/Catalysis-and-the-Future-of-Transportation-Fuels.

Sargent & Lundy LLC Consulting Group. 2003. Assessment of parabolic trough and power tower solar technology cost and performance forecasts NREL/SR-550-34440. Chicago, IL: National Renewable Energy Laboratory (NREL).

Sarikurt, S., T. Kocabaş, and C. Sevik. 2020. High-throughput computational screening of 2D materials for thermoelectrics. Journal of Materials Chemistry A 8(37):19674-19683. DOI: 10.1039/d0ta04945j.

Sarsons, H. 2017. Gender differences in recognition for group work. https://scholar.harvard.edu/files/sarsons/files/full_v6.pdf.

Saygili, E., E. Yildiz-Ozturk, M. J. Green, A. M. Ghaemmaghami, and O. Yesil-Celiktas. 2021. Human lung-on-chips: Advanced systems for respiratory virus models and assessment of immune response. Biomicrofluidics 15(2). DOI: 10.1063/5.0038924.

Scanlon, B. R., B. L. Ruddell, P. M. Reed, R. I. Hook, C. Zheng, V. C. Tidwell, and S. Siebert. 2017. The food-energy-water nexus: Transforming science for society. Water Resources Research 53(5):3550-3556. DOI: 10.1002/2017wr020889.

Schepers, A., C. Li, A. Chhabra, B. T. Seney, and S. Bhatia. 2016. Engineering a perfusable 3D human liver platform from iPS cells. Lab on a Chip 16(14):2644-2653. DOI: 10.1039/c6lc00598e.

Schiffer, Z. J., and K. Manthiram. 2017. Electrification and decarbonization of the chemical industry. Joule 1(1):10-14. DOI: 10.1016/j.joule.2017.07.008.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Schöttker, B., K.-U. Saum, D. C. Muhlack, L. K. Hoppe, B. Holleczek, and H. Brenner. 2017. Polypharmacy and mortality: New insights from a large cohort of older adults by detection of effect modification by multi-morbidity and comprehensive correction of confounding by indication. European Journal of Clinical Pharmacology 73(8):1041-1048. DOI: 10.1007/s00228-017-2266-7.

Schowalter, W. R. 2003. The equations (of change) don’t change: But the profession of engineering does. Chemical Engineering Education 37(4):242-247.

Schwaller, P., T. Laino, T. Gaudin, P. Bolgar, C. A. Hunter, C. Bekas, and A. A. Lee. 2019. Molecular Transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS Central Science 5(9):1572-1583. DOI: 10.1021/acscentsci.9b00576.

Scriven, L. E. 1960. Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chemical Engineering Science 12(2):98-108. DOI: 10.1016/0009-2509(60)87003-0.

Scriven, L. E. 1991. On the emergence and evolution of chemical engineering. In Advances in chemical engineering. Colton, C. K., ed. San Diego, CA: Academic Press.

Seader, J. D., and E. J. Henley. 1998. Separation process principles. New York: Wiley.

Searchinger, T., R. Heimlich, R. A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. Hayes, and T.-H. Yu. 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238-1240. DOI: 10.1126/science.1151861.

Seinfeld, J. H. 1991. Environmental chemical engineering. In Advances in chemical engineering. Colton, C. K., ed. San Diego, CA: Academic Press.

Seinfeld, J. H., and S. N. Pandis. 2016. Atmospheric chemistry and physics: From air pollution to climate change. New York: John Wiley & Sons, Inc.

Sharma, S. 2013. Ferrolectric nanofibers: Principle, processing and applications. Advanced Materials Letters 4(7):522-533. DOI: 10.5185/amlett.2012.9426.

Shashvatt, U., F. Amurrio, C. Portner, and L. Blaney. 2021. Phosphorus recovery by Donnan dialysis: Membrane selectivity, diffusion coefficients, and speciation effects. Chemical Engineering Journal 419. DOI: 10.1016/j.cej.2021.129626.

Shen, L., E. Worrell, and M. K. Patel. 2010. Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling. Resources, Conservation and Recycling 55(1):34-52. DOI: 10.1016/j.resconrec.2010.06.014.

Sherman, Z. M., M. P. Howard, B. A. Lindquist, R. B. Jadrich, and T. M. Truskett. 2020. Inverse methods for design of soft materials. The Journal of Chemical Physics 152(14). DOI: 10.1063/1.5145177.

Shi, D., E. Dassau, and F. J. Doyle, 3rd. 2019. Multivariate learning framework for long-term adaptation in the artificial pancreas. Bioengineering & Translational Medicine 4(1):61-74. DOI: 10.1002/btm2.10119.

Shi, C., L. T. Reilly, V. S. Phani Kumar, M. W. Coile, S. R. Nicholson, L. J. Broadbelt, G. T. Beckham, and E. Y. X. Chen. 2021. Design principles for intrinsically circular polymers with tunable properties. Chem 7(11):2896-2912. DOI: 10.1016/j.chempr.2021.10.004.

Shim, S. H., R. Gupta, Y. L. Ling, D. B. Strasfeld, D. P. Raleigh, and M. T. Zanni. 2009. Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution. Proceedings of the National Academy of Sciences 106(16):6614-6619. DOI: 10.1073/pnas.0805957106.

Sidorova, J., and M. Anisimova. 2014. NLP-inspired structural pattern recognition in chemical application. Pattern Recognition Letters 45:11-16. DOI: 10.1016/j.patrec.2014.02.012.

Silva, R. A., K. Hawboldt, and Y. Zhang. 2018. Application of resins with functional groups in the separation of metal ions/species—A review. Mineral Processing and Extractive Metallurgy Review 39(6):395-413. DOI: 10.1080/08827508.2018.1459619.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Simpson, G. B., and G. P. W. Jewitt. 2019. The development of the water-energy-food nexus as a framework for achieving resource security: A review. Frontiers in Environmental Science 7, Article 8. DOI: 10.3389/fenvs.2019.00008.

Sims, R. E. H., R. N. S., A. Adegbululgbe, J. Fenhann, I. Konstantinaviciute, W. Moomaw, H.B. Nimir, B. Schlamadinger, J. Torres-Martínez, C. Turner, Y. Uchiyama, S. J.V. Vuori, N. Wamukonya, X. Zhang 2007. Chapter 4: Energy supply. In IPCC Fourth Assessment Report: Climate Change 2007: Contribution of Working Group III: Mitigation of Climate Change. New York: Cambridge University Press.

Singh, A., N. A. Rorrer, S. R. Nicholson, E. Erickson, J. S. DesVeaux, A. F. T. Avelino, P. Lamers, A. Bhatt, Y. Zhang, G. Avery, L. Tao, A. R. Pickford, A. C. Carpenter, J. E. McGeehan, and G. T. Beckham. 2021. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule 5(9):2479-2503. DOI: 10.1016/j.joule.2021.06.015.

Sinha, S., U. D. Irani, V. Manchaiah, and M. S. Bhamla. 2020. LoCHAid: An ultra-low-cost hearing aid for age-related hearing loss. PLoS One 15(9). DOI: 10.1371/journal. pone.0238922.

Siracusa, V., and I. Blanco. 2020. Bio-polyethylene (Bio-PE), bio-polypropylene (Bio-PP) and bio-poly (ethylene terephthalate) (Bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 12(8). DOI: 10.3390/polym12081641.

Sivakumar, S., K. L. Wark, J. K. Gupta, N. L. Abbott, and F. Caruso. 2009. Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Advanced Functional Materials 19(14):2260-2265. DOI: 10.1002/adfm.2009 00399.

Skoulidas, A. I., D. M. Ackerman, J. K. Johnson, and D. S. Sholl. 2002. Rapid transport of gases in carbon nanotubes. Physical Review Letters 89(18). DOI: 10.1103/PhysRevLett.89. 185901.

Smith, R. C., R. K. Taggart, J. C. Hower, M. R. Wiesner, and H. Hsu-Kim. 2019. Selective recovery of rare earth elements from coal fly ash leachates using liquid membrane processes. Environmental Science & Technology 53(8):4490-4499. DOI: 10.1021/acs.est.9b00539.

Smith, C., A. K. Hill, and L. Torrente-Murciano. 2020. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science 13(2):331-344. DOI: 10.1039/c9ee02873k.

Socorro, I. M., K. Taylor, and J. M. Goodman. 2005. ROBIA: A reaction prediction program. Organic Letters 7(16):3541-3544. DOI: 10.1021/ol0512738.

Song, X., Y. Guo, J. Zhang, N. Sun, G. Shen, X. Chang, W. Yu, Z. Tang, W. Chen, W. Wei, L. Wang, J. Zhou, X. Li, X. Li, J. Zhou, and Z. Xue. 2019. Fracturing with carbon dioxide: From microscopic mechanism to reservoir application. Joule 3(8):1913-1926. DOI: 10.1016/j.joule.2019.05.004.

Spielman, L. A. 1977. Particle capture from low-speed laminar flows. Annual Review of Fluid Mechanics 9(1):297-319. DOI: 10.1146/annurev.fl.09.010177.001501.

Spiker, M. L., H. A. B. Hiza, S. M. Siddiqi, and R. A. Neff. 2017. Wasted food, wasted nutrients: Nutrient loss from wasted food in the United States and comparison to gaps in dietary intake. Journal of the Academy of Nutrition and Dietetics 117(7):1031-1040.e22. DOI: 10.1016/j.jand.2017.03.015.

Squires, T. M., and T. G. Mason. 2009. Fluid mechanics of microrheology. Annual Review of Fluid Mechanics 42(1):413-438. DOI: 10.1146/annurev-fluid-121108-145608.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Stankiewicz, A. I., and J. A. Moulijn. 2000. Process intensification: Transforming chemical engineering. CEP Magazine. https://www.aiche.org/sites/default/files/docs/news/010022_cep_stankiewicz.pdf.

Statista. 2021. Forecast number of mobile devices worldwide from 2020 to 2025 (in billions). Retrieved September 11, 2021, from https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide.

Staudinger, H. 1920. Über polymerisation. Berichte der deutschen chemischen Gesellschaft (A and B Series) 53(6):1073-1085. DOI: 10.1002/cber.19200530627.

Stebe, K. J., S. Y. Lin, and C. Maldarelli. 1991. Remobilizing surfactant retarded fluid particle interfaces. I. Stress‐free conditions at the interfaces of micellar solutions of surfactants with fast sorption kinetics. Physics of Fluids A: Fluid Dynamics 3(1):3-20. DOI: 10.1063/1.857862.

Stone, H. A., and L. G. Leal. 1989. Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. Journal of Fluid Mechanics 198:399-427. DOI: 10.1017/S0022112089000194.

Striolo, A. 2006. The mechanism of water diffusion in narrow carbon nanotubes. Nano Letters 6(4):633-639. DOI: 10.1021/nl052254u.

Su, Z., J. D. Hostert, and J. N. Renner. 2020. Phosphate recovery by a surface-immobilized cerium affinity peptide. ACS ES&T Water 1(1):58-67. DOI: 10.1021/acsestwater.0c00001.

Sun, T., A. Dasgupta, Z. Zhao, M. Nurunnabi, and S. Mitragotri. 2020. Physical triggering strategies for drug delivery. Advanced Drug Delivery Reviews 158:36-62. DOI: 10.1016/j.addr.2020.06.010.

Swartz, J. R. 2012. Transforming biochemical engineering with cell-free biology. American Institute of Chemical Engineers Journal 58(1):5-13. DOI: 10.1002/aic.13701.

Takata, T., J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, and K. Domen. 2020. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581(7809):411-414. DOI: 10.1038/s41586-020-2278-9.

Takatori, S. C., and J. F. Brady. 2015. Towards a thermodynamics of active matter. Physical Review E 91(3). DOI: 10.1103/PhysRevE.91.032117.

Takeuchi, I., J. Lauterbach, and M. J. Fasolka. 2005. Combinatorial materials synthesis. Materials Today 8(10):18-26. DOI: 10.1016/S1369-7021(05)71121-4.

Talmadge, M. S., R. M. Baldwin, M. J. Biddy, R. L. McCormick, G. T. Beckham, G. A. Ferguson, S. Czernik, K. A. Magrini-Bair, T. D. Foust, P. D. Metelski, C. Hetrick, and M. R. Nimlos. 2014. A perspective on oxygenated species in the refinery integration of pyrolysis oil. Green Chemistry 16(2):407-453. DOI: 10.1039/c3gc41951g.

Talvitie, J., A. Mikola, A. Koistinen, and O. Setala. 2017. Solutions to microplastic pollution—Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research 123:401-407. DOI: 10.1016/j.watres.2017.07.005.

Tan, D. H. S., A. Banerjee, Z. Chen, and Y. S. Meng. 2020a. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nature Nanotechnology 15(3):170-180. DOI: 10.1038/s41565-020-0657-x.

Tan, Y., J. Shen, T. Si, C. L. Ho, Y. Li, and L. Dai. 2020b. Engineered live biotherapeutics: Progress and challenges. Biotechnology Journal 15(10). DOI: 10.1002/biot.202000155.

TARSC (Training and Research Support Centre). 2015. Innovations for health: Use of appropriate technologies in primary health care in Zimbabwe—Report of an assessment. Retrieved August 18, 2021, from https://www.tarsc.org/publications/documents/AppTech%20PHC%20Zim%20rep%20April2015.pdf.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Taylor, G. I. 1934. The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 146(858):501-523. DOI: 10.1098/rspa.1934.0169.

Taylor, R., and R. Krishna. 2000. Modelling reactive distillation. Chemical Engineering Science 55(22):5183-5229. DOI: 10.1016/s0009-2509(00)00120-2.

Teesalu, T., K. N. Sugahara, and E. Ruoslahti. 2012. Mapping of vascular ZIP codes by phage display. Methods in Enzymology 503:35-56. DOI: 10.1016/B978-0-12-396962-0.00002-1.

Tesar, J. E. 1996. The Macmillan visual almanac. B. S. Glassman, ed. London: Macmillan General Reference.

Teuten, E. L., J. M. Saquing, D. R. U. Knappe, M. A. Barlaz, S. Jonsson, A. Björn, S. J. Rowland, R. C. Thompson, T. S. Galloway, R. Yamashita, D. Ochi, Y. Watanuki, C. Moore, P. H. Viet, T. S. Tana, M. Prudente, R. Boonyatumanond, M. P. Zakaria, K. Akkhavong, Y. Ogata, H. Hirai, S. Iwasa, K. Mizukawa, Y. Hagino, A. Imamura, M. Saha, and H. Takada. 2009. Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1526):2027-2045. DOI: doi:10.1098/rstb.2008.0284.

The Pew Charitable Trusts. 2019. Two decades of change in federal and state higher education funding. Retrieved September 8, 2021, from https://www.pewtrusts.org/en/research-and-analysis/issue-briefs/2019/10/two-decades-of-change-in-federal-and-state-higher-education-funding.

The Royal Society. 2018a. Options for producing low-carbon hydrogen at scale. Retrieved August 17, 2021, from https://royalsociety.org/~/media/policy/projects/hydrogen-production/energy-briefing-green-hydrogen.pdf.

The Royal Society. 2018b. Greenhouse gas removal. Retrieved August 18, 2021, from https://royalsociety.org/-/media/policy/projects/greenhouse-gas-removal/royal-society-greenhouse-gas-removal-report-2018.pdf.

Thollander, P., M. Karlsson, P. Rohdin, W. Johan, and J. Rosenqvist. 2020. Introduction to industrial energy efficiency. Cambridge, MA: Academic Press.

Thoman, D. B., E. R. Brown, A. Z. Mason, A. G. Harmsen, and J. L. Smith. 2015. The role of altruistic values in motivating underrepresented minority students for biomedicine. BioScience 65(2):183-188. DOI: 10.1093/biosci/biu199.

Thomassen, G., M. Van Dael, S. Van Passel, and F. You. 2019. How to assess the potential of emerging green technologies? Towards a prospective environmental and technoeconomic assessment framework. Green Chemistry 21(18):4868-4886. DOI: 10.1039/C9GC02223F.

Tian, Y., S. E. Demirel, M. M. F. Hasan, and E. N. Pistikopoulos. 2018. An overview of process systems engineering approaches for process intensification: State of the art. Chemical Engineering and Processing—Process Intensification 133:160-210. DOI: 10.1016/j.cep. 2018.07.014.

Tian, X., S. D. Stranks, and F. You. 2020a. Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells. Science Advances 6(31). DOI: 10.1126/sciadv.abb0055.

Tian, Y., J. R. Lhermitte, L. Bai, T. Vo, H. L. Xin, H. Li, R. Li, M. Fukuto, K. G. Yager, J. S. Kahn, Y. Xiong, B. Minevich, S. K. Kumar, and O. Gang. 2020b. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nature Materials 19(7):789-796. DOI: 10.1038/s41563-019-0550-x.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Tilman, D., C. Balzer, J. Hill, and B. L. Befort. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences 108(50):20260-20264. DOI: 10.1073/pnas.1116437108.

Tolle, K. M., D. S. W. Tansley, and A. J. G. Hey. 2011. The fourth paradigm: Data-intensive scientific discovery. Proceedings of the IEEE 99(8):1334-1337. DOI: 10.1109/JPROC. 2011.2155130.

Tong, Y., I. Y. Zhang, and R. K. Campen. 2018. Experimentally quantifying anion polarizability at the air/water interface. Nature Communications 9. DOI: 10.1038/s41467-018-03598-x.

Tremblay, J.-F. 2018. Golden times for electronic materials suppliers. Chemical & Engineering News 96(28). https://cen.acs.org/materials/electronic-materials/Golden-times-electronic-materials-suppliers/96/i28.

Tsurushita, N., P. R. Hinton, and S. Kumar. 2005. Design of humanized antibodies: From anti-Tac to Zenapax. Methods 36(1):69-83. DOI: 10.1016/j.ymeth.2005.01.007.

Tuck, C. O., E. Perez, I. T. Horvath, R. A. Sheldon, and M. Poliakoff. 2012. Valorization of biomass: Deriving more value from waste. Science 337(6095):695-699. DOI: 10.1126/science.1218930.

Tumbleston, J. R., D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone. 2015. Additive manufacturing: Continuous liquid interface production of 3D objects. Science 347(6228):1349-1352. DOI: 10.1126/science.aaa2397.

Tunuguntla, R. H., R. Y. Henley, Y. C. Yao, T. A. Pham, M. Wanunu, and A. Noy. 2017. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357(6353):792-796. DOI: 10.1126/science.aan2438.

Tursi, A., T. F. Mastropietro, R. Bruno, M. Baratta, J. Ferrando-Soria, A. I. Mashin, F. P. Nicoletta, E. Pardo, G. De Filpo, and D. Armentano. 2021. Synthesis and enhanced capture properties of a new BioMOF@SWCNT-BP: Recovery of the endangered rare-earth elements from aqueous systems. Advanced Materials Interfaces 8(16). DOI: 10.1002/admi. 202100730.

Turton, R., R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya. 2012. Analysis, synthesis, and design of chemical processes. Upper Saddle River, NJ: Prentice Hall.

Uekert, T., M. A. Bajada, T. Schubert, C. M. Pichler, and E. Reisner. 2020. Scalable photocatalyst panels for photoreforming of plastic, biomass and mixed waste in flow. ChemSusChem 14(19):4190-4197. DOI: 10.1002/cssc.202002580.

UN (United Nations). 2017. World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. Retrieved August 16, 2021, from https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html.

UNEP (United Nations Environment Programme). 2020. Handbook for the Montreal protocol on substances that deplete the ozone: 14th edition. Nairobi, Kenya: Ozone Secretariat.

United Nations Environment Programme. 2021. Our planet is drowning in plastic pollution—It’s time for change! https://www.unep.org/interactive/beat-plastic-pollution.

UNFCC (United Nations Framework Convention on Climate Change). 2015. Adoption of the Paris Agreement. 21st Conference of the Parties. Paris, United Nations. https://unfccc.int/sites/default/files/english_paris_agreement.pdf.

University of Hertfordshire. 2021. PPDB: Pesticide properties database. Retrieved August 27, 2021, from http://sitem.herts.ac.uk/aeru/ppdb.

University of Minnesota. 2003. Professor L. E. (Skip) Scriven. Retrieved August 17, 2021, from http://www.chemeng.ntua.gr/dep/boudouvis/U%20of%20M%20CEMS-scriven.htm.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

U.S. Census Bureau. 2018. An aging nation: Projected number of children and older adults. Retrieved March 18, 2021, from https://www.census.gov/library/visualizations/2018/comm/historic-first.html.

U.S. Census Bureau. 2019a. Percent of population 25 Years and over by detailed attainment level: 2000-2019. Retrieved March 18, 2021, 2021, from https://www.census.gov/content/dam/Census/library/visualizations/time-series/demo/fig11.png.

U.S. Census Bureau. 2019b. Percent of population age 25 and over by educational attainment. Retrieved March 18, 2021, 2021, from https://www.census.gov/content/dam/Census/library/visualizations/time-series/demo/fig2.png.

USPTO (U.S. Patent and Trademark Office) 2021. U.S. colleges and universities—Utility patent grants 1969-2012. Retrieved September 8, 2021, from https://www.uspto.gov/web/offices/ac/ido/oeip/taf/univ/doc/doc_info_2012.htm.

van Anders, G., D. Klotsa, A. S. Karas, P. M. Dodd, and S. C. Glotzer. 2015. Digital alchemy for materials design: Colloids and beyond. ACS Nano 9(10):9542-9553. DOI: 10.1021/acsnano.5b04181.

Vargason, A. M., A. C. Anselmo, and S. Mitragotri. 2021. The evolution of commercial drug delivery technologies. Nature Biomedical Engineering 5:951-967. DOI: 10.1038/s41551-021-00698-w.

Vaucher, A. C., F. Zipoli, J. Geluykens, V. H. Nair, P. Schwaller, and T. Laino. 2020. Automated extraction of chemical synthesis actions from experimental procedures. Nature Communications 11(1):3601. DOI: 10.1038/s41467-020-17266-6.

Vazquez, M. 2018. Engaging biomedical engineering in health disparities challenges. Journal of Community Medicine and Health Education 8(2). DOI: 10.4172/2161-0711.1000595.

Veers, P., K. Dykes, E. Lantz, S. Barth, C. L. Bottasso, O. Carlson, A. Clifton, J. Green, P. Green, H. Holttinen, D. Laird, V. Lehtomäki, J. K. Lundquist, J. Manwell, M. Marquis, C. Meneveau, P. Moriarty, X. Munduate, M. Muskulus, J. Naughton, L. Pao, J. Paquette, J. Peinke, A. Robertson, J. Sanz Rodrigo, A. M. Sempreviva, J. C. Smith, A. Tuohy, and R. Wiser. 2019. Grand challenges in the science of wind energy. Science 366(6464). DOI: 10.1126/science.aau2027.

Venkatasubramanian, V. 2019. The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChE Journal 65(2):466-478. DOI: 10.1002/aic.16489.

Verhougstraete, M. P., J. K. Gerald, C. P. Gerba, and K. A. Reynolds. 2019. Cost-benefit of point-of-use devices for lead reduction. Environmental Research 171:260-265. DOI: 10.1016/j.envres.2019.01.016.

Villagomez-Salas, S., P. Manikandan, S. F. Acuna Guzman, and V. G. Pol. 2018. Amorphous carbon chips li-ion battery anodes produced through polyethylene waste upcycling. ACS Omega 3(12):17520-17527. DOI: 10.1021/acsomega.8b02290.

Voiland, A., and R. Simmon. 2010. Aerosols: Tiny particles, big impact. Retrieved August 16, 2021, from https://earthobservatory.nasa.gov/features/Aerosols.

Wahman, D. G., M. D. Pinelli, M. R. Schock, and D. A. Lytle. 2021. Theoretical equilibrium lead(II) solubility revisited: Open source code and practical relationships. AWWA Water Science 3(5). DOI: 10.1002/aws2.1250.

Walker, S., and R. Rothman. 2020. Life cycle assessment of bio-based and fossil-based plastic: A review. Journal of Cleaner Production 261. DOI: 10.1016/j.jclepro.2020.121158.

Walker, T. W., N. Frelka, Z. Shen, A. K. Chew, J. Banick, S. Grey, M. S. Kim, J. A. Dumesic, R. C. Van Lehn, and G. W. Huber. 2020. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Science Advances 6(47). DOI: 10.1126/sciadv.aba7599.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Wang, R. E., S. A. Wu, J. A. Evans, J. B. Tenenbaum, D. C. Parkes, and M. Kleiman-Weiner. 2020. Too many cooks: Bayesian inference for coordinating multi-agent collaboration. arXiv. DOI: arXiv:2003.11778.

Wang, L., D. Rehman, P.-F. Sun, A. Deshmukh, L. Zhang, Q. Han, Z. Yang, Z. Wang, H.-D. Park, J. H. Lienhard, and C. Y. Tang. 2021a. Novel positively charged metal-coordinated nanofiltration membrane for lithium recovery. ACS Applied Materials & Interfaces 13(14):16906-16915. DOI: 10.1021/acsami.1c02252.

Wang, L. L., M. E. Janes, N. Kumbhojkar, N. Kapate, J. R. Clegg, S. Prakash, M. K. Heavey, Z. Zhao, A. C. Anselmo, and S. Mitragotri. 2021b. Cell therapies in the clinic. Bioengineering & Translational Medicine 6(2). DOI: 10.1002/btm2.10214.

Wang, T., Y. Wu, L. Shi, X. Hu, M. Chen, and L. Wu. 2021c. A structural polymer for highly efficient all-day passive radiative cooling. Nature Communications 12(1). DOI: 10.1038/s41467-020-20646-7.

Waring, M. J., J. Arrowsmith, A. R. Leach, P. D. Leeson, S. Mandrell, R. M. Owen, G. Pairaudeau, W. D. Pennie, S. D. Pickett, J. Wang, O. Wallace, and A. Weir. 2015. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nature Reviews Drug Discovery 14(7):475-486. DOI: 10.1038/nrd4609.

Warnock, S. J., R. Sujanani, E. S. Zofchak, S. Zhao, T. J. Dilenschneider, K. G. Hanson, S. Mukherjee, V. Ganesan, B. D. Freeman, M. M. Abu-Omar, and C. M. Bates. 2021. Engineering Li/Na selectivity in 12-Crown-4–functionalized polymer membranes. Proceedings of the National Academy of Sciences 118(37). DOI: 10.1073/pnas.2022197118.

Washington State Department of Ecology. 2021. Monitoring Hanford’s groundwater and protecting the Columbia River. Retrieved August 17, 2021, from https://ecology.wa.gov/Waste-Toxics/Nuclear-waste/Hanford-cleanup/Protecting-air-water/Groundwater-monitoring.

Wei, J. 1991. Centennial symposium of chemical engineering: Opening remarks. In Advances in chemical engineering. Colton, C. K., ed. San Diego, CA: Academic Press.

Weisbrod, A., A. Bjork, D. McLaughlin, T. Federle, K. McDonough, J. Malcolm, and R. Cina. 2016. Framework for evaluating sustainably sourced renewable materials. Supply Chain Forum: An International Journal 17(4):259-272. DOI: 10.1080/16258312.2016. 1258895.

Wells, E., and A. S. Robinson. 2017. Cellular engineering for therapeutic protein production: Product quality, host modification, and process improvement. Biotechnology Journal 12(1). DOI: 10.1002/biot.201600105.

Welp, K., A. Cartolano, D. Parrillo, R. Boehme, R. Machado, and S. Caram. 2006. Monolith catalytic reactor coupled to static mixer. U.S. Patent No. 7109378. Washington, DC: U.S. Patent and Trademark Office.

Welp, K., A. Cartolano, D. Parrillo, R. Boehme, R. Machado, and S. Caram 2009. Monolith catalytic reactor coupled to static mixer. U.S. Patent No. 7595029. Washington, DC: U.S. Patent and Trademark Office.

Westmoreland, P. R., and C. McCabe. 2018. Revisiting the future of chemical engineering. CEP Magazine. https://www.aiche.org/resources/publications/cep/2018/october/revisiting-future-chemical-engineering.

Whitehead, T. A., S. Banta, W. E. Bentley, M. J. Betenbaugh, C. Chan, D. S. Clark, C. A. Hoesli, M. C. Jewett, B. Junker, M. Koffas, R. Kshirsagar, A. Lewis, C. T. Li, C. Maranas, E. Terry Papoutsakis, K. L. J. Prather, S. Schaffer, L. Segatori, and I. Wheeldon. 2020. The importance and future of biochemical engineering. Biotechnology and Bioengineering 117(8):2305-2318. DOI: 10.1002/bit.27364.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Whiteside, A. 2019. Language-based software’s accurate predictions translate to benefits for chemists. Chemistry World News. https://www.chemistryworld.com/news/language-based-softwares-accurate-predictions-translate-to-benefits-for-chemists/4010437.article.

WHO (World Health Organization). 2016. Ambient air pollution: A global assessment of exposure and burden of disease. Geneva: WHO. https://apps.who.int/iris/rest/bitstreams/1061179/retrieve.

WHO. 2018. Ambient (outdoor) air pollution. Geneva: WHO. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.

Wilkerson, C. G., S. D. Mansfield, F. Lu, S. Withers, J.-Y. Park, S. D. Karlen, E. Gonzales-Vigil, D. Padmakshan, F. Unda, J. Rencoret, and J. Ralph. 2014. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344(6179):90-93. DOI: 10.1126/science.1250161.

Wilkes, J. 2002. A century of chemical engineering at the University of Michigan. Ann Arbor, MI: University of Michigan.

Willson, V. L., T. Monogue, and C. Malave. 1995. First year comparative evaluation of the Texas A&M freshman integrated engineering program. Proceedings Frontiers in Education 1995 25th Annual Conference. Engineering Education for the 21st Century. DOI: 10.1109/FIE.1995.483114.

Winter, E., M. C. Clark, and C. Burns. 2021. Team-based learning brings academic rigor, collaboration, and community to online learning. In Resilient pedagogy: Practical teaching strategies to overcome distance, disruption, and distraction. Thurston, T. N., K. Lundstrom and C. Gonzalesz, eds. Logan: Utah State University.

Wischmeyer, P. E., D. McDonald, and R. Knight. 2016. Role of the microbiome, probiotics, and “dysbiosis therapy” in critical illness. Current Opinion in Critical Care 22(4):347-353. DOI: 10.1097/MCC.0000000000000321.

Wittrup, K. D. 2001. Protein engineering by cell-surface display. Current Opinion in Biotechnology 12(4):395-399. DOI: 10.1016/s0958-1669(00)00233-0.

WNA (World Nuclear Association). 2021. Nuclear power in the USA. Retrieved August 17, 2021, from https://www.world-nuclear.org/information-library/country-profiles/countries-tz/usa-nuclear-power.aspx.

Wolkowicz, K. L., E. M. Aiello, E. Vargas, H. Teymourian, F. Tehrani, J. Wang, J. E. Pinsker, F. J. Doyle, 3rd, M. E. Patti, L. M. Laffel, and E. Dassau. 2021. A review of biomarkers in the context of type 1 diabetes: Biological sensing for enhanced glucose control. Bioengineering & Translational Medicine 6(2). DOI: 10.1002/btm2.10201.

World Economic Forum. 2011. Water security: The water-food-energy-climate nexus. Washington, DC: Island Press.

Wu, F., J. Maier, and Y. Yu. 2020. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews 49(5):1569-1614. DOI: 10.1039/c7cs00863e.

Wu, L., D. Wang, and J. A. Evans. 2019. Large teams develop and small teams disrupt science and technology. Nature 566(7744):378-382. DOI: 10.1038/s41586-019-0941-9.

Xin Yu, J., V. M. Hubbard-Lucey, and J. Tang. 2019. Immuno-oncology drug development goes global. Nature Reviews Drug Discovery 18(12):899-900. DOI: 10.1038/d41573-019-00167-9.

Xu, Z., P. Lei, R. Zhai, Z. Wen, and M. Jin. 2019. Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnology for Biofuels 12. DOI: 10.1186/s13068-019-1376-0.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Yan, Q., and J. J. de Pablo. 1999. Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model. The Journal of Chemical Physics 111(21):9509-9516. DOI: 10.1063/1.480282.

Yang, H. C., Y. Xie, J. Hou, A. K. Cheetham, V. Chen, and S. B. Darling. 2018. Janus membranes: Creating asymmetry for energy efficiency. Advanced Materials 30(43). DOI: 10.1002/adma.201801495.

Yang, M., N. R. Baral, B. A. Simmons, J. C. Mortimer, P. M. Shih, and C. D. Scown. 2020. Accumulation of high-value bioproducts in planta can improve the economics of advanced biofuels. Proceedings of the National Academy of Sciences 117(15):8639-8648. DOI: 10.1073/pnas.2000053117.

Ye, R.-P., J. Ding, W. Gong, M. D. Argyle, Q. Zhong, Y. Wang, C. K. Russell, Z. Xu, A. G. Russell, Q. Li, M. Fan, and Y.-G. Yao. 2019. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications 10(1). DOI: 10.1038/s41467-019-13638-9.

Yates, F. E.; Urquhart, J.1962. Control of plasma concentrations of adrenocortical hormones. Physiological Reviews 42, 359−443. DOI: 10.1152/physrev.1962.42.3.359.

Yeh, Y.-C., T.-H. Huang, S.-C. Yang, C.-C. Chen, and J.-Y. Fang. 2020. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Frontiers in Chemistry 8(286). DOI: 10.3389/fchem.2020.00286.

Yin, Y., Y. Wang, J. A. Evans, and D. Wang. 2019. Quantifying the dynamics of failure across science, startups and security. Nature 575(7781):190-194. DOI: 10.1038/s41586-019-1725-y.

Zakzeski, J., P. C. Bruijnincx, A. L. Jongerius, and B. M. Weckhuysen. 2010. The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews 110(6):3552-3599. DOI: 10.1021/cr900354u.

Zero Waste Scotland. 2013. Plastics to oil products—Final report. Retrieved August 18, 2021, from https://www.zerowastescotland.org.uk/research-evidence/plastic-oil-report.

Zhai, Y., Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin. 2017. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329):1062-1066. DOI: 10.1126/science.aai7899.

Zhang, Z., X. Sui, P. Li, G. Xie, X. Y. Kong, K. Xiao, L. Gao, L. Wen, and L. Jiang. 2017. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. Journal of the American Chemical Society 139(26):8905-8914. DOI: 10.1021/jacs.7b02794.

Zhang, M., P. T. Corona, N. Ruocco, D. Alvarez, P. Malo de Molina, S. Mitragotri, and M. E. Helgeson. 2018a. Controlling complex nanoemulsion morphology using asymmetric cosurfactants for the preparation of polymer nanocapsules. Langmuir 34(3):978-990. DOI: 10.1021/acs.langmuir.7b02843.

Zhang, X., M. Fevre, G. O. Jones, and R. M. Waymouth. 2018b. Catalysis as an enabling science for sustainable polymers. Chemical Reviews 118(2):839-885. DOI: 10.1021/acs.chem rev.7b00329.

Zhang, C., D. Hu, R. Yang, and Z. Liu. 2020a. Effect of sodium alginate on phosphorus recovery by vivianite precipitation. Journal of Environmental Sciences (China) 93:164-169. DOI: 10.1016/j.jes.2020.04.007.

Zhang, F., M. Zeng, R. D. Yappert, J. Sun, Y.-H. Lee, A. M. LaPointe, B. Peters, M. M. Abu-Omar, and S. L. Scott. 2020b. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370(6515):437-441. DOI: 10.1126/science.abc5441.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×

Zhao, Y. B., X. D. Lv, and H. G. Ni. 2018. Solvent-based separation and recycling of waste plastics: A review. Chemosphere 209:707-720. DOI: 10.1016/j.chemosphere.2018.06. 095.

Zhu, X., J. Hao, B. Bao, Y. Zhou, H. Zhang, J. Pang, Z. Jiang, and L. Jiang. 2018. Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system. Science Advances 4(10). DOI: 10.1126/sciadv.aau1665.

Zimmermann, A. W., and R. Schomäcker. 2017. Assessing early-stage CO2 utilization technologies—Comparing apples and oranges? Energy Technology 5(6):850-860. DOI: 10.1002/ente.201600805.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 265
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 266
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 267
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 268
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 269
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 270
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 271
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 272
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 273
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 274
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 275
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 276
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 277
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 278
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 279
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 280
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 281
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 282
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 283
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 284
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 285
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 286
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 287
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 288
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 289
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 290
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 291
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 292
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 293
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 294
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 295
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 296
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 297
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 298
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 299
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 300
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 301
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 302
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 303
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 304
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 305
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 306
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. New Directions for Chemical Engineering. Washington, DC: The National Academies Press. doi: 10.17226/26342.
×
Page 307
Next: Appendix A: List of Acronyms »
New Directions for Chemical Engineering Get This Book
×
 New Directions for Chemical Engineering
Buy Paperback | $50.00 Buy Ebook | $40.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Over the past century, the work of chemical engineers has helped transform societies and the lives of individuals, from the synthetic fertilizers that helped feed the world to the development of novel materials used in fuels, electronics, medical devices, and other products. Chemical engineers' ability to apply systems-level thinking from molecular to manufacturing scales uniquely positions them to address today’s most pressing problems, including climate change and the overuse of resources by a growing population.

New Directions for Chemical Engineering details a vision to guide chemical engineering research, innovation, and education over the next few decades. This report calls for new investments in U.S. chemical engineering and the interdisciplinary, cross-sector collaborations necessary to advance the societal goals of transitioning to a low-carbon energy system, ensuring our production and use of food and water is sustainable, developing medical advances and engineering solutions to health equity, and manufacturing with less waste and pollution. The report also calls for changes in chemical engineering education to ensure the next generation of chemical engineers is more diverse and equipped with the skills necessary to address the challenges ahead.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!