National Academies Press: OpenBook

Selected Heritable Disorders of Connective Tissue and Disability (2022)

Chapter: 4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders

« Previous: 3 Marfan Syndrome and Related Hereditary Aortopathies
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

4

Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders

The Ehlers-Danlos syndromes (EDS) are a group of heritable disorders of connective tissue (HDCTs) that share joint hypermobility and skin involvement. Other organ systems are involved to greater or lesser degrees, depending on the type of EDS. Hypermobility spectrum disorders (HSD) are included in this discussion because of their similarities with EDS, especially hypermobile EDS (hEDS), although they do not meet the diagnostic criteria for EDS. This chapter describes the history, diagnosis, and characteristics of EDS/HSD, and reviews their treatment, management, and selected associated physical and mental secondary impairments, many of which can limit activities and restrict participation of affected individuals in work and school. An overview EDS and HSD is provided in Annex Table 4-1 at the end of the chapter. Throughout this chapter, hEDS and HSD are considered together as “hEDS/HSD” because of their clinical similarities. Diagnostic criteria prior to 2017 would not have distinguished between hEDS and HSD, so much of the research on these disorders cited in this report is based on a mix of the two. The term “EDS/HSD” includes HSD with other types of EDS when it encompasses hEDS.

HISTORY OF EHLERS-DANLOS SYNDROMES AND HYPERMOBILITY SPECTRUM DISORDERS

Parapia and Jackson (2008) present a historical review of EDS/HSD. The first report of a patient with joint hypermobility and skin laxity was published in 1892 by Tschernogobow, who presented two patients to the Moscow and Venereology and Dermatology Society (Tschernogobow,

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

1892). Other cases of joint hypermobility and skin laxity were subsequently reported by Gould and Pyle (1897) and Wile (1883).

In 1901, Ehlers described a patient with joint laxity; unusually stretchy skin; and a history of easy bruising, frequent knee subluxations, and delayed walking (Beighton, 1970). In 1908, Danlos collaborated with Pautier to further explore the physical manifestations of what came to be known as Ehlers-Danlos syndrome (Beighton, 1970).

In the United States, Tobias (1934) reported the first case of EDS/HSD; Ronchese (1936) reported on 24 cases in the literature and 3 whom he had seen personally. McKusick’s first edition of Heritable Disorders of Connective Tissue (1956) chronicled fewer than 100 reports in the literature; this number had risen to 300 by 1966, when the third edition was published. The first suggestion that the condition was inherited as an autosomal-dominant trait was published by Johnson and Falls (1949), who studied a large family with 32 affected members. As described by Parapia and Jackson (2008), Jansen (1955) reviewed all the extant published pedigrees at the time and suggested that a genetic defect of collagen most likely explained the EDS/HSD phenotype; support for this conclusion was later published by Sestak (1962).

By the late 1960s, different forms of EDS/HSD had begun to be recognized (Beighton, 1970; McKusick, 1972). Pinnell and colleagues (1972) described lysyl hydroxylase deficiency in an autosomal-recessive form of EDS presenting with rupture of the ocular globe and scoliosis. This observation represented the first identified molecular causation of a type of EDS. By 1988, nine different types of EDS/HSD had been proposed in an international nosology of HDCTs—the Beighton criteria (Beighton et al., 1988). A simplified classification was later proposed in what was called the Villefranche nosology (Beighton et al., 1998). Almost 20 years would transpire before an updated nosology would be published in 2017, identifying 13 distinct types of EDS, including hEDS (Malfait et al., 2017) (Table 4-1).

By 2017, the molecular cause of 12 of the then 13 types of EDS/HSD had been identified (Table 4-1). In 2018, another gene associated with classical-like EDS (type 2) was identified: bi-allelic alterations in the AEBP1 gene lead to defective collagen assembly and abnormal connective tissue structure (Blackburn et al., 2018). Identification and understanding of the genetic basis of the 13 EDS types, several of which have two or more subtypes, continue to evolve. While joint hypermobility is common to all types of EDS, as well as HSD, other presenting factors may vary among types and individuals. Only one type of EDS (the most common type, hEDS) and HSD remain without a known genetic cause. In an effort to accelerate the search for the hEDS gene(s) and increase the likelihood of finding

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

TABLE 4-1
Clinical Classification of the Ehlers-Danlos Syndromes, Inheritance Pattern, and Genetic Basis

Clinical EDS subtype Abbreviation IP Genetic basis Protein
1 Classical EDS cEDS AD Major: COL5A1, COL5A1 Type V collagen
Rare: COL1A1
c.934C>T, p.(Arg312Cys)
Type I collagen
2 Classical-like EDS clEDS AR TNXB Tenascin XB
3 Cardiac-valvular cvEDS AR COL1A2 (biallelic mutations that lead to COL1A2
NMD and absence of pro α2(I) collagen chains)
Type I collagen
4 Vascular EDS vEDS AD Major: COL3A1 Type III collagen
Rare: COL1A1
c.934C>T, p.(Arg312Cys)
c.1720C>T, p.(Arg574Cys)
c.3227C>T, p.(Arg1093Cys)
Type I collagen
5 Hypermobile EDS hEDS AD Unknown Unknown
6 Arthrochalasia EDS aEDS AD COL1A1, COL1A2 Type I collagen
7 Dermatosparaxis EDS dEDS AR ADAMTS2 ADAMTS-2
8 Kyphoscoliotic EDS kEDS AR PLOD1 LH1
FKBP14 FKBP22
9 Brittle Cornea syndrome BCS AR ZNF469 ZNF469
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Clinical EDS subtype Abbreviation IP Genetic basis Protein
10 Spondylodysplastic EDS spEDS AR B4GALT7 β4GalT7
B3GALT6 β3GalT6
SLC39A13 ZIP13
11 Musculocontractural EDS mcEDS AR CHST14 D4ST1
DSE DSE
12 Myopathic EDS mEDS AD or AR COL12A1 Type XII collagen
13 Periodontal EDS pEDS AD C1R C1r
C1S C1s

SOURCE: Malfait et al., 2017, p. 10. © 2017 Wiley Periodicals, Inc.

NOTE: AD, autosomal dominant; AR, autosomal recessive, IP, inheritance pattern; NMD, nonsense-mediated mRNA decay.

them, the International Consortium on the Ehlers-Danlos Syndromes & Hypermobility Spectrum Disorders convened in 2016 to refine the diagnostic criteria for hEDS. These new criteria were significantly more rigorous than the previously defined criteria for what was called the hypermobility type under the Villefranche criteria. Consortium members, led by Castori, recognized that some people who met the Villefranche criteria for the hypermobility type would not meet the new, more restrictive criteria under the 2017 nosology; thus, the concept of “hypermobility spectrum disorders” emerged (Castori et al., 2017). Castori and colleagues (2017) proposed that joint hypermobility exists on a spectrum in the human population. Individuals who meet the established clinical criteria for hEDS receive that diagnosis, while those who do not meet those criteria but manifest symptomatic hypermobility are considered to have HSD. The diagnostic distinction between HSD and hEDS may not be clinically meaningful, however, as both groups may experience the same types of physical and mental impairments and potential functional limitations (Aubry-Rozier et al., 2021).

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

While the early reports of EDS/HSD focused on the unusual joint and skin findings observed in these patients, clinicians began to recognize the multisystem nature of these disorders, such that they affect virtually every organ system in the body. Secondary impairments include chronic pain (Castori, 2016), gastrointestinal dysmotility (Fikree et al., 2017), chronic fatigue (Hakim et al., 2017a), mental manifestations (Bulbena et al., 2017), dysautonomia (Roma et al., 2018), and cranial and spinal neurologic complications (Henderson et al., 2017). Recent reports suggest that immune dysfunction and mast cell activation are more common in hEDS/HSD than in the general population (Brock et al., 2021). Elevated tryptase levels are present in an estimated 6 percent of the general population. Hereditary alpha tryptasemia (HAT) is associated with an elevated serum tryptase, and persons with HAT may manifest joint hypermobility similar to that seen in other HDCT phenotypes (National Institute of Allergy and Infectious Diseases, 2018). The spectrum of mast cell dysregulation in these disorders is increasingly recognized. Prevalence estimates for these disorders are currently lacking, but this is an area of active investigation (Seneviratne et al., 2017).

Research has shown that individuals who meet the diagnostic criteria for hEDS and HSD have similar extra-articular manifestations and disease severity (Aubry-Rozier et al., 2021), contradicting the initial diagnostic description of HSD as being purely musculoskeletal. Therefore, patients diagnosed with HSD must not be assumed to have a milder condition or problems related only to the musculoskeletal system, as initially presumed when the diagnostic criteria were first established in 2017. These observations have prompted a call for further studies to reassess the 2017 diagnostic criteria and develop evidence-based diagnostic criteria for hEDS and HSD (Tinkle, 2020). Some such studies are currently under way.

Recent investigations have demonstrated that individuals meeting the diagnostic criteria for hEDS and those diagnosed with HSD have comparable rates of secondary impairments, such as chronic pain, dysautonomia, and gastrointestinal dysmotility. Research also shows that while there are two distinct groups among individuals with hEDS and HSD with respect to the severity of the secondary impairments they experience, the severity groups do not correspond to diagnosis (Copetti et al., 2019).

DIAGNOSIS OF EHLERS-DANLOS SYNDROMES AND HYPERMOBILITY SPECTRUM DISORDERS

Each type of EDS, as well as HSD, has its own set of specific diagnostic criteria (see Annex Table 4-1). Most important in making the diagnosis is the clinician’s awareness that EDS/HSD should be considered. Once a patient has been recognized as having joint hypermobility, the differential

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

diagnosis should consider the various forms of EDS/HSD. Because the genes underlying the hEDS phenotype are not yet identified, diagnosis of hEDS rests entirely on the clinical criteria. Castori and colleagues (2017) present one widely used diagnostic algorithm for hEDS (see also International Consortium, 2017). These diagnostic criteria incorporate data from the Beighton scoring system used to assess hypermobility (Juul-Kristensen et al., 2017). Table 4-2 lists a number of additional hypermobility scales that can be used to assess hypermobility and diagnose generalized joint hypermobility associated with EDS/HSD.

The clinical diagnostic criteria for 12 other types of EDS are provided on the Ehlers-Danlos Society website,1 but because of the overlap of symptoms among many types of EDS and HSD, definitive diagnosis includes confirmation through genetic testing of those types for which the responsible genes have been identified. The classical type (cEDS) and vascular type (vEDS) of EDS have their own sets of diagnostic criteria (Byers et al., 2017); diagnostic criteria for the 10 rarer types were published in 2017 (Malfait et al., 2017).

Research consistently describes the challenges and delays involved in establishing a correct diagnosis and receiving proper management for hEDS/HSD (Halverson et al., 2021; Knight, 2015). People with hEDS/HSD commonly report receiving incorrect or incomplete diagnoses, and studies

TABLE 4-2
Selected Hypermobility Assessment Scales

Scale Reference
Carter and Wilkinson Scale Carter and Wilkinson, 1964
Beighton and Horan Scale Beighton and Horan, 1970
Beighton Scoring System Beighton et al., 1973
Rotés Querol Bulbena et al., 1992; Rotés Querol, 1983
Contompasis McNerney and Johnston, 1979
Hospital del Mar Bulbena et al., 1992
Lower Limb Assessment Score Meyer et al., 2017
Upper Limb Hypermobility Assessment Tool Nicholson and Chan, 2018
5-Item Questionnaire (self-report) Hakim and Grahame, 2003
7-Item Questionnaire (self-report) Bulbena et al., 2014

___________________

1 See https://www.ehlers-danlos.com/eds-types (accessed May 25, 2022).

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

document an average 11–12 years’ delay in establishing a correct diagnosis (Halverson et al., 2021; Knight, 2015; Terry et al., 2015). Even once diagnosed, individuals often report receiving inappropriate interventions from clinicians who are not knowledgeable about EDS/HSD. Because symptoms of hEDS/HSD are not always visible, affected individuals may experience high levels of distress and isolation as a result of actually or fearing not being believed about their signs and symptoms (Halverson et al., 2021; Knight, 2015; Langhinrichsen-Rohling et al., 2021; Palomo-Toucedo et al., 2020). Psychosocial support is important for patients with these disorders to help them face the challenges associated with the variety of symptoms they experience, as well as the potential effects of those symptoms on daily activities (Miklovic and Sieg, 2022; Palomo-Toucedo et al., 2020).

EDS/HSD are a complex set of disorders in large part because of their manifestations in multiple body systems. Some of the symptoms experienced by affected individuals are not clearly attributable to a single impairment in a specific body system. A well-functioning body depends on the proper functioning of all of its parts together, not just as individual components, operating as a complete system in which all of the parts interact with one another. Accordingly, a malfunction in one part inevitably affects other parts as well. The relationships among body systems are complex and not fully understood by science, a fact that becomes particularly apparent in disorders that, like EDS/HSD, affect tissues throughout the body. Problems in the immune system, for example, such as mast cell activation disease (MCAD), can manifest as symptoms in other body systems, such as gastrointestinal disorders, respiratory difficulties, nonmigraine headaches, and cognitive dysfunction or impairment, sometimes referred to as “brain fog” (Maitland, 2020). Dysfunction of the autonomic nervous system (dysautonomia) also affects the entire body (Maxwell, 2020; Vernino et al., 2021). In EDS/HSD, a variety of factors, including MCAD and dysautonomia, likely contribute to such symptoms as abdominal (gastrointestinal) distress and cognitive impairment (Maxwell, 2020). In addition to cognitive impairment, dysautonomia can manifest as symptoms of anxiety, attention deficit, and insomnia (Maxwell, 2020).

This clinical picture highlights the complex relationship not only among the physical parts of the body and their functioning but also between physical functioning and mental symptoms and functioning (e.g., cognitive function, mood disorders, anxiety). Moreover, individuals with chronic pain have a higher risk of developing symptoms of anxiety or depression, while those with anxiety or depression are more likely to experience chronic or intensified pain (Anxiety & Depression Association of America, 2022; Harvard Health Publishing, 2017).

The historical dichotomy between physical and mental disorders and the medical specialties that address them, combined with the complex

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

nature of HDCTs and a general lack of knowledge about these disorders among health care providers, undoubtedly contributes to the delayed diagnosis and misdiagnosis often experienced by individuals with EDS/HSD. The problem is bidirectional, with patients caught in the middle. Clinicians trained to address “physical” disorders may inappropriately refer a patient presenting with “unexplained” symptoms to a mental health care provider. Similarly, mental health care providers may not consider the possibility that symptoms commonly associated with a condition such as depression or anxiety may be caused, or exacerbated, by physical disorders.

The question of whether the symptoms commonly associated with a variety of mental disorders (e.g., anxiety disorders, eating disorders, attention-deficit/hyperactivity disorder) are manifestations of a physical disorder (e.g., dysautonomia), a comorbid mental disorder, or a mix of the two is a topic of debate. Two types of literature investigate the relationship between EDS/HSD and various mental disorders: some studies look at the prevalence of specific mental disorders among a population of individuals diagnosed with EDS/HSD, while others look at the prevalence of EDS/HSD or joint hypermobility more generally among a population of individuals diagnosed with a specific mental disorder. For example, the literature contains reports of an increased prevalence of eating disorders among individuals with EDS/HSD (Baeza-Velasco et al., 2022). The researchers posit that oral and gastrointestinal symptoms experienced by some people with EDS/HSD can lead to an aversion to eating, which in turn can develop into an eating disorder. On the other hand, it has been reported that most patients diagnosed with anorexia nervosa also meet the criteria for EDS/HSD (Baeza-Velasco et al., 2022).

The concern is that many individuals with EDS/HSD are inappropriately diagnosed with a psychiatric condition as the sole explanation for their symptoms, while the HDCT goes undiagnosed, and the associated physical impairments go untreated. While science works to establish a better diagnostic process or to define set of concurrent diagnoses, along with more effective standards of care, it is important to acknowledge that clinical assessment of these patients often falls short in investigating and identifying of the underlying causes of their symptoms. It is therefore critical for health care providers to be educated about such disorders as EDS/HSD and the constellation of symptoms with which they present (Miklovic and Sieg, 2022; Mittal et al., 2021). In addition, just as mental health care providers need to be aware of the physical disorders that may accompany symptoms attributable to psychiatric diagnoses, clinicians in primary care and the medical specialties need to be alert to the mental and emotional health of their patients.

Failure to recognize the complex relationships among body systems can lead to inappropriate or incomplete treatment. Treatment of symptoms without identification and treatment of contributing factors is likely to be

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

successful only partially if at all. For example, appropriate treatment of gastrointestinal symptoms could involve treatment for immune system dysfunction and dysautonomia. Appropriate treatment for pain requires identification and treatment of underlying pathology, as well as interventions to control the pain. Appropriate treatment for symptoms of anxiety could involve treatment of dysautonomia in addition to interventions to address the anxiety. It is clear that individuals with multisystem disorders such as HDCTs require care from multidisciplinary teams to investigate all of the potential causes of their symptoms (both physical and mental) (Miklovic and Sieg, 2022; Mittal et al., 2021).

CHARACTERISTICS OF EHLERS-DANLOS SYNDROMES AND HYPERMOBILITY SPECTRUM DISORDERS

Clinical Picture

The natural history of EDS/HSD is variable. The range and severity of clinical course are best understood in the context of each specific type of EDS and HSD. Nevertheless, as a group, patients with EDS/HSD share general features of joint hypermobility, skin hyperextensibility, and tissue fragility that may affect organ systems, blood vessels, skin, joints, and ligaments (Bloom et al., 2017). It is important to note that specific manifestations may depend on the type of EDS/HSD, with hallmark features, such as vascular rupture (seen in vEDS), being specific to a particular type. Additional features of pain; fatigue; cognitive dysfunction; dysautonomia; and gastrointestinal, respiratory, and immune dysfunction are often underappreciated in EDS/HSD, particularly given their waxing and waning nature in affected individuals. Results of a large survey of patients’ lived experience with hEDS/HSD show the multimorbidity nature of these conditions, with individuals reporting 15–25 symptoms involving different organ systems and having substantial impact on daily functioning (Murray et al., 2013). Schubart and colleagues (2019a) identified three symptom clusters: a pain-dominant cluster, a high symptom burden cluster, and a mental fatigue cluster. The percentage of participants in the pain-dominant subgroup was similar in all EDS/HSD diagnostic subtypes, while the percentage in the high symptom burden subgroup was higher in the cEDS and hEDS/HSD subtypes, and the percentage in the mental fatigue subgroup was higher in the vEDS and “rare/unclassified” EDS subtypes (Schubart et al., 2019a).

EDS/HSD patients often appear healthy but report a constellation of symptoms that may be difficult for clinicians to recognize as being related. Therefore, as described previously, delayed or misdiagnosis is common, and may significantly and negatively impact the clinical course. At the time of diagnosis, patients are likely to have a history of multiple

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

articular dislocations or subluxations, poor wound healing, easy bruising, and atypical scarring. Such features are often present in childhood but may be considered “normal” for the family or attributed to external factors; in severe cases, child abuse may be suspected. Severe types may also present in relatively young patients with such dramatic manifestations as spontaneous organ rupture or vascular dissection, as is seen in patients with vEDS (Shalhub et al., 2019). Often children show hypersensitivity; difficulties in eating, which may lead to eating disorders; and more fears and anxiety than are found in the general population (Baeza-Velasco et al., 2022; Ezpeleta et al., 2018).

Profound changes in body composition that occur with puberty include, for example, increased musculoskeletal growth and changes in brain development (including cognitive maturation and psychosocial maturation) and in the cardiovascular system. These changes are mediated by hormones that can affect all organ systems. In many individuals with EDS/HSD, particularly those types manifesting hypermobility, puberty is associated with the onset or worsening of secondary impairments, especially in females, and may be a period of disease amplification (Tinkle et al., 2017). These impairments include increased gastrointestinal dysmotility (Dhingra et al., 2021a), respiratory complications (Bascom et al., 2021b), postural tachycardia syndrome (POTS) (Coupal et al., 2019), MCAD (Zierau et al., 2012), increased musculoskeletal pain (Dhingra et al., 2021b; Feldman et al., 2020; Mu et al., 2019), chronic fatigue (Pacey et al., 2015), and neuropsychiatric diagnoses (Kindgren et al., 2021; Tran et al., 2020), among others. Importantly, one study found that in vEDS, mortality was increased 3-fold in males under age 20 as a result of unanticipated vascular events (Pepin et al., 2014).

A recent study assessed the health-related quality of life (HRQoL) and mental health of children and adolescents aged 4–18 with a variety of HDCTs—MFS, LDS, hEDS, and other EDS types—through child- and parent-reported questionnaires (Warnink-Kavelaars, et al., 2022). Parents also reported on the impact of their child’s condition on the family and themselves. Overall, children and adolescents with HDCTs reported “increased pain, decreased physical functioning and general health, a negative mental health state, [and] limitations in school-related and leisure activities and participation with friends and family”; those with hEDS also reported low self-esteem compared with representative general-population samples (Warnink-Kavelaars, et al., 2022, p. 6). With respect to parental and family impact, parents of children with hEDS reported increased distress and limitations on their personal time and family activities relative to the comparison sample. Children and adolescents with hEDS and their parents had the lowest scores on all but a few of the HRQoL subscales. Mu and colleagues (2019) also found that children and adolescents with hEDS/HSD had lower

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

HRQoL scores compared with healthy controls, and that pain and fatigue were the primary predictors of HRQoL. These findings emphasize the need for psychosocial support among children diagnosed with EDS/HSD and their families.

Epidemiology

Epidemiology addresses the distribution and determinants of health-related states or events in specified populations and the impact of approaches for treating or controlling health problems (Last, 2001, p. 61). This discipline provides a framework for answering many of the questions posed in the committee’s statement of task: the prevalence of HDCTs; the status of diagnosis, treatment, and prognosis for those disorders; their age at onset and gender distribution; laboratory and diagnostic tests for the disorders; their usual clinical course for adults and children; the likelihood, frequency, and duration of changes in the clinical or medical severity of symptoms, such as flare-ups or remissions; the possibility and likelihood of reducing the work-related severity of symptoms; the treatments or circumstances that may lead to vocationally relevant improvement; and secondary impairments that result from either the disorders or their treatments.

Incidence

By definition, all HDCTs are present at birth, as the underlying causative genetic variant exists within an individual’s genome. Some HDCTs are recognized at birth because of their distinct and severe manifestations, whereas the manifestations of many HDCTs evolve over time, with shifting distributions in the population. As discussed previously, delays in diagnosis are well recognized.

Prevalence

As reported in Chapter 2, all types of EDS combined are thought to occur in about 1 in 5,000 people (Pyeritz, 2000; Steinmann et al., 2002). Among all types of EDS, hEDS likely accounts for 80–90 percent of cases (Tinkle et al., 2017). Rarer EDS types include vEDS, with an estimated prevalence of 1/50,000 (Byers, 2019). All other EDS types are extremely rare (Steinmann et al., 2002); musculocontractural EDS and dermatosparaxis EDS, for example, are estimated to have a prevalence of less than 1/1,000,000 (Orphanet, 2022a,b).

Preferred sources of epidemiologic information include large case series and population-based datasets. Current inferences of prevalence are subject to ascertainment and referral bias, and must be viewed with caution.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

There is now a genetic test with which to identify many, although not all, of the EDS subtypes (Malfait et al., 2017). An epidemiologic approach to estimating the population prevalence of each EDS subtype with identified pathogenic variants would be to test for this variant in a general-population sample.

As noted in Chapter 2, there currently is no identified gene (pathogenic variant) for hEDS/HSD. Estimates of the prevalence of these disorders therefore derive from screening using standardized tests, such as the Beighton scoring system, and other clinical criteria (Castori et al., 2017). Mulvey and colleagues (2013) estimate a general-population prevalence of joint hypermobility of 18 percent, determined using a validated self-administered screening tool (Hakim and Grahame, 2003), with chronic widespread pain being present in a subset of these cases, perhaps indicating that the true prevalence of hEDS/HSD is much higher than 1/5,000.

A recent estimate of the prevalence of EDS/HSD derives from a national electronic cohort study and nested case control study conducted in Wales, United Kingdom. To derive this estimate, the researchers identified persons who were assigned a coded diagnosis of EDS/HSD or joint hypermobility syndrome (an older diagnostic term that includes both HSD and hEDS) between 1990 and 2017, finding a point prevalence of 10 cases in a practice of 5,000 patients (Demmler et al., 2019). Outpatient records were classified according to the READ 2 criteria and inpatient records according to the International Classification of Diseases, 10th edition (ICD-10).

Age and Gender Effects

hEDS/HSD are recognized in equal proportions in boys and girls. Increased joint hypermobility is seen in pubertal females (Quatman et al., 2008). Clinicians have observed the emergence of a female predominance in symptomatic EDS in the peripubertal period. The above-cited national cohort study of individuals with EDS/HSD in Wales, United Kingdom, showed a gender difference of 8.5 years in the mean age at diagnosis: the highest proportion of males was first identified at ages 5–9, while the highest proportion of females was diagnosed at ages 15–19 (Demmler et al., 2019). Overall, among 6,021 identified individuals, 30 percent were male and 70 percent female. This finding is supported by large case control studies of U.S. private insurers showing increased prescription drug claims for females beginning peripubertally (Bascom et al., 2021b; Dhingra et al., 2021a). Of note, a community-based survey conducted by Mulvey and colleagues (2013) found a progressive decline in the prevalence of joint hypermobility throughout adulthood (Mulvey et al., 2013).

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Manifestations

The 2017 report of the International Consortium on Ehlers-Danlos Syndromes & Hypermobility Spectrum Disorders provides a detailed review of clinical findings for EDS/HSD, organized by organ system and derived from clinical experience, case series, and some large population samples (Bloom et al., 2017; Hakim et al., 2021). Annex Tables 5-35-12 list many of the physical and mental impairments associated with EDS/HSD. Studies cited below provide epidemiologic evidence for specific organ system manifestations associated with these disorders. This research shows greater prevalence of symptoms and diagnoses involving diverse organ systems among persons with EDS/HSD than was previously thought. These findings provide growing evidence that EDS/HSD should be viewed as a disorder not only with musculoskeletal manifestations but also with diverse, multi–organ system manifestations, including orthostatic intolerance (De Wandele et al., 2014a,b; 2014b; Hakim et al., 2017b; Roma et al., 2018; Rowe et al., 1999; Rowe, 2022), gastrointestinal symptoms, neurologic manifestations, respiratory manifestations (Bascom et al., 2021a,b; Chohan et al., 2021), and psychiatric manifestations (Bulbena et al., 2017). Notably, the pathophysiologic relationship between EDS/HSD and many of these manifestations and comorbid conditions is unclear, and the evidence linking them is primarily associative; many are also common in chronic conditions that are not characterized by connective tissue dysfunction. Further research is needed to understand the pathogenetic sequence for these manifestations and the implications for primary/secondary/tertiary prevention and disease state management.

Multisystem manifestations are often significant, but may vary both among individuals and throughout an affected individual’s lifetime. Not only do the physical and mental secondary impairments experienced by individuals with EDS/HSD differ from person to person, but the presence and severity of the impairments also may fluctuate (wax and wane) over time. A growing body of literature suggests that comorbid conditions, such as orthostatic intolerance and immune dysregulation, collectively contribute to disease severity and thus to an individual’s experience and associated disability (Copetti et al., 2019; Kalisch et al., 2020; Krahe et al., 2018). Individuals with versus those without hEDS/HSD also develop migraines earlier, have more days with migraines per month, and experience more accompanying symptoms (Puledda et al., 2015).

Patients will likely experience musculoskeletal and other disease manifestations throughout life. Joint hypermobility contributes to articular instability, with subluxation or dislocation leading to pain and premature degenerative arthritis over time. Hand and wrist pain can compromise fine motor skills, making it difficult to perform such activities as keyboarding

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

and other fine motor tasks that may be required for work or school. Pes planus (flat feet, usually associated with ankle pronation) is common in all forms of EDS/HSD and may further contribute to joint instability and pain; moderate to severe pes planus has been associated with knee and intermittent lower back pain (Kosashvili et al., 2008). Clinically significant and progressive scoliosis may develop, particularly in the kyphoscoliotic, classical, and arthrochalasia types of EDS as well as hEDS/HSD (Yonko et al., 2021). In addition, EDS/HSD patients are at increased risk of craniocervical and other spinal instability and such central nervous system pathologies as Chiari 1 malformation, intracranial hypertension, tethered cord syndrome, and syringomyelia (Henderson et al., 2017; Klinge et al., 2021, 2022). Myopia is common but nonspecific, and there is an increased risk for retinal detachment, glaucoma, strabismus, cataract, amblyopia, cornea scarring or rupture, and blindness (Louie et al., 2020). EDS/HSD is also associated with immune dysfunction, including MCAD, as well as primary immune deficiencies, which in turn can contribute to immune-mediated pathology in one or multiple organ systems (Brock et al., 2021; Sordet et al., 2005). Acute catastrophic events experienced during the course of disease are most likely to be seen in patients with vEDS, cEDS, or kyphoscoliotic EDS (kEDS) (Bowen et al., 2017; Brady et al., 2017; Byers et al., 2017). Such events include stroke, arterial dissection, spontaneous cerebrospinal fluid leak, ruptured aneurysm, spontaneous rupture of bladder, diverticulum, incarcerated hernia, intestinal intussusception, gastric perforation, and peripartum uterine rupture (Castori et al., 2015; Gilliam et al., 2020).

Gastrointestinal problems can be pronounced and contribute to high levels of health impairment and functional limitations in patients with hEDS/HSD. Individuals who experience frequent episodes of gastroinstestinal distress require access to a restroom whenever necessary at work or school. These problems are amplified by the presence of POTS or MCAD (Chelimsky and Chelimsky, 2018; Hsieh, 2018; Inayet et al., 2018; Lam et al., 2021; Mehr et al., 2018; Tai et al., 2020; Wilder-Smith et al., 2019). Genitourinary conditions are also common and can affect activities and participation (Nee et al., 2019). For example, urinary incontinence can make it difficult to stand for extended periods of time without leakage. A study of gynecologic symptoms in hEDS/HSD indicated high frequencies of menorrhagia, dysmenorrhea, and dyspareunia (Hugon-Rodin et al., 2016). Urogynecological problems are amplified by comorbid POTS and MCAD, and hEDS/HSD symptoms may increase before and during menses (Patel and Khullar, 2021; Peggs et al., 2012). Adolescents with EDS/HSD may also experience severe gynecological symptoms (Hernandez and Dietrich, 2020).

Since the first clinical report in 1988, several psychopathological conditions, especially anxiety and depression, have been reported consistently in individuals with EDS/HSD (Baeza-Velasco et al., 2011; Bathen et al.,

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

2013; Berglund et al., 2015; Bulbena et al., 2017; Bulbena et al., 1988; Bulbena et al., 2015). Chronic pain is also common among individuals with EDS/HSD (Voermans et al., 2010a), with studies finding a prevalence of between 43 percent (Kalisch et al., 2020) and 99 percent (Murray et al., 2013). Individuals with EDS/HSD commonly experience severe fatigue as well (Voermans et al., 2010b). Depression is common among individuals with other chronic conditions, including pain, and dysautonomias can cause symptoms commonly associated with anxiety.

As noted, EDS/HSD may manifest in several organ systems, and these manifestations can result in impaired quality of life (Berglund et al., 2015) and employment difficulties. A survey of 455 persons with hEDS/HSD showed that 55 percent were currently employed, and 24 percent were working only part-time as a result of their disorder (Murray et al., 2013), while 12 percent (54 of 466 respondents) indicated they were not working because of hEDS/HSD-associated limitations. Among those who were working, half had to change roles or take on less responsibility because of their diagnosis. Of the 119 student respondents, 18 percent were unable to attend school full-time, and 32 percent reported not being enrolled in school at all because of their EDS/HSD diagnosis.

The most common manifestations of EDS/HSD that impact quality of life are chronic pain (joint and limb), chronic fatigue, and hypermobility (Murray et al., 2013). Other organ systems that may be affected by EDS/HSD include the gastrointestinal, nervous, ocular, respiratory, and urogenital systems. All of these manifestations, along with anxiety, depression, and fibromyalgia, can affect an individual’s participation in work, school, and other activities (Murray et al., 2013). In particular, hEDS/HSD appear to be associated with greater pain and work impairment (De Baets et al., 2021), whereas cEDS has a greater effect on activities of daily living; both types of EDS/HSD were found to result in greater perceived disability than is evident in the general population (Bogni et al., 2015). hEDS/HSD are also associated with mobility disability, which was found to be more prevalent among individuals who are older, have more fatigue, and have a higher body mass index (Kalisch et al., 2020). Mobility issues can be an impediment to working for individuals with hEDS/HSD who need a wheelchair or have difficulty accessing public transportation, and some pain medications used for EDS/HSD have sedative side effects that preclude driving. Obstructive sleep apnea occurs among those with EDS/HSD more frequently than in the general population and is associated with greater fatigue, particularly during the day, and poorer quality of life (Gaisl et al., 2017); daytime sleepiness can affect an individual’s ability to work regular hours. POTS, a frequent manifestation of EDS/HSD, is associated with a variety of persistent symptoms, such as cognitive impairments (e.g., in attention and recall), fatigue, low energy, headaches, and sleep disturbances, and can have substantial

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

effects on various aspects of quality of life (Mathias et al., 2021; Vernino et al., 2021), including employment and household tasks. Individuals with EDS/HSD report that their pain and fatigue can make working difficult, requiring reduced hours or different jobs, and in some cases leading them to leave a job or be terminated (Palomo-Toucedo et al., 2020).

TREATMENT AND MANAGEMENT

There is no cure for EDS/HSD, and management strategies rely on preventing and mitigating symptoms and treating associated physical and mental secondary impairments; these interventions are important for managing functional limitations and reducing HDCT-related disability. This section addresses the management of EDS/HSD; Chapter 5 addresses the relationship among secondary impairments associated with these disorders, their potential effects on function, and considerations relevant to Social Security Administration disability determinations.

Given the paucity of clinical trials or large-scale studies of specific therapeutic options for EDS/HSD, experts caring for patients with these disorders have developed management algorithms. The International Consortium on the Ehlers-Danlos Syndromes & Hypermobility Spectrum Disorders is the leading authority on EDS/HSD diagnosis, classification, and management, and as noted earlier, in 2017 published clinical practice guidance (Bloom et al., 2017; Malfait et al., 2017). More recent clinical guidance was published in the December 2021 issue of the American Journal of Medical Genetics (Hakim et al., 2021).

The treatment burden for EDS/HSD includes high numbers of clinician encounters to manage multisystem manifestations. Demmler and colleagues (2019) found that adults with EDS/HSD had significantly more diagnoses in 16 of 20 Read Code disease categories compared with controls, as well as more prescriptions for 15/17 Read Codes. A large proportion of persons with EDS/HSD require medications chronically, with a subset meeting criteria for polypharmacy—a substantial medication burden. Numbers of surgical procedures can be very high as well, as are the need for and use of allied health professional services. Durable medical equipment, including braces and mobility assistive devices, also may be required.

Education is particularly important for optimal EDS/HSD management, not only for patients and families but also for members of their health care team so they can appropriately identify and manage disease manifestations and coordinate multidisciplinary care (Miklovic and Sieg, 2021; Mittal et al., 2021). Patients and providers should understand how to recognize EDS/HSD-related disease manifestations and what monitoring practices may be beneficial in assessing the development of complications seen generally in EDS/HSD or specific to a certain EDS type. In addition, multidisciplinary

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

care teams should include a clinical geneticist to provide guidance on the implications of EDS/HSD for family members and the risk of recurrence within the family. Patients should be counseled on strategies for preventing or mitigating symptoms, as well as the risks associated with certain activities that may result in physical trauma, such as physically demanding activities or pregnancy and childbirth. Moreover, their hypersensitivity may cause individuals with EDS/HSD to have poor tolerance for pharmacologic treatments, a possibility clinicians need to consider when prescribing such drugs as corticoids, antidepressants, and some antibiotics. Given the lack of clinical experience with EDS/HSD in most clinical settings, it is important for those with expertise in EDS/HSD to educate other members of the patient’s care team regarding the disorders and develop monitoring and treatment plans collaboratively. Anyone newly diagnosed with vEDS or some other rare EDS type that is considered to pose a high risk of significant cardiovascular involvement should be referred to a clinical center with experience and expertise in EDS management (Byers et al., 2017).

Once a diagnosis of EDS/HSD has been made, patients should be counseled regarding potential disease-associated manifestations that necessitate immediate care. Acute, sometimes atraumatic dislocations are common. In certain types of EDS, urgent conditions may be signaled by the sudden onset of severe pain, including chest pain, or bleeding that can occur with vascular or organ (spleen, liver, colon, gravid uterus) rupture. Acute ruptures are most commonly seen in vEDS or kEDS, and more rarely in other types of EDS (D’Hondt et al., 2018; Lum et al., 2011). Any acute reduction in vision or increase in ocular discomfort requires emergency ophthalmic evaluation. Rapidly progressing neurologic signs may indicate central nervous system involvement requiring urgent management (Henderson et al., 2017, 2019). Finally, the sudden onset of shortness of breath may indicate spontaneous pneumothorax, for which immediate evaluation and treatment are required.

Monitoring for the presence of certain disease manifestations can be helpful in preventing the above emergencies by identifying early signs of pathology in asymptomatic patients. Specifically, all adult and pediatric EDS patients should undergo baseline cardiovascular evaluation. Cardiovascular assessment should include echocardiography to determine the presence and degree of cardiovascular involvement, such as valvular disease or aortic dilation (Atzinger et al., 2011). Patients with normal baseline studies and an EDS type considered low-risk for cardiovascular involvement may require fewer repeat evaluations, although no standardized interval for repeat testing has been established. Patients with abnormal findings or those with an EDS type considered high-risk for cardiovascular involvement (such as vEDS or kEDS) should be managed by a cardiovascular specialist to provide frequent monitoring and initiate specific interventions (e.g., pharmacologic,

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

surgical) as needed. In addition, patients with many of the rarer forms of EDS have cardiovascular involvement with functional consequences necessitating lifelong specialist management (Brady et al., 2017).

Given the risk of retinal detachment, lens luxation, and cornea breakdown, all EDS patients should undergo baseline ophthalmologic evaluation that is repeated at regular intervals to assess for evidence of corneal, lenticular, scleral, or retinal involvement. Although patients with kEDS are at the greatest risk for disease-related manifestations involving the eye, including retinal detachment, scleral fragility, globe rupture, and glaucoma, patients with other EDS types may be affected by these conditions and benefit from regular evaluation as well.

Several management considerations apply broadly to EDS/HSD, and strategies for mitigating certain symptoms can be used in patients with any EDS/HSD type. Evidence suggests that similar management strategies can be used for patients with hEDS and HSD (Aubry-Rozier et al., 2021). Joint hypermobility is a common feature in both, and preventive measures to minimize recurrent dislocations and/or the early onset of osteoarthritis are advised for individuals with either disorder. Preservation of joint function may be supported if the patient limits certain high-risk activities, such as contact sports or gymnastics, while engaging in joint-sparing, appropriate muscle-strengthening activities, such as water exercises or Pilates (Bowen et al., 2017). Joint management should include consultation with physical and occupational therapists, as well as evaluation by an orthotist. Although robust data are lacking, one study found that the majority of EDS/HSD patients enrolled in a physical therapy program reported benefit (Rombaut et al., 2011). For patients experiencing musculoskeletal pain related to joint hypermobility, pharmacologic treatment can be helpful but should be monitored by a clinician experienced in EDS/HSD management. Over-the-counter and prescription pain medications, as well as supplements, are more likely to cause adverse reactions in this population than in the general population (Agarwal et al., 2007; Bonadonna et al., 2016; Drugs.com, 2021; Song et al., 2020; Tahir et al., 2020; Vernino et al., 2021).

Spinal disease is a common feature of many forms of EDS/HSD. Scoliosis may be diagnosed in both children and adults, and clinically significant scoliosis may necessitate bracing or surgical intervention, especially in patients with kEDS but also in those with the cEDS, hEDS/HSD, and arthrochalasia EDS types. Experts in spine care should be involved in the care of EDS/HSD patients experiencing neck pain; headaches; migraines; or signs and symptoms suggestive of Chiari I malformation, intracranial hypertension, craniocervical or atlantoaxial instability, tethered cord, syringomyelia, dystonias, or Tarlov cysts (Henderson et al., 2017). Evaluation should include advanced imaging, such as magnetic resonance imaging.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Additional manifestations of EDS/HSD vary but may warrant specialty referral and assessment. Patients with gastrointestinal complaints should undergo a complete evaluation, including evaluation for extraluminal conditions. Upper endoscopy and colonoscopy should be approached with caution in individuals with EDS/HSD because of their underlying tissue fragility and increased risk of mucosal bleeding and complications from sedation (Kilaru et al., 2019). Immunologic involvement, particularly in patients with recurrent infections or those with symptoms of mast cell activation, requires consultation with a provider with expertise in allergy and immunology. Dysautonomia may be present, particularly in patients with hEDS/HSD. It may cause orthostatic intolerance, as well as tachycardia and/or palpitations, and contribute to a number of secondary neurological manifestations, such as fatigue, dizziness, syncope, and memory and concentration problems (Tinkle et al., 2017). Patients experiencing these complications, as well as those affected by recurrent headache, a common feature in patients with hEDS/HSD, should receive a neurologic evaluation. Patients with respiratory symptoms should receive a baseline assessment—spirometry with flow-volume loops and assessment of bronchodilator responsiveness.

Psychological assessment is important to screen for the presence of anxiety, phobic features, and depression since they frequently go unnoticed, and can interfere with daily life functions and even adherence to treatments. Individuals with EDS/HSD often have been classified as “somatizers” by clinicians unfamiliar with the disorders (Bulbena-Cabré et al., 2021). However, research on the biological and clinical basis of EDS/HSD is improving understanding of their physiology and psychopathology. The literature confirms that psychological processes, such as fear, emotional distress, or negative emotions, in EDS/HSD have a significant impact on patients’ outcomes (Bulbena-Cabré et al., 2021) and can interfere with daily activities and participation in work or school (see Chapter 5). ESD/HSD have common systemic associations with anxiety disorders, as well as significant correlations with neurodevelopmental, eating, mood, and sleep disorders (Bulbena-Cabré et al., 2021). All of these psychological issues need to be addressed in the assessment and management of individuals with EDS/HSD. It is important to reiterate that the relationships (associative or causal) among the different manifestations of EDS/HSD, as well as the relationships of those manifestations to the underlying disorder, are not fully understood. The presence and treatment of comorbid psychological disorders should not preclude the assessment and treatment of physical conditions that may underlie or contribute to symptoms associated with the psychological disorders.

Management of EDS/HSD patients should also include special consideration of specific transient states, such as the perioperative or peripartum

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

periods. Patients undergoing surgical interventions are more likely than the general population to experience adverse events associated with both soft-tissue fragility and anesthesia reactions/intolerance. Determining the presence and severity of patient-specific and EDS/HSD type–specific manifestations, such as bleeding, poor wound healing, cardiovascular involvement, or increased risk of joint subluxation or dislocation and cervical spine injury, is crucial during preoperative consultation. Tissue fragility associated with HDCTs motivated a recent assessment of surgical risk associated with EDS/HSD (and Marfan syndrome) as compared with controls in a national database (Jayarajan et al., 2020). The overall complication rate for all inpatient vascular surgery procedures was statistically greater for EDS/HSD patients (52.2 percent) than for controls (44.6 percent) (p < 0.0001). Patients with EDS/HSD showed an increased risk of postoperative hemorrhage (39 percent versus 22 percent for controls), but not of respiratory failure (8.7 percent versus 10.7 percent for controls).

Anecdotal reports beginning in 1990 (Arendt-Nielsen et al., 1990) and corroborated in 2005 (Hakim et al., 2005) indicate insufficient effect of local analgesics among persons with hEDS/HSD. Accordingly, preprocedure screening with a simple questionnaire (Hakim and Grahame, 2003) has been recommended to detect hypermobility and alert proceduralists intending to use local anesthetics for pain control in these patients. In 2017, the Patient-Centered Outcomes Research Institute–funded EDS Comorbidity Coalition conducted a research prioritization exercise; among 80 research ideas proposed, one of the 3 highest priorities was the issue of local anesthetic resistance (Bloom et al., 2021; Hakim et al., 2005). To assess the prevalence of this problem, Schubart and colleagues (2019b) conducted an online survey, finding that 88 percent of people with versus 33 percent of those without EDS/HSD reported inadequate response to local anesthesias. Postoperative pain management also is often inadequate in EDS/HSD patients, and the pain they experience may seem out of proportion. Clinicians need to understand that nociception is altered in these patients, and they may require more pain medication and different combinations of medications. A recent study of hEDS/HSD patients undergoing craneo-cervical fixation surgery found that opioid-free anesthesia in addition to postoperative administration of lidocaine, ketamine, and dexmedetomidine significantly reduced postoperative pain and the need of methadone rescues compared with opioid-based anesthesia and postsurgical management (Ramírez-Paesano et al., 2021).

The examples given above, supported by the committee members’ experience, indicate that persons with EDS/HSD have particular risks associated with procedures. A number of preoperative and preprocedural screening tools can be used to identify, quantify, communicate, and manage these risks (Moonesinghe et al., 2013). There remains, however, a need to

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

better understand and quantify procedural and surgical risks in EDS/HSD, as well as the other HDCTs. Needed as well are simple screening tools that can be used by anesthesiologists and proceduralists, particularly given the likelihood that a substantial proportion of persons with EDS/HSD are undiagnosed, but the lack of diagnosis does not remove the risk.

Use of desmopressin, a synthetic form of vasopressin, may be helpful in achieving hemostasis during and after invasive procedures (Castori, 2012). Patients with easy bruising and those demonstrating skin fragility, a notable feature in cEDS and vEDS, may benefit from daily ascorbic acid (Bowen et al., 2017). Surgical incisions (or wounds following trauma) should be closed without tension, deep stitches should be applied generously and closely, and cutaneous stitches should be left in place twice as long as in non-EDS patients; additional fixation of adjacent skin with adhesive tape can help prevent stretching of the scar (Castori, 2012, 2013b). Mast cells play a role in wound healing (Komi et al., 2020) and tolerance of adhesives; notably, their activation can be common and poorly controlled after such stressors as surgery. In addition, it may be advisable to counsel patients that, regardless of the best surgical interventions, they may have an elevated risk of postoperative complications (Guier et al., 2020; Kulas Søborg et al., 2017; Louie et al., 2020; Yonko et al., 2021) and decreased likelihood of surgical success (Rombaut et al., 2011; Yonko et al., 2021). In addition to those risks, moreover, surgical intervention and anesthesia may provoke POTS and MCAD. To limit surgical morbidity, all conservative (i.e., nonsurgical) measures should be exhausted before surgery for individuals with EDS/HSD is contemplated (see Table 4-3).

Patients contemplating pregnancy should be counseled about the risk of obstetrical complications (Byers, 2019; Byers et al., 2017; Eagleton, 2016; Karthikeyan and Venkat-Raman, 2018; Pepin et al., 2000; Pezaro et al., 2018). Preterm labor or premature rupture of membranes may occur in pregnant patients with EDS/HSD (Byers, 2019; Pezaro et al., 2018). Delivery may be precipitous and complicated by postpartum hemorrhage, extensive laceration, or extension of episiotomy incisions, or contribute to genitourinary complications, such as pelvic organ prolapse (Karthikeyan and Venkat-Raman, 2018; Pezaro et al., 2018). Similar to individuals with Loeys-Dietz syndrome, women with vEDS are at increased risk for uterine rupture and peripartum hemorrhage (Byers, 2019; Eagleton, 2016; Meester et al., 2017).

As discussed in Chapter 5, chronic pain and fatigue each have different, multifactorial causes. Management of each of these symptoms requires identification of and interventions to address the root cause. For example, management of fatigue caused by dysautonomia, MCAD, or sleep apnea requires treatment of that cause. Once the cause has been managed, relaxation techniques and mindfulness-based exercises can be helpful.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

TABLE 4-3
Surgical and Anesthetic Recommendations for Joint Hypermobility Syndrome/Ehlers-Danlos Syndrome Hypermobility Type (JHS/EDS-HT)

Evidence Ref. Recommendation
Surgical procedure
  1. Orthopedic surgery is paradoxically associated with pain worsening in JHS/EDS-HT; anecdotal observations suggest a low success rate for abdominal surgery in functional disorders.
Voermans et al., 2010a Consider more conservative treatments as an alternative to non-life-threatening operations.
  1. Although soft tissue fragility is not severe in JHS/EDS-HT, delayed wound healing with consequent suture widening, suture dehiscence and postsurgical hernias are possible complications.
Burcharth and Rosenberg, 2012; Castori, 2013a
  1. Perform skin closure in two layers (cutaneous and subcutaneous) without excessive tension.
  2. Use generous sutures, deep stitches and steri-strips as reinforcement devices.
  3. Leave sutures twice as long as normally recommended.
  1. Minor bleeding disorders are common in JHS/EDS-HT.
Jackson et al., 2013 Consider preoperative prophylaxis with desmopressin (1-deamino-8-D-arginine vasopressin), especially in patients with a positive history for mucosal bleeding (nose, gingivae, bowel, bladder, etc.) and/or easy bruising.
  1. Episiotomy is associated with an increased risk for pelvic prolapses in JHS/EDS-HT women.
Castori et al., 2012b Consider cesarean section as first-choice delivery procedure.
Anesthetic procedure
  1. Dysautonomia is a major feature in JHS/EDS-HT and may need special anesthetic considerations.
Mathias et al., 2011
  1. Consider to carry out appropriate investigations (e.g. tilt test) before any intervention in order to properly plan the anesthetic procedure, especially in patients with cardiovascular symptoms.
  2. In case of confirmed dysautonomia, consider prophylactic early fluid loading and phenylephrine infusion.
  1. JHS/EDS-HT patients often display resistance to intradermal lidocaine infiltrations and topical EMLA cream.
Arendt-Nielsen et al., 1990; Hakim et al., 2005 Consider alternative anesthetic procedures or double the anesthetic dose.
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Evidence Ref. Recommendation
  1. Epi/peridural anesthesia may be hampered by severe spondylosis and/or scoliosis, and could be complicated by intraspinal hypotension due to increased meningeal weakness in JHS/EDS-HT.
None1 Favor total anesthesia in case of major surgery.
  1. Temporomandibular joint dysfunction and occipitoatlantoaxial instability may be more common in JHS/EDS-HT.
De Coster et al., 2005; Milhorat et al., 2007 Perform intubation with care and consider the use of pediatric devices also in adults.
Postsurgery recovery
  1. Muscle deconditioning due to inactivity rapidly worsens chronic pain and fatigue in JHS/EDS-HT.
Castori et al., 2012a Consider early physical therapy support in case of surgery with postoperative bed rest for >7 days.

1 Reports specifically describing such likely complications are lacking. However, mild scoliosis and premature spondylosis are commonly encountered in the JHS/EDS-HT clinic, while some preliminary studies indicate that generalized joint hypermobility is associated with orthostatic headache.

SOURCE: Castori, 2013b. Copyright © 2013 Karger Publishers, Basel, Switzerland.

Psychosocial support and education are cornerstones of EDS/HSD management. The Ehlers-Danlos Society provides an abundance of information for both providers and patients, including community resources and support groups (www.ehlers-danlos.com).

PROGNOSIS

The prognosis and clinical course of EDS/HSD depend on individual patient factors (e.g., personal factors in the International Classification of Functioning, Disability and Health [ICF] model of disability described in Chapter 1), which vary greatly among affected individuals and are often related to the severity of disease-related physical and mental impairments, as well as the EDS/HSD type. As discussed previously, HDCTs are lifelong disorders. Recent longitudinal data from a well-characterized cohort of individuals with different types of EDS, assessed with repeated administration of standardized instruments (Schubart et al., 2022), support the

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

clinical impression of heterogeneity in clinical course. For many, EDS/HSD symptoms and disease burdens are chronic. Some persons with EDS/HSD experience a marked worsening over time, while a few see a decrease in the intensity and severity of manifestations. Overall, large cross-sectional case control studies of national prescription claims databases as a proxy for disease indicate an increase in multiple prescribed medications over the life course in persons with EDS/HSD compared with controls (Bascom et al., 2021b; Dhingra et al., 2021b).

It is important to note that patients with vEDS have a decreased life expectancy, with a median survival age of 46 for males and 54 for females (Pepin et al., 2014). The gender difference, which closes by age 40, appears attributable to a greater proportion of deaths among males, especially in the second decade of life: one study found that 18 percent of deaths among males compared with 7 percent of females occurred by age 20 (Pepin et al., 2014). Appropriate surveillance and management of at-risk individuals can be expected to improve life expectancy (NORD, 2017). Although patients with the most common forms of EDS/HSD do not have decreased life expectancy, the disorders may profoundly impact their quality of life. Longitudinal studies of individuals with different types of EDS/HSD would increase understanding of the clinical course of the disorders; their effects on functioning; and potentially the impact of interventions, including reasonable accommodations, on participation in work and school.

EMERGING TREATMENTS

Emerging treatments or interventions for EDS/HSD are limited; clinical trials evaluating the efficacy of various treatments, aimed not only at the underlying disease but also at the specific disease-associated manifestations, are generally lacking. Several ongoing clinical trials have been registered in ClinicalTrials.gov (NLM, 2022). As of early February 2022, the database included a total of 46 active clinical trials for EDS, almost all of them in the United States and Europe (mainly France). Some trials target specific subtypes of EDS. Several trials have been completed; their results have not yet been published, but it is reasonable to expect this to occur in the next couple of years. Participants are actively being recruited for still other trials. All of these trials have been designed to address basic mechanisms of disease, secondary impairments, and/or the efficacy of various interventions with respect to function. A wide variety of interventions are being tested, including drugs, rehabilitation strategies, behavioral interventions, and assistive devices, among others.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

FINDINGS AND CONCLUSIONS

Findings

4-1. The Ehlers-Danlos syndromes (EDS) are a group of multisystem, heritable disorders of connective tissue (HDCTs) that share common elements of joint hypermobility and skin and soft tissue involvement. Hypermobility spectrum disorders (HSD) are also multisystem connective tissue disorders that are clinically similar to hypermobile EDS (hEDS) with respect to their manifestations and management.

4-2. Many factors, including underdiagnosis, lead to an underestimate of the prevalence of EDS/HSD.

4-3. EDS/HSD can manifest in physical and mental secondary impairments in any organ system and often in multiple organ systems in a given individual.

4-4. The type and severity of physical and mental manifestations associated with EDS/HSD often vary both among individuals and throughout an affected individual’s lifetime. Epidemiologic evidence supports multi–organ system manifestations, high treatment burden, and high disease burden.

4-5. The pathophysiologic relationships between EDS/HSD and many of their manifestations and comorbid conditions are unclear, and the evidence linking them is primarily associative.

4-6. Diagnosis of EDS/HSD is based on established clinical criteria, and most, though not all, types can be confirmed through genetic testing.

4-7. Diagnosis of hEDS and HSD is based solely on clinical criteria, since neither has a known genetic test. Understanding of and diagnostic criteria for hEDS and HSD continue to evolve.

4-8. There are currently no curative treatments for EDS or HSD. Management of the disorders involves early diagnosis and recognition; monitoring; and treatment of the manifestations in multiple organ systems, including treatment of associated physical and mental secondary impairments present at the time of identification and preventive measures to lessen or prevent problems that may develop over time.

4-9. The prognosis and clinical course of EDS/HSD depend on individual patient factors, which vary greatly among affected individuals and are often related to the severity of disease-associated physical and mental impairments, as well as the EDS/HSD type.

4-10. Individuals with vascular EDS (vEDS) have a decreased life expectancy, with a median survival age of 46 for males and 54 for females.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

4-11. Diagnosis and management of EDS and HSD involve specialists across multiple physical and mental health disciplines.

4-12. Delayed diagnosis may result in a lack of or inappropriate management that may exacerbate physical and mental manifestations of EDS/HSD. Unanticipated risks and harms may attend routine procedures and therapies that carry EDS/HSD-specific risks, such as tissue fragility and physiologic reactivity resulting from autonomic and immune dysregulation.

4-13. EDS/HSD can affect individuals’ everyday physical and mental functioning, particularly as a result of limitations associated with pain, fatigue, and anxiety.

4-14. Secondary impairments in any of the body systems can be severe and affect the functioning of individuals with EDS/HSD.

4-15. Physical and mental secondary impairments associated with EDS/HSD often manifest or worsen during puberty, especially in females. Males with vEDS are at higher risk for complications during puberty.

4-16. Pregnancy can be a high-risk condition in some individuals with EDS; women with vEDS have an increased risk of uterine rupture or peripartum hemorrhage.

4-17. Following trauma or surgery, individuals with versus those without EDS/HSD often have a worse trajectory in terms of both length of recovery and frequency of complications.

Conclusions

4-1. EDS and HSD have multiple clinical manifestations that, individually or in combination, can cause functional limitations of varying severity. Some manifestations may become apparent only with age, and the types and severity of manifestations may vary throughout an affected individual’s lifetime.

4-2. Development of a screening tool to identify EDS/HSD could provide timely diagnosis of the disorders and help mitigate the negative effects of delayed diagnosis and EDS/HSD-specific risks that may attend routine procedures and therapies.

4-3. Management of EDS/HSD requires a multidisciplinary approach and involves early diagnosis of the multisystem findings, treatment of associated physical and mental secondary impairments, and measures to reduce or prevent problems that may present over time.

4-4. More research is needed on the pathophysiological mechanisms of EDS/HSD and their comorbid conditions and the implications for appropriate management and outcomes of the many secondary impairments associated with EDS/HSD.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

4-5. Longitudinal studies of individuals with different types of EDS/HSD would increase understanding of the clinical course of the disorders; their effects on physical and mental functioning; and potentially the impact of interventions, including reasonable accommodations, on participation in work and school.

4-6. Health care providers need to be aware of the EDS/HSD-specific risks that may attend routine procedures and therapies.

REFERENCES

Abu, A., M. Frydman, D. Marek, E. Pras, U. Nir, H. Reznik-Wolf, and E. Pras. 2008. Deleterious mutations in the zinc-finger 469 gene cause brittle cornea syndrome. American Journal of Human Genetics 82(5):1217-1222. https://doi.org/10.1016/j.ajhg.2008.04.001.

Agarwal, A. K., R. Garg, A. Ritch, and P. Sarkar. 2007. Postural orthostatic tachycardia syndrome. Postgraduate Medical Journal 83(981):478-480. https://doi.org/10.1136/pgmj.2006.055046.

Anxiety & Depression Association of America. 2022. Chronic pain. https://adaa.org/understanding-anxiety/related-illnesses/other-related-conditions/chronic-pain (accessed March 7, 2022).

Arendt-Nielsen, L., S. Kaalund, P. Bjerring, and B. Høgsaa. 1990. Insufficient effect of local analgesics in Ehlers Danlos type III patients (connective tissue disorder). Acta Anaesthesiologica Scandinavica 34(5):358-361. https://doi.org/10.1111/j.1399-6576.1990.tb03103.x.

Atzinger, C. L., R. A. Meyer, P. R. Khoury, Z. Gao, and B. T. Tinkle. 2011. Cross-sectional and longitudinal assessment of aortic root dilation and valvular anomalies in hypermobile and classic Ehlers-Danlos syndrome. Journal of Pediatrics 158(5):826-830.e821. https://doi.org/10.1016/j.jpeds.2010.11.023.

Aubry-Rozier, B., A. Schwitzguebel, F. Valerio, J. Tanniger, C. Paquier, C. Berna, T. Hügle, and C. Benaim. 2021. Are patients with hypermobile Ehlers–Danlos syndrome or hypermobility spectrum disorder so different? Rheumatology International 41(10):1785-1794. https://doi.org/10.1007/s00296-021-04968-3.

Baeza-Velasco, C., P. Espinoza, A. Bulbena, A. Bulbena-Cabré, M. Seneque, and S. Guillaume. 2022. Hypermobility spectrum disorders/Ehlers–Danlos syndrome and disordered eating behavior. In Hidden and Lesser-known Disordered Eating Behaviors in Medical and Psychiatric Conditions, edited by E. Manzato, M. Cuzzolaro and L. M. Donini. Switzerland: Springer Nature. https://link.springer.com/chapter/10.1007%2F978-3-030-81174-7_28#citeas.

Baeza-Velasco, C., M. C. Gély-Nargeot, A. Bulbena Vilarrasa, and J. F. Bravo. 2011. Joint hypermobility syndrome: Problems that require psychological intervention. Rheumatology International 31(9):1131-1136. https://doi.org/10.1007/s00296-011-1839-5.

Bascom, R., R. Dhingra, and C. A. Francomano. 2021a. Respiratory manifestations in the Ehlers–Danlos syndromes. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 187(4):533-548. https://doi.org/10.1002/ajmg.c.31953.

Bascom, R., R. Dhingra, C. A. Francomano, and J. R. Schubart. 2021b. A case–control study of respiratory medication and co-occurring gastrointestinal prescription burden among persons with Ehlers–Danlos syndromes. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 187(4):549-560. https://doi.org/10.1002/ajmg.c.31947.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Bathen, T., A. B. Hångmann, M. Hoff, L. Andersen, and S. Rand-Hendriksen. 2013. Multidisciplinary treatment of disability in Ehlers-Danlos syndrome hypermobility type/hypermobility syndrome: A pilot study using a combination of physical and cognitive-behavioral therapy on 12 women. American Journal of Medical Genetics. Part A 161a(12):3005-3011. https://doi.org/10.1002/ajmg.a.36060.

Baumann, M., C. Giunta, B. Krabichler, F. Rüschendorf, N. Zoppi, M. Colombi, R. E. Bittner, S. Quijano-Roy, F. Muntoni, S. Cirak, G. Schreiber, Y. Zou, Y. Hu, N. B. Romero, R. Y. Carlier, A. Amberger, A. Deutschmann, V. Straub, M. Rohrbach, B. Steinmann, K. Rostásy, D. Karall, C. G. Bönnemann, J. Zschocke, and C. Fauth. 2012. Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. American Journal of Human Genetics 90(2):201-216. https://doi.org/10.1016/j.ajhg.2011.12.004.

Beighton, P. 1970. The Ehlers-Danlos syndrome. Annals of the Rheumatic Diseases 29(3):332-333. https://doi.org/10.1136/ard.29.3.332.

Beighton, P. H., and F. T. Horan. 1970. Dominant inheritance in familial generalised articular hypermobility. Journal of Bone and Joint Surgery (British Volume) 52(1):145-147. https://doi.org/10.1302/0301-620X.52B1.145.

Beighton, P., L. Solomon, and C. L. Soskolne. 1973. Articular mobility in an African population. Annals of the Rheumatic Diseases 32(5):413-418. https://doi.org/10.1136/ard.32.5.413.

Beighton, P., A. de Paepe, D. Danks, G. Finidori, T. Gedde-Dahl, R. Goodman, J. G. Hall, D. W. Hollister, W. Horton, V. A. McKusick, J. M. Opitz, F. M. Pope, R. E. Pyeritz, D. L. Rimoin, D. Sillence, J. W. Spranger, E. Thompson, P. Tsipouras, D. Viljoen, I. Winship, I. Young. 1988. International nosology of heritable disorders of connective tissue, Berlin, 1986. American Journal of Medical Genetics 29(3):581-594. https://doi.org/10.1002/ajmg.1320290316.

Beighton, P., A. De Paepe, B. Steinmann, P. Tsipouras, and R. J. Wenstrup. 1998. Ehlers-Danlos syndromes: Revised nosology, Villefranche, 1997. Ehlers-Danlos national foundation (USA) and Ehlers-Danlos support group (UK). American Journal of Medical Genetics 77(1):31-37. https://doi.org/10.1002/(sici)1096-8628(19980428)77:1<31::aid-ajmg8>3.0.co;2-o.

Berglund, B., C. Pettersson, M. Pigg, and P. Kristiansson. 2015. Self-reported quality of life, anxiety and depression in individuals with Ehlers-Danlos syndrome (EDS): A questionnaire study. BMC Musculoskeletal Disorders 16(1):89. https://doi.org/10.1186/s12891-015-0549-7.

Blackburn, P. R., Z. Xu, K. E. Tumelty, R. W. Zhao, W. J. Monis, K. G. Harris, J. M. Gass, M. A. Cousin, N. J. Boczek, M. V. Mitkov, M. A. Cappel, C. A. Francomano, J. E. Parisi, E. W. Klee, E. Faqeih, F. S. Alkuraya, M. D. Layne, N. B. McDonnell, and P. S. Atwal. 2018. Bi-allelic alterations in AEBP1 lead to defective collagen assembly and connective tissue structure resulting in a variant of Ehlers-Danlos syndrome. American Journal of Human Genetics 102(4):696-705. https://doi.org/10.1016/j.ajhg.2018.02.018.

Bloom, L., P. Byers, C. Francomano, B. Tinkle, and F. Malfait. 2017. The international consortium on the Ehlers–Danlos syndromes. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):5-7. https://doi.org/10.1002/ajmg.c.31547.

Bloom, L., J. Schubart, R. Bascom, A. Hakim, and C. A. Francomano. 2021. The power of patient-led global collaboration. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 187(4):425-428. https://doi.org/10.1002/ajmg.c.31942.

Bogni, M., A. Bassotti, G. Leocata, F. Barretta, A. Brunani, P. A. Bertazzi, L. Riboldi, and L. M. Vigna. 2015. Workers with Ehlers-Danlos syndrome: Indications for health surveillance and suitable job assignment. Medicina del Lavoro 106(1):23-35. https://mattioli1885journals.com/index.php/lamedicinadellavoro/article/view/2990.

Bonadonna, P., M. Bonifacio, and R. Zanotti. 2016. Mast cell disorders in drug hypersensitivity. Current Pharmaceutical Design 22(45):6862-6869. https://doi.org/10.2174/1381612822666160928121857.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Bowen, J. M., G. J. Sobey, N. P. Burrows, M. Colombi, M. E. Lavallee, F. Malfait, and C. A. Francomano. 2017. Ehlers-Danlos syndrome, classical type. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):27-39. https://doi.org/10.1002/ajmg.c.31548.

Brady, A. F., S. Demirdas, S. Fournel-Gigleux, N. Ghali, C. Giunta, I. Kapferer-Seebacher, T. Kosho, R. Mendoza-Londono, M. F. Pope, M. Rohrbach, T. Van Damme, A. Vandersteen, C. van Mourik, N. Voermans, J. Zschocke, and F. Malfait. 2017. The Ehlers-Danlos syndromes, rare types. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):70-115. https://doi.org/10.1002/ajmg.c.31550.

Brock, I., W. Prendergast, and A. Maitland. 2021. Mast cell activation disease and immunoglobulin deficiency in patients with hypermobile Ehlers-Danlos syndrome/hypermobility spectrum disorder. American Journal of Medical Genetics. Part C: Seminars in Medical Genetics 187(4):473-481. https://doi.org/10.1002/ajmg.c.31940.

Bulbena, A., J. C. Duro, A. Mateo, M. Porta, and J. Vallejo. 1988. Joint hypermobility syndrome and anxiety disorders. The Lancet 332(8612):694. https://doi.org/10.1016/S0140-6736(88)90514-4.

Bulbena, A., J. C. Duró, M. Porta, S. Faus, R. Vallescar, and R. Martín-Santos. 1992. Clinical assessment of hypermobility of joints: Assembling criteria. Journal of Rheumatology 19(1):115-122.

Bulbena, A., N. Mallorquí-Bagué, G. Pailhez, S. Rosado, I. González, J. Blanch-Rubió, and J. Carbonell. 2014. Self-reported screening questionnaire for the assessment of joint hypermobility syndrome (SQ-CH), a collagen condition, in Spanish population. The European Journal of Psychiatry 28:17-26. https://dx.doi.org/10.4321/S0213-61632014000100002.

Bulbena, A., G. Pailhez, A. Bulbena-Cabré, N. Mallorquí-Bagué, and C. Baeza-Velasco. 2015. Joint hypermobility, anxiety and psychosomatics: Two and a half decades of progress toward a new phenotype. Advances in Psychosomatic Medicine 34:143-157. https://doi.org/10.1159/000369113.

Bulbena, A., C. Baeza-Velasco, A. Bulbena-Cabré, G. Pailhez, H. Critchley, P. Chopra, N. Mallorquí-Bagué, C. Frank, and S. Porges. 2017. Psychiatric and psychological aspects in the Ehlers–Danlos syndromes. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):237-245. https://doi.org/10.1002/ajmg.c.31544.

Bulbena-Cabré, A., C. Baeza-Velasco, S. Rosado-Figuerola, and A. Bulbena. 2021. Updates on the psychological and psychiatric aspects of the Ehlers-Danlos syndromes and hypermobility spectrum disorders. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 187(4):482-490. https://doi.org/10.1002/ajmg.c.31955.

Burcharth, J., and J. Rosenberg. 2012. Gastrointestinal surgery and related complications in patients with Ehlers-Danlos syndrome: A systematic review. Digestive Surgery 29(4):349-357. https://dx.doi.org/10.1159/000343738.

Burkitt Wright, E. M. M., H. L. Spencer, S. B. Daly, F. D. C. Manson, L. A. H. Zeef, J. Urquhart, N. Zoppi, R. Bonshek, I. Tosounidis, M. Mohan, C. Madden, A. Dodds, K. E. Chandler, S. Banka, L. Au, J. Clayton-Smith, N. Khan, L. G. Biesecker, M. Wilson, M. Rohrbach, M. Colombi, C. Giunta, and G. C. M. Black. 2011. Mutations in PRDM5 in brittle cornea syndrome identify a pathway regulating extracellular matrix development and maintenance. American Journal of Human Genetics 88(6):767-777. https://doi.org/10.1016/j.ajhg.2011.05.007.

Byers, P. H. 2019. Vascular Ehlers-Danlos syndrome. In GeneReviews® [Internet], edited by M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. H. Bean, K. W. Gripp, G. M. Mirzaa, and A. Amemiya. Seattle, WA: University of Washington; 1993-2022. https://www.ncbi.nlm.nih.gov/books/NBK1494/.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Byers, P. H., J. Belmont, J. Black, J. De Backer, M. Frank, X. Jeunemaitre, D. Johnson, M. Pepin, L. Robert, L. Sanders, and N. Wheeldon. 2017. Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):40-47. https://doi.org/10.1002/ajmg.c.31553.

Carter, C., and J. Wilkinson. 1964. Persistent joint laxity and congenital dislocation of the hip. Journal of Bone and Joint Surgery (British Volume) 46:40-45. https://doi.org/10.1302/0301-620X.46B1.40.

Castori, M. 2012. Ehlers-Danlos syndrome, hypermobility type: An underdiagnosed hereditary connective tissue disorder with mucocutaneous, articular, and systemic manifestations. ISRN Dermatology 2012:751768. https://doi.org/10.5402/2012/751768.

Castori, M. 2013a. Joint hypermobility syndrome (a.k.a. Ehlers-Danlos syndrome, hypermobility type): An updated critique. Italian Journal of Dermatology and Venereology 148(1):13-36.

Castori, M. 2013b. Surgical recommendations in Ehlers-Danlos syndrome(s) need patient classification: The example of Ehlers-Danlos syndrome hypermobility type (a.k.a. joint hypermobility syndrome). Digestive Surgery 29(6):453-455. https://doi.org/10.1159/000346068.

Castori, M. 2016. Pain in Ehlers-Danlos syndromes: Manifestations, therapeutic strategies and future perspectives. Expert Opinion on Orphan Drugs 4(11):1145-1158. https://doi.org/10.1080/21678707.2016.1238302.

Castori, M., S. Morlino, C. Celletti, M. Celli, A. Morrone, M. Colombi, F. Camerota, and P. Grammatico. 2012a. Management of pain and fatigue in the joint hypermobility syndrome (a.k.a. Ehlers–Danlos syndrome, hypermobility type): Principles and proposal for a multidisciplinary approach. American Journal of Medical Genetics. Part A 158A(8):2055-2070. https://doi.org/10.1002/ajmg.a.35483.

Castori, M., S. Morlino, C. Dordoni, C. Celletti, F. Camerota, M. Ritelli, A. Morrone, M. Venturini, P. Grammatico, and M. Colombi. 2012b. Gynecologic and obstetric implications of the joint hypermobility syndrome (a.k.a. Ehlers–Danlos syndrome hypermobility type) in 82 Italian patients. American Journal of Medical Genetics. Part A 158A(9):2176-2182. https://doi.org/10.1002/ajmg.a.35506.

Castori, M., S. Morlino, G. Pascolini, C. Blundo, and P. Grammatico. 2015. Gastrointestinal and nutritional issues in joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 169C(1):54-75. https://doi.org/10.1002/ajmg.c.31431.

Castori, M., B. Tinkle, H. Levy, R. Grahame, F. Malfait, and A. Hakim. 2017. A framework for the classification of joint hypermobility and related conditions. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):148-157. https://doi.org/10.1002/ajmg.c.31539.

Chelimsky, G., and T. Chelimsky. 2018. The gastrointestinal symptoms present in patients with postural tachycardia syndrome: A review of the literature and overview of treatment. Autonomic Neuroscience 215:70-77. https://doi.org/10.1016/j.autneu.2018.09.003.

Chohan, K., N. Mittal, L. McGillis, L. Lopez-Hernandez, E. Camacho, M. Rachinsky, D. S. Mina, W. D. Reid, C. M. Ryan, K. A. Champagne, A. Orchanian-Cheff, H. Clarke, and D. Rozenberg. 2021. A review of respiratory manifestations and their management in Ehlers-Danlos syndromes and hypermobility spectrum disorders. Chronic Respiratory Disease 18:14799731211025313. https://doi.org/10.1177/14799731211025313.

Colige, A., A. L. Sieron, S. W. Li, U. Schwarze, E. Petty, W. Wertelecki, W. Wilcox, D. Krakow, D. H. Cohn, W. Reardon, P. H. Byers, C. M. Lapière, D. J. Prockop, and B. V. Nusgens. 1999. Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. American Journal of Human Genetics 65(2):308-317. https://doi.org/10.1086/302504.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Copetti, M., S. Morlino, M. Colombi, P. Grammatico, A. Fontana, and M. Castori. 2019. Severity classes in adults with hypermobile Ehlers–Danlos syndrome/hypermobility spectrum disorders: A pilot study of 105 Italian patients. Rheumatology 58(10):1722-1730. https://doi.org/10.1093/rheumatology/kez029.

Coupal, K. E., N. D. Heeney, B. C. D. Hockin, R. Ronsley, K. Armstrong, S. Sanatani, and V. E. Claydon. 2019. Pubertal hormonal changes and the autonomic nervous system: Potential role in pediatric orthostatic intolerance. Frontiers in Neuroscience 13:1197. https://doi.org/10.3389/fnins.2019.01197.

D’Hondt, S., T. Van Damme, and F. Malfait. 2018. Vascular phenotypes in nonvascular subtypes of the Ehlers-Danlos syndrome: A systematic review. Genetics in Medicine 20(6):562-573. https://doi.org/10.1038/gim.2017.138.

De Baets, S., P. Calders, L. Verhoost, M. Coussens, I. Dewandele, F. Malfait, G. Vanderstraeten, G. Van Hove, and D. Van de Velde. 2021. Patient perspectives on employment participation in the “hypermobile Ehlers-Danlos syndrome.” Disability and Rehabilitation 43(5):668-677. https://doi.org/10.1080/09638288.2019.1636316.

De Coster, P. J., L. I. Van den Berghe, and L. C. Martens. 2005. Generalized joint hypermobility and temporomandibular disorders: Inherited connective tissue disease as a model with maximum expression. Journal of Orofacial Pain 19(1):47-57.

De Wandele, I., P. Calders, W. Peersman, S. Rimbaut, T. De Backer, F. Malfait, A. De Paepe, and L. Rombaut. 2014a. Autonomic symptom burden in the hypermobility type of Ehlers–Danlos syndrome: A comparative study with two other EDS types, fibromyalgia, and healthy controls. Seminars in Arthritis and Rheumatism 44(3):353-361. https://doi.org/10.1016/j.semarthrit.2014.05.013.

De Wandele, I., L. Rombaut, L. Leybaert, P. Van de Borne, T. De Backer, F. Malfait, A. De Paepe, and P. Calders. 2014b. Dysautonomia and its underlying mechanisms in the hypermobility type of Ehlers-Danlos syndrome. Seminars in Arthritis and Rheumatism 44(1):93-100. https://doi.org/10.1016/j.semarthrit.2013.12.006.

Delbaere, S., T. Dhooge, D. Syx, F. Petit, N. Goemans, A. Destrée, O. Vanakker, R. De Rycke, S. Symoens, and F. Malfait. 2020. Novel defects in collagen XII and VI expand the mixed myopathy/Ehlers-Danlos syndrome spectrum and lead to variant-specific alterations in the extracellular matrix. Genetics in Medicine 22(1):112-123. https://doi.org/10.1038/s41436-019-0599-6.

Demmler, J. C., M. D. Atkinson, E. J. Reinhold, E. Choy, R. A. Lyons, and S. T. Brophy. 2019. Diagnosed prevalence of Ehlers-Danlos syndrome and hypermobility spectrum disorder in Wales, UK: A national electronic cohort study and case–control comparison. BMJ Open 9(11):e031365. https://doi.org/10.1136/bmjopen-2019-031365.

Dhingra, R., R. Bascom, E. Thompson, C. A. Francomano, and J. R. Schubart. 2021a. Gastrointestinal medication burden among persons with the Ehlers-Danlos syndromes. Neurogastroenterology and Motility 33(7):e14077. https://doi.org/10.1111/nmo.14077.

Dhingra, R., A. Hakim, R. Bascom, C. A. Francomano, and J. R. Schubart. 2021b. Prescription claims for immunomodulator and anti-inflammatory drugs among persons with Ehlers-Danlos syndromes. Arthritis Care & Research. https://doi.org/10.1002/acr.24819.

Drugs.com. 2021. What drugs should you avoid with Ehlers-Danlos syndrome? Medically reviewed by Sally Chao, MD. https://www.drugs.com/medical-answers/drugs-avoid-ehlersdanlos-syndrome-3559403/ (accessed February 14, 2022).

Dündar, M., T. Müller, Q. Zhang, J. Pan, B. Steinmann, J. Vodopiutz, R. Gruber, T. Sonoda, B. Krabichler, G. Utermann, J. U. Baenziger, L. Zhang, and A. R. Janecke. 2009. Loss of dermatan-4-sulfotransferase 1 function results in adducted thumb-clubfoot syndrome. American Journal of Human Genetics 85(6):873-882. https://doi.org/10.1016/j.ajhg.2009.11.010.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Eagleton, M. 2016. Arterial complications of vascular Ehlers-Danlos syndrome. Journal of VascularSurgery 64(6):1869-1880. https://doi.org/10.1016/j.jvs.2016.06.120.

Ezpeleta, L., J. B. Navarro, N. Osa, E. Penelo, and A. Bulbena. 2018. Joint hypermobility classes in 9-year-old children from the general population and anxiety symptoms. Journal of Developmental and Behavioral Pediatrics 39(6):481-488. https://doi.org/10.1097/dbp.0000000000000577.

Feldman, E. C. H., D. P. Hivick, P. M. Slepian, S. T. Tran, P. Chopra, and R. N. Greenley. 2020. Pain symptomatology and management in pediatric Ehlers-Danlos syndrome: A review. Children (Basel) 7(9):146. https://doi.org/10.3390/children7090146.

Fikree, A., G. Chelimsky, H. Collins, K. Kovacic, and Q. Aziz. 2017. Gastrointestinal involvement in the Ehlers-Danlos syndromes. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):181-187. https://doi.org/10.1002/ajmg.c.31546.

Gaisl, T., C. Giunta, D. J. Bratton, K. Sutherland, C. Schlatzer, N. Sievi, D. Franzen, P. A. Cistulli, M. Rohrbach, and M. Kohler. 2017. Obstructive sleep apnoea and quality of life in Ehlers-Danlos syndrome: A parallel cohort study. Thorax 72(8):729-735. https://doi.org/10.1136/thoraxjnl-2016-209560.

Gilliam, E., J. D. Hoffman, and G. Yeh. 2020. Urogenital and pelvic complications in the Ehlers-Danlos syndromes and associated hypermobility spectrum disorders: A scoping review. Clinical Genetics 97(1):168-178. https://doi.org/10.1111/cge.13624.

Giunta, C., N. H. Elçioglu, B. Albrecht, G. Eich, C. Chambaz, A. R. Janecke, H. Yeowell, M. Weis, D. R. Eyre, M. Kraenzlin, and B. Steinmann. 2008. Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome—An autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. American Journal of Human Genetics 82(6):1290-1305. https://doi.org/10.1016/j.ajhg.2008.05.001.

Gould, G. M., and W. L. Pyle. 1897. Anomalies and curiosities of medicine. Philadelphia: W.B. Saunders. https://collections.nlm.nih.gov/catalog/nlm:nlmuid-57221200R-bk.

Guier, C., G. Shi, C. Ledford, M. Taunton, M. Heckman, and B. Wilke. 2020. Primary total hip arthroplasty in patients with Ehlers-Danlos syndrome: A retrospective matched-cohort study. Arthroplasty Today 6(3):386-389. https://dx.doi.org/10.1016/j.artd.2020.05.006.

Hakim, A. J., and R. Grahame. 2003. A simple questionnaire to detect hypermobility: An adjunct to the assessment of patients with diffuse musculoskeletal pain. International Journal of Clinical Practice 57(3):163-166.

Hakim, A., R. Grahame, P. Norris, and C. Hopper. 2005. Local anaesthetic failure in joint hypermobility syndrome. Journal of the Royal Society of Medicine 98(2):84-85. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1079398/.

Hakim, A., I. De Wandele, C. O’Callaghan, A. Pocinki, and P. Rowe. 2017a. Chronic fatigue in Ehlers-Danlos syndrome-hypermobile type. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):175-180. https://doi.org/10.1002/ajmg.c.31542.

Hakim, A., C. O’Callaghan, I. De Wandele, L. Stiles, A. Pocinki, and P. Rowe. 2017b. Cardiovascular autonomic dysfunction in Ehlers-Danlos syndrome-hypermobile type. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):168-174. https://doi.org/10.1002/ajmg.c.31543.

Hakim, A. J., B. T. Tinkle, and C. A. Francomano. 2021. Ehlers-Danlos syndromes, hypermobility spectrum disorders, and associated co-morbidities: Reports from EDS ECHO. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 187(4):413-415. https://doi.org/10.1002/ajmg.c.31954.

Halverson, C. M. E., E. W. Clayton, A. Garcia Sierra, and C. Francomano. 2021. Patients with Ehlers–Danlos syndrome on the diagnostic odyssey: Rethinking complexity and difficulty as a hero’s journey. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 187(4):416-424. https://doi.org/10.1002/ajmg.c.31935.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Harvard Health Publishing. 2017. Depression and pain. https://www.health.harvard.edu/mind-and-mood/depression-and-pain (accessed March 7, 2022).

Hautala, T., J. Heikkinen, K. I. Kivirikko, and R. Myllylä. 1993. A large duplication in the gene for lysyl hydroxylase accounts for the type VI variant of Ehlers-Danlos syndrome in two siblings. Genomics 15(2):399-404. https://doi.org/10.1006/geno.1993.1074.

Henderson, F. C., Sr., C. Austin, E. Benzel, P. Bolognese, R. Ellenbogen, C. A. Francomano, C. Ireton, P. Klinge, M. Koby, D. Long, S. Patel, E. L. Singman, and N. C. Voermans. 2017. Neurological and spinal manifestations of the Ehlers-Danlos syndromes. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):195-211. https://doi.org/10.1002/ajmg.c.31549.

Henderson, F. C., C. A. Francomano, M. Koby, K. Tuchman, J. Adcock, and S. Patel. 2019. Cervical medullary syndrome secondary to craniocervical instability and ventral brainstem compression in hereditary hypermobility connective tissue disorders: 5-year follow-up after craniocervical reduction, fusion, and stabilization. Neurosurgical Review 42(4):915-936. https://doi.org/10.1007/s10143-018-01070-4.

Hernandez, A. M. C., and J. E. Dietrich. 2020. Gynecologic management of pediatric and adolescent patients with Ehlers-Danlos syndrome. Journal of Pediatric and Adolescent Gynecology 33(3):291-295. https://doi.org/10.1016/j.jpag.2019.12.011.

Hicks, D., G. T. Farsani, S. Laval, J. Collins, A. Sarkozy, E. Martoni, A. Shah, Y. Zou, M. Koch, C. G. Bönnemann, M. Roberts, H. Lochmüller, K. Bushby, and V. Straub. 2014. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy. Human Molecular Genetics 23(9):2353-2363. https://doi.org/10.1093/hmg/ddt637.

Hsieh, F. H. 2018. Gastrointestinal involvement in mast cell activation disorders. Immunology and Allergy Clinics of North America 38(3):429-441. https://doi.org/10.1016/j.iac.2018.04.008.

Hugon-Rodin, J., G. Lebègue, S. Becourt, C. Hamonet, and A. Gompel. 2016. Gynecologic symptoms and the influence on reproductive life in 386 women with hypermobility type Ehlers-Danlos syndrome: A cohort study. Orphanet Journal of Rare Diseases 11(1):124. https://doi.org/10.1186/s13023-016-0511-2.

Inayet, N., J. O. Hayat, A. Kaul, M. Tome, A. Child, and A. Poullis. 2018. Gastrointestinal symptoms in Marfan syndrome and hypermobile Ehlers-Danlos syndrome. Gastroenterology Research and Practice 2018:4854701. https://doi.org/10.1155/2018/4854701.

International Consortium (International Consortium on Ehlers-Danlos Syndromes and Related Disorders). 2017. Diagnostic criteria for hypermobile Ehlers-Danlos syndrome (hEDS). https://www.ehlers-danlos.com/heds-diagnostic-checklist/ (accessed February 14, 2022).

Jackson, S. C., L. Odiaman, R. T. Card, J. G. van der Bom, and M. C. Poon. 2013. Suspected collagen disorders in the bleeding disorder clinic: A case-control study. Haemophilia 19(2):246-250. https://doi.org/10.1111/hae.12020.

Jansen, L. H. 1955. Mode of transmission in Ehlers-Danlos disease. Journal de Génétique Humaine 4(4):204-218.

Jayarajan, S. N., B. D. Downing, L. A. Sanchez, and J. Jim. 2020. Trends of vascular surgery procedures in Marfan syndrome and Ehlers-Danlos syndrome. Vascular 28(6):834-841. https://doi.org/10.1177/1708538120925597.

Johnson, S. A. M., and H. F. Falls. 1949. Ehlers-Danlos syndrome: A clinical and genetic study. Archives of Dermatology and Syphilology 60(1):82-105. https://doi.org/10.1001/archderm.1949.01530010085006.

Juul-Kristensen, B., K. Schmedling, L. Rombaut, H. Lund, and R. H. H. Engelbert. 2017. Measurement properties of clinical assessment methods for classifying generalized joint hypermobility—A systematic review. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):116-147. https://doi.org/10.1002/ajmg.c.31540.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Kalisch, L., C. Hamonet, C. Bourdon, L. Montalescot, C. de Cazotte, and C. Baeza-Velasco. 2020. Predictors of pain and mobility disability in the hypermobile Ehlers-Danlos syndrome. Disability and Rehabilitation 42(25):3679-3686. https://doi.org/10.1080/09638288.2019.1608595.

Kapferer-Seebacher, I., M. Pepin, R. Werner, T. J. Aitman, A. Nordgren, H. Stoiber, N. Thielens, C. Gaboriaud, A. Amberger, A. Schossig, R. Gruber, C. Giunta, M. Bamshad, E. Björck, C. Chen, D. Chitayat, M. Dorschner, M. Schmitt-Egenolf, C. J. Hale, D. Hanna, H. C. Hennies, I. Heiss-Kisielewsky, A. Lindstrand, P. Lundberg, A. L. Mitchell, D. A. Nickerson, E. Reinstein, M. Rohrbach, N. Romani, M. Schmuth, R. Silver, F. Taylan, A. Vandersteen, J. Vandrovcova, R. Weerakkody, M. Yang, F. M. Pope, P. H. Byers, and J. Zschocke. 2016. Periodontal Ehlers-Danlos syndrome is caused by mutations in C1R and C1S, which encode subcomponents C1r and C1s of complement. American Journal of Human Genetics 99(5):1005-1014. https://doi.org/10.1016/j.ajhg.2016.08.019.

Karthikeyan, A., and N. Venkat-Raman. 2018. Hypermobile Ehlers–Danlos syndrome and pregnancy. Obstetric Medicine 11(3):104-109. https://doi.org/10.1177/1753495X18754577.

Kilaru, S. M., K. J. Mukamal, J. W. Nee, S. S. Oza, A. J. Lembo, and J. L. Wolf. 2019. Safety of endoscopy in heritable connective tissue disorders. American Journal of Gastroenterology 114(8):1343-1345. doi: 10.14309/ajg.0000000000000189.

Kindgren, E., A. Quiñones Perez, and R. Knez. 2021. Prevalence of ADHD and autism spectrum disorder in children with hypermobility spectrum disorders or hypermobile Ehlers-Danlos syndrome: A retrospective study. Neuropsychiatric Disease and Treatment 17:379-388. https://doi.org/10.2147/ndt.S290494.

Klinge, P. M., A. McElroy, J. E. Donahue, T. Brinker, Z. L. Gokaslan, and M. D. Beland. 2021. Abnormal spinal cord motion at the craniocervical junction in hypermobile Ehlers-Danlos patients. Journal of Neurosurgery 35(1):18-24. https://doi.org/10.3171/2020.10.Spine201765.

Klinge, P. M., V. Srivastava, A. McElroy, O. P. Leary, Z. Ahmed, J. E. Donahue, T. Brinker, P. De Vloo, and Z. L. Gokaslan. 2022. Diseased filum terminale as a cause of tethered cord syndrome in Ehlers-Danlos syndrome: Histopathology, biomechanics, clinical presentation, and outcome of filum excision. World Neurosurgery 162(June):e492–e502. https://doi.org/10.1016/j.wneu.2022.03.038.

Knight, I. 2015. The role of narrative medicine in the management of joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 169C(1):123-129. https://doi.org/10.1002/ajmg.c.31428.

Komi, D. E. A, K. Khomtchouk, and P. L. Santa Maria. 2020. A review of the contribution of mast cells in wound healing: Involved molecular and cellular mechanisms. Clinical Reviews in Allergy & Immunology 58(3):298-312. https://doi.org/10.1007/s12016-019-08729-w.

Kosashvili, Y., T. Fridman, D. Backstein, O. Safir, and Y. Bar Ziv. 2008. The correlation between pes planus and anterior knee or intermittent low back pain. Foot & Ankle International 29(9):910-913. https://doi.org/10.3113/FAI.2008.0910.

Krahe, A. M., R. D. Adams, and L. L. Nicholson. 2018. Features that exacerbate fatigue severity in joint hypermobility syndrome/Ehlers-Danlos syndrome—hypermobility type. Disability and Rehabilitation 40(17):1989-1996. https://doi.org/10.1080/09638288.2017.1323022.

Kulas Søborg, M.-L., J. Leganger, J. Rosenberg, and J. Burcharth. 2017. Increased need for gastrointestinal surgery and increased risk of surgery-related complications in patients with Ehlers-Danlos syndrome: A systematic review. Digestive Surgery 34(2):161-170. https://dx.doi.org/10.1159/000449106.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Langhinrichsen-Rohling, J., C. L. Lewis, S. McCabe, E. C. Lathan, G. A. Agnew, C. N. Selwyn, and M. E. Gigler. 2021. They’ve been BITTEN: Reports of institutional and provider betrayal and links with Ehlers-Danlos syndrome patients’ current symptoms, unmet needs and healthcare expectations. Therapeutic Advances in Rare Disease 2:1-12. https://doi.org/10.1177/26330040211022033.

Last, J. M., ed. 2001. Dictionary of epidemiology. Fourth edition. New York: Oxford University Press.

Lam, C. Y., O. S. Palsson, W. E. Whitehead, A. D. Sperber, H. Tornblom, M. Simren, and I. Aziz. 2021. Rome IV functional gastrointestinal disorders and health impairment in subjects with hypermobility spectrum disorders or hypermobile Ehlers-Danlos syndrome. Clinical Gastroenterology and Hepatology 19(2):277-287.e273. https://doi.org/10.1016/j.cgh.2020.02.034.

Louie, A., C. Meyerle, C. Francomano, D. Srikumaran, F. Merali, J. J. Doyle, K. Bower, L. Bloom, M. V. Boland, N. Mahoney, Y. Daoud, and E. L. Singman. 2020. Survey of Ehlers-Danlos patients’ ophthalmic surgery experiences. Molecular Genetics & Genomic Medicine 8(4). https://dx.doi.org/10.1002/mgg3.1155.

Lum, Y. W., B. S. Brooke, and J. H. Black, 3rd. 2011. Contemporary management of vascular Ehlers-Danlos syndrome. Current Opinion in Cardiology 26(6):494-501. https://doi.org/10.1097/HCO.0b013e32834ad55a.

Maitland, A. 2020. Mast cell activation syndrome. In Disjointed: Navigating the diagnosis and management of hypermobile Ehlers-Danlos syndrome and hypermobility spectrum disorders. 1st ed, edited by D. Jovin. San Francisco: Hidden Stripes Publications. Pp. 217-231.

Malfait, F., C. Francomano, P. Byers, J. Belmont, B. Berglund, J. Black, L. Bloom, J. M. Bowen, A. F. Brady, N. P. Burrows, M. Castori, H. Cohen, M. Colombi, S. Demirdas, J. De Backer, A. De Paepe, S. Fournel-Gigleux, M. Frank, N. Ghali, C. Giunta, R. Grahame, A. Hakim, X. Jeunemaitre, D. Johnson, B. Juul-Kristensen, I. Kapferer-Seebacher, H. Kazkaz, T. Kosho, M. E. Lavallee, H. Levy, R. Mendoza-Londono, M. Pepin, F. M. Pope, E. Reinstein, L. Robert, M. Rohrbach, L. Sanders, G. J. Sobey, T. Van Damme, A. Vandersteen, C. van Mourik, N. Voermans, N. Wheeldon, J. Zschocke, and B. Tinkle. 2017. The 2017 international classification of the Ehlers-Danlos syndromes. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):8-26. https://doi.org/10.1002/ajmg.c.31552.

Mathias, C. J., D. A. Low, V. Iodice, A. P. Owens, M. Kirbis, and R. Grahame. 2011. Postural tachycardia syndrome—Current experience and concepts. Nature Reviews: Neurology 8(1):22-34. https://doi.org/10.1038/nrneurol.2011.187.

Mathias, C. J., A. Owens, V. Iodice, and A. Hakim. 2021. Dysautonomia in the Ehlers-Danlos syndromes and hypermobility spectrum disorders—With a focus on the postural tachycardia syndrome. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 187(4):510-519. https://doi.org/10.1002/ajmg.c.31951.

Maxwell, A. J. 2020. Dysautonomia. In Disjointed: Navigating the diagnosis and management of hypermobile Ehlers-Danlos syndrome and hypermobility spectrum disorders. 1st ed, edited by D. Jovin. San Francisco: Hidden Stripes Publications. Pp. 135-215.

McKusick, V. A. 1956. Heritable disorders of connective tissue. 1st ed. St. Louis: C.V. Mosby Company.

McKusick, V. A. 1972. Heritable disorders of connective tissue. 4th ed. St. Louis: C.V. Mosby Company.

McNerney, J. E., and W. B. Johnston. 1979. Generalized ligamentous laxity, hallux abducto valgus and the first metatarsocuneiform joint. Journal of the American Podiatry Association 69(1):69-82. https://doi.org/10.7547/87507315-69-1-69.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Meester, J., A. Verstraeten, D. Schepers, M. Alaerts, L. Van Laer, and B. L. Loeys. 2017. Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome. Annals of Cardiothoracic Surgery 6(6):582-594. https://doi.org/10.21037/acs.2017.11.03.

Mehr, S. E., A. Barbul, and C. A. Shibao. 2018. Gastrointestinal symptoms in postural tachycardia syndrome: A systematic review. Clinical Autonomic Research 28(4):411-421. https://doi.org/10.1007/s10286-018-0519-x.

Meyer, K. J., C. Chan, L. Hopper, and L. L. Nicholson. 2017. Identifying lower limb specific and generalised joint hypermobility in adults: Validation of the Lower Limb Assessment Score. BMC Musculoskeletal Disorders 18(1):514. https://doi.org/10.1186/s12891-017-1875-8.

Miklovic, T., and V. Sieg. 2022. Ehlers Danlos syndrome. In StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK549814/.

Milhorat, T. H., P. A. Bolognese, M. Nishikawa, N. B. McDonnell, and C. A. Francomano. 2007. Syndrome of occipitoatlantoaxial hypermobility, cranial settling, and Chiari malformation type I in patients with hereditary disorders of connective tissue. Journal of Neurosurgery: Spine 7(6):601-609. https://doi.org/10.3171/spi-07/12/601.

Mittal, M., D. S. Mina, L. McGillis, A. Weinrib, P. M. Slepian, M. Rachinsky, S. Buryk-Iggers, C. Laflamme, L. Lopez-Hernandez, L. Hussey, J. Katz, L. McLean, D. Rozenberg, L. Liu, Y. Tse, C. Parker, A. Adler, G. Charames, R. Bleakney, C. Veillete, C. J. Nielson, S. Tavares, S. Varriano, J. Guzman, H. Faghfoury, and H. Clarke. 2021. The GoodHope Ehlers Danlos Syndrome Clinic: Development and implementation of the first interdisciplinary program for multi-system issues in connective tissue disorders at the Toronto General Hospital. Orphanet Journal of Rare Diseases 16(1):357. https://doi.org/10.1186/s13023-021-01962-7.

Moonesinghe, S. R., M. G. Mythen, P. Das, K. M. Rowan, and M. P. Grocott. 2013. Risk stratification tools for predicting morbidity and mortality in adult patients undergoing major surgery: Qualitative systematic review. Anesthesiology 119(4):959-981. https://doi.org/10.1097/ALN.0b013e3182a4e94d.

Mu, W., M. Muriello, J. L. Clemens, Y. Wang, C. H. Smith, P. T. Tran, P. C. Rowe, C. A. Francomano, A. D. Kline, and J. Bodurtha. 2019. Factors affecting quality of life in children and adolescents with hypermobile Ehlers-Danlos syndrome/hypermobility spectrum disorders. American Journal of Medical Genetics. Part A 179(4):561-569. https://doi.org/10.1002/ajmg.a.61055.

Müller, T., S. Mizumoto, I. Suresh, Y. Komatsu, J. Vodopiutz, M. Dundar, V. Straub, A. Lingenhel, A. Melmer, S. Lechner, J. Zschocke, K. Sugahara, and A. R. Janecke. 2013. Loss of dermatan sulfate epimerase (DSE) function results in musculocontractural Ehlers-Danlos syndrome. Human Molecular Genetics 22(18):3761-3772. https://doi.org/10.1093/hmg/ddt227.

Mulvey, M. R., G. J. Macfarlane, M. Beasley, D. P. M. Symmons, K. Lovell, P. Keeley, S. Woby, and J. McBeth. 2013. Modest association of joint hypermobility with disabling and limiting musculoskeletal pain: Results from a large-scale general population–based survey. Arthritis Care & Research 65(8):1325-1333. https://doi.org/10.1002/acr.21979.

Murray, B., B. M. Yashar, W. R. Uhlmann, D. J. Clauw, and E. M. Petty. 2013. Ehlers-Danlos syndrome, hypermobility type: A characterization of the patients’ lived experience. American Journal of Medical Genetics. Part A 161A(12):2981-2988. https://doi.org/10.1002/ajmg.a.36293.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Nakajima, M., S. Mizumoto, N. Miyake, R. Kogawa, A. Iida, H. Ito, H. Kitoh, A. Hirayama, H. Mitsubuchi, O. Miyazaki, R. Kosaki, R. Horikawa, A. Lai, R. Mendoza-Londono, L. Dupuis, D. Chitayat, A. Howard, G. F. Leal, D. Cavalcanti, Y. Tsurusaki, H. Saitsu, S. Watanabe, E. Lausch, S. Unger, L. Bonafé, H. Ohashi, A. Superti-Furga, N. Matsumoto, K. Sugahara, G. Nishimura, and S. Ikegawa. 2013. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. American Journal of Human Genetics 92(6):927-934. https://doi.org/10.1016/j.ajhg.2013.04.003.

National Institute of Allergy and Infectious Diseases. 2018. Hereditary alpha tryptasemia and hereditary alpha tryptasemia syndrome FAQ. https://www.niaid.nih.gov/research/hereditary-alpha-tryptasemia-faq (accessed March 4, 2022).

Nee, J., S. Kilaru, J. Kelley, S. S. Oza, W. Hirsch, S. Ballou, A. Lembo, and J. Wolf. 2019. Prevalence of functional GI diseases and pelvic floor symptoms in Marfan syndrome and Ehlers-Danlos syndrome: A national cohort study. Journal of Clinical Gastroenterology 53(9):653-659. https://doi.org/10.1097/MCG.0000000000001173.

Nicholls, A. C., J. Oliver, D. V. Renouf, J. McPheat, A. Palan, and F. M. Pope. 1991. Ehlers-Danlos syndrome type VII: A single base change that causes exon skipping in the type I collagen alpha 2(I) chain. Human Genetics 87(2):193-198. https://doi.org/10.1007/bf00204180.

Nicholson, L. L., and C. Chan. 2018. The Upper Limb Hypermobility Assessment Tool: A novel validated measure of adult joint mobility. Musculoskeletal Science and Practice 35:38-45. https://doi.org/10.1016/j.msksp.2018.02.006.

NLM (U.S. National Library of Medicine). 2022. ClinicalTrails.gov. https://clinicaltrials.gov/ (accessed February 11, 2022).

NORD (National Organization for Rare Disorders). 2017. Rare disease database: Ehlers-Danlos syndrome. https://rarediseases.org/rare-diseases/ehlers-danlos-syndrome/ (accessed May 16, 2022).

Okajima, T., S. Fukumoto, K. Furukawa, and T. Urano. 1999. Molecular basis for the progeroid variant of Ehlers-Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene. Journal of Biological Chemistry 274(41):28841-28844. https://doi.org/10.1074/jbc.274.41.28841.

Orphanet. 2022a. Dermatosparaxis Ehlers-Danlos syndrome. https://www.orpha.net/consor4.01/www/cgi-bin/Disease_Search.php?lng=EN&data_id=4045&Disease_Disease_Search_diseaseGroup=Dermatosparaxis-EDS&Disease_Disease_Search_diseaseType=Pat&Disease(s)/group%20of%20diseases=Dermatosparaxis-Ehlers-Danlos-syndrome&title=Dermatosparaxis%20Ehlers-Danlos%20syndrome&search=Disease_Search_Simple (accessed February 16, 2022).

Orphanet. 2022b. Musculocontractural Ehlers-Danlos syndrome. https://www.orpha.net/consor4.01/www/cgi-bin/Disease_Search.php?lng=EN&data_id=3480&Disease_Disease_Search_diseaseGroup=Musculocontractural-EDS&Disease_Disease_Search_diseaseType=Pat&Disease(s)/group%20of%20diseases=MusculocontracturalEhlers-Danlos-syndrome&title=Musculocontractural%20Ehlers-Danlos%20syndrome&search=Disease_Search_Simple (accessed February 16, 2022).

Pacey, V., L. Tofts, R. D. Adams, C. F. Munns, and L. L. Nicholson. 2015. Quality of life prediction in children with joint hypermobility syndrome. Journal of Paediatrics and Child Health 51(7):689-695. https://doi.org/10.1111/jpc.12826.

Palomo-Toucedo, I. C., F. Leon-Larios, M. Reina-Bueno, M. D. C. Vázquez-Bautista, P. V. Munuera-Martínez, and G. Domínguez-Maldonado. 2020. Psychosocial influence of Ehlers-Danlos syndrome in daily life of patients: A qualitative study. International Journal of Environmental Research and Public Health 17(17):6425. https://doi.org/10.3390/ijerph17176425.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Parapia, L. A., and C. Jackson. 2008. Ehlers-Danlos syndrome—A historical review. British Journal of Haematology 141(1):32-35. https://doi.org/10.1111/j.1365-2141.2008.06994.x.

Patel, M., and V. Khullar. 2021. Urogynaecology and Ehlers-Danlos syndrome. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 187(4):579-585. https://doi.org/10.1002/ajmg.c.31959.

Peggs, K. J., H. Nguyen, D. Enayat, N. R. Keller, A. Al-Hendy, and S. R. Raj. 2012. Gynecologic disorders and menstrual cycle lightheadedness in postural tachycardia syndrome. International Journal of Gynaecology and Obstetrics 118(3):242-246. https://doi.org/10.1016/j.ijgo.2012.04.014.

Pepin, M., U. Schwarze, A. Superti-Furga, and P. H. Byers. 2000. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. New England Journal of Medicine 342(10):673-680. https://doi.org/10.1056/nejm200003093421001.

Pepin, M. G., U. Schwarze, K. M. Rice, M. Liu, D. Leistritz, and P. H. Byers. 2014. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genetics in Medicine 16(12):881-888. https://doi.org/10.1038/gim.2014.72.

Pezaro, S., G. Pearce, and E. Reinhold. 2018. Hypermobile Ehlers-Danlos syndrome during pregnancy, birth and beyond. British Journal of Midwifery 26(4):217-223. https://doi.org/10.12968/bjom.2018.26.4.217.

Pinnell, S. R., S. M. Krane, J. E. Kenzora, and M. J. Glimcher. 1972. A heritable disorder of connective tissue. Hydroxylysine-deficient collagen disease. New England Journal of Medicine 286(19):1013-1020. https://doi.org/10.1056/nejm197205112861901.

Puledda, F., A. Viganò, C. Celletti, B. Petolicchio, M. Toscano, E. Vicenzini, M. Castori, G. Laudani, D. Valente, F. Camerota, and V. Di Piero. 2015. A study of migraine characteristics in joint hypermobility syndrome a.k.a. Ehlers-Danlos syndrome, hypermobility type. Neurological Sciences 36(8):1417-1424. https://doi.org/10.1007/s10072-015-2173-6.

Pyeritz, R. E. 2000. Ehlers-Danlos syndromes. In Cecil Textbook of Medicine. 21st ed. Vol. 1, edited by L. Goldman and J. C. Bennett. Philadelphia: W.B. Saunders. Pp. 1119-1120.

Quatman, C. E., K. R. Ford, G. D. Myer, M. V. Paterno, and T. E. Hewett. 2008. The effects of gender and pubertal status on generalized joint laxity in young athletes. Journal of Science and Medicine in Sport 11(3):257-263. https://doi.org/10.1016/j.jsams.2007.05.005.

Ramírez-Paesano, C., A. Juanola Galceran, C. Rodiera Clarens, V. Gilete Garcsía, B. Oliver Abadal, V. Vilchez Cobo, B. Ros Nebot, S. Julián González, L. Cao López, J. Santaliestra Fierro, and J. Rodiera Olivé. 2021. Opioid-free anesthesia for patients with joint hypermobility syndrome undergoing craneo-cervical fixation: A case-series study focused on anti-hyperalgesic approach. Orphanet Journal of Rare Diseases 16(1):172. https://doi.org/10.1186/s13023-021-01795-4.

Roma, M., C. L. Marden, I. De Wandele, C. A. Francomano, and P. C. Rowe. 2018. Postural tachycardia syndrome and other forms of orthostatic intolerance in Ehlers-Danlos syndrome. Autonomic Neuroscience 215:89-96. https://doi.org/10.1016/j.autneu.2018.02.006.

Rombaut, L., F. Malfait, I. De Wandele, A. Cools, Y. Thijs, A. De Paepe, and P. Calders. 2011. Medication, surgery, and physiotherapy among patients with the hypermobility type of Ehlers-Danlos syndrome. Archives of Physical Medicine and Rehabilitation 92(7):1106-1112. https://doi.org/10.1016/j.apmr.2011.01.016.

Ronchese, F. 1936. Dermatorrhexis: With dermatochalasis and arthrochalasis (the so-called Ehlers-Danlos syndrome). American Journal of Diseases of Children 51(6):1403-1414. https://doi.org/10.1001/archpedi.1936.01970180149012.

Rotés Querol, J. 1983. Reumatología clínica. Barcelona: Espaxs.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Rowe, P. 2022. The functional impact of orthostatic intolerance in Ehlers-Danlos syndrome. Paper commissioned by the Committee on Heritable Disorders of Connective Tissue and Disability, National Academies of Sciences, Engineering, and Medicine, Washington, DC.

Rowe, P. C., D. F. Barron, H. Calkins, I. H. Maumenee, P. Y. Tong, and M. T. Geraghty. 1999. Orthostatic intolerance and chronic fatigue syndrome associated with Ehlers-Danlos syndrome. Journal of Pediatrics 135(4):494-499. https://doi.org/10.1016/s00223476(99)70173-3.

Schalkwijk, J., M. C. Zweers, P. M. Steijlen, W. B. Dean, G. Taylor, I. M. van Vlijmen, B. van Haren, W. L. Miller, and J. Bristow. 2001. A recessive form of the Ehlers-Danlos syndrome caused by tenascin-X deficiency. New England Journal of Medicine 345(16):1167-1175. https://doi.org/10.1056/NEJMoa002939.

Schubart, J. R., E. Schaefer, A. J. Hakim, C. A. Francomano, and R. Bascom. 2019a. Use of cluster analysis to delineate symptom profiles in an Ehlers-Danlos syndrome patient population. Journal of Pain and Symptom Management 58(3):427-436. https://doi.org/10.1016/j.jpainsymman.2019.05.013.

Schubart, J. R., E. Schaefer, P. Janicki, S. D. Adhikary, A. Schilling, A. J. Hakim, R. Bascom, C. A. Francomano, and S. R. Raj. 2019b. Resistance to local anesthesia in people with the Ehlers-Danlos syndromes presenting for dental surgery. Journal of Dental Anesthesia and Pain Medicine 19(5):261. https://dx.doi.org/10.17245/jdapm.2019.19.5.261.

Schubart, J. R., S. E. Mills, E. W. Schaefer, R. Bascom, and C. A. Francomano. 2022. Longitudinal analysis of symptoms in the Ehlers-Danlos syndromes. American Journal of Medical Genetics. Part A. 188(4):1204-1213. https://doi.org/10.1002/ajmg.a.62640.

Schwarze, U., R. Hata, V. A. McKusick, H. Shinkai, H. E. Hoyme, R. E. Pyeritz, and P. H. Byers. 2004. Rare autosomal recessive cardiac valvular form of Ehlers-Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. American Journal of Human Genetics 74(5):917-930. https://doi.org/10.1086/420794.

Seneviratne, S. L., A. Maitland, and L. Afrin. 2017. Mast cell disorders in Ehlers-Danlos syndrome. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):226-236. https://doi.org/10.1002/ajmg.c.31555.

Sestak, Z. 1962. Ehlers-Danlos syndrome and cutis laxa: An account of families in the Oxford area. Annals of Human Genetics 25(4):313-321. https://doi.org/10.1111/j.1469-1809.1962.tb01768.x.

Shalhub, S., P. H. Byers, K. L. Hicks, K. Charlton-Ouw, D. Zarkowsky, D. M. Coleman, F. M. Davis, E. S. Regalado, G. De Caridi, K. N. Weaver, E. M. Miller, M. L. Schermerhorn, K. Shean, G. Oderich, M. Ribeiro, C. Nishikawa, C. A. Behrendt, E. S. Debus, Y. von Kodolitsch, R. J. Powell, M. Pepin, D. M. Milewicz, P. F. Lawrence, and K. Woo. 2019. A multi-institutional experience in the aortic and arterial pathology in individuals with genetically confirmed vascular Ehlers-Danlos syndrome. Journal of Vascular Surgery 70(5):1543-1554. https://doi.org/10.1016/j.jvs.2019.01.069.

Song, B., P. Yeh, D. Nguyen, U. Ikpeama, M. Epstein, and J. Harrell. 2020. Ehlers-Danlos syndrome: An analysis of the current treatment options. Pain Physician 23(4):429-438.

Sordet, C., A. Cantagrel, T. Schaeverbeke, and J. Sibilia. 2005. Bone and joint disease associated with primary immune deficiencies. Joint, Bone, Spine: Revue du Rhumatisme 72(6):503-514. https://doi.org/10.1016/j.jbspin.2004.07.012.

Steinmann, B., P. M. Royce, and A. Superti-Furga. 2002. The Ehlers-Danlos syndrome. In Connective tissue and its heritable disorders: Molecular, genetic, and medical aspects. 2nd ed., edited by B. Steinmann and P. M. Royce. New York: Wiley‐Liss, Inc. https://doi.org/10.1002/0471221929.ch9.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Tahir, F., T. Bin Arif, Z. Majid, J. Ahmed, and M. Khalid. 2020. Ivabradine in postural orthostatic tachycardia syndrome: A review of the literature. Cureus 12(4):e7868. https://doi.org/10.7759/cureus.7868.

Tai, F. W. D., O. S. Palsson, C. Y. Lam, W. E. Whitehead, A. D. Sperber, H. Tornblom, M. Simren, and I. Aziz. 2020. Functional gastrointestinal disorders are increased in joint hypermobility-related disorders with concomitant postural orthostatic tachycardia syndrome. Neurogastroenterology and Motility 32(12):e13975. https://doi.org/10.1111/nmo.13975.

Terry, R. H., S. T. Palmer, K. A. Rimes, C. J. Clark, J. V. Simmonds, and J. P. Horwood. 2015. Living with joint hypermobility syndrome: Patient experiences of diagnosis, referral and self-care. Family Practice 32(3):354-358. https://doi.org/10.1093/fampra/cmv026.

Tinkle, B. T. 2020. Symptomatic joint hypermobility. Best Practice & Research: Clinical Rheumatology 34(3):101508. https://doi.org/10.1016/j.berh.2020.101508.

Tinkle, B., M. Castori, B. Berglund, H. Cohen, R. Grahame, H. Kazkaz, and H. Levy. 2017. Hypermobile Ehlers-Danlos syndrome (a.k.a. Ehlers-Danlos syndrome type III and Ehlers-Danlos syndrome hypermobility type): Clinical description and natural history. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 175(1):48-69. https://doi.org/10.1002/ajmg.c.31538.

Tobias, N. 1934. Danlos syndrome associated with congenital lipomatosis. Archives of Dermatology and Syphilology 30(4):540-551. https://doi/0.1001/archderm.1934.01460160054008.

Tran, S. T., A. Jagpal, M. L. Koven, C. E. Turek, J. S. Golden, and B. T. Tinkle. 2020. Symptom complaints and impact on functioning in youth with hypermobile Ehlers-Danlos syndrome. Journal of Child Health Care 24(3):444-457. https://doi.org/10.1177/1367493519867174.

Tschernogobow, A. 1892. Cutis laxa (presentation at first meeting of Moscow). Dermatologic and Venereology Society, November 13, 1891. Monatshefte für Praktische Dermatologie 14:76.

Vernino, S., K. M. Bourne, L. E. Stiles, B. P. Grubb, A. Fedorowski, J. M. Stewart, A. C. Arnold, L. A. Pace, J. Axelsson, J. R. Boris, J. P. Moak, B. P. Goodman, K. R. Chémali, T. H. Chung, D. S. Goldstein, A. Diedrich, M. G. Miglis, M. M. Cortez, A. J. Miller, R. Freeman, I. Biaggioni, P. C. Rowe, R. S. Sheldon, C. A. Shibao, D. M. Systrom, G. A. Cook, T. A. Doherty, H. I. Abdallah, A. Darbari, and S. R. Raj. 2021. Postural orthostatic tachycardia syndrome (POTS): State of the science and clinical care from a 2019 National Institutes of Health expert consensus meeting—part 1. Autonomic Neuroscience 235:102828. https://doi.org/10.1016/j.autneu.2021.102828.

Voermans, N. C., H. Knoop, G. Bleijenberg, and B. G. van Engelen. 2010a. Pain in Ehlers-Danlos syndrome is common, severe, and associated with functional impairment. Journal of Pain and Symptom Management 40(3):370-378. https://doi.org/10.1016/j.jpainsymman.2009.12.026.

Voermans, N. C., H. Knoop, N. van de Kamp, B. C. Hamel, G. Bleijenberg, and B. G. van Engelen. 2010b. Fatigue is a frequent and clinically relevant problem in Ehlers-Danlos syndrome. Seminars in Arthritis and Rheumatism 40(3):267-274. https://doi.org/10.1016/j.semarthrit.2009.08.003.

Warnink-Kavelaars, J., L. E. de Koning, L. Rombaut, L. A. Menke, M. W. Alsem, H. A. van Oers, A. I. Buizer, R. H. H. Engelbert, J. Oosterlaan, and Pediatric Heritable Connective Tissue Disorder Study Group. 2022. Heritable connective tissue disorders in childhood: Decreased health-related quality of life and mental health. American Journal of Medical Genetics. Part A. 188(7):2096-2109. https://doi.org/10.1002/ajmg.a.62750.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

Weil, D., M. D’Alessio, F. Ramirez, W. de Wet, W. G. Cole, D. Chan, and J. F. Bateman. 1989. A base substitution in the exon of a collagen gene causes alternative splicing and generates a structurally abnormal polypeptide in a patient with Ehlers-Danlos syndrome type VII. EMBO Journal 8(6):1705-1710. https://doi.org/10.1002/j.1460-2075.1989.tb03562.x.

Wilder-Smith, C. H., A. M. Drewes, A. Materna, and S. S. Olesen. 2019. Symptoms of mast cell activation syndrome in functional gastrointestinal disorders. Scandinavian Journal of Gastroenterology 54(11):1322-1325. https://doi.org/10.1080/00365521.2019.1686059.

Wile, H. 1883. The elastic skin man. Medical News (NY) 43:705.

Yonko, E. A., H. M. Loturco, E. M. Carter, and C. L. Raggio. 2021. Orthopedic considerations and surgical outcomes in Ehlers–Danlos syndromes. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 187(4):458-465. https://dx.doi.org/10.1002/ajmg.c.31958.

Zierau, O., A. C. Zenclussen, and F. Jensen. 2012. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Frontiers in Immunology 3:169. https://doi.org/10.3389/fimmu.2012.00169.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×

ANNEX TABLE 4-1
Overview of Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders

Selected HDCTs Description Documentation
(e.g., laboratory tests, diagnostic criteria)
Hypermobile EDS (hEDS) The hypermobile type of EDS is an autosomal-dominant disorder that presents with phenotypic variability. Common signs and symptoms include joint hypermobility, affecting large and small joints; soft, smooth skin that may be slightly elastic, with easy bruising and unexplained striae; piezogenic papules of the heel; chronic musculoskeletal pain (as differentiated from acute due to injury); early-onset osteoarthritis; osteopenia; gastrointestinal issues (dysmotility, bloating, nausea, vomiting, heartburn, constipation); migraine headaches; dysfunction of the nervous system, including pain and postural orthostatic tachycardia syndrome. Rapid labor and delivery, psychological dysfunction, and psychosocial impairments are common. Diagnostic criteria
Simultaneous presence of three criteria:
  1. Generalized joint hypermobility
  2. Evidence of syndrome features, musculoskeletal complications, and/or family history
  3. Exclusion of alternative diagnoses

Laboratory genetic (mutation) testing
Genetic etiology remains unresolved

Classical EDS The classical type of EDS is an autosomal-dominant connective tissue disorder associated with skin hyperextensibility, articular hypermobility, and tissue fragility with peculiar “cigarette-paper” scars. Clinical findings include mild short stature; narrow maxilla; myopia; ectopia lentis; small, irregularly placed teeth; mitral valve prolapse; aortic root dilatation; inguinal or umbilical hernia; spontaneous bowel rupture; bowel diverticula; osteoarthritis; joint hypermobility and dislocations (hip, shoulder, elbow, knee, or clavicle); pes planus; fragile skin; cigarette-paper scars; dystrophic scarring; poor wound healing; molluscoid pseudotumors; skin hyperextensibility; hypotonia in infancy; muscle fatigue and cramps; and premature birth following premature rupture of fetal membranes. Diagnostic criteria
International EDS Consortium
Laboratory genetic (mutation) testing
COL5A1
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Classical-like EDS type 1 Classical-like EDS type 1 is either an autosomal-recessive disorder due to mutations in the gene encoding TNXB or a contiguous gene-deletion syndrome that includes TNXB and CYP21A2. Characteristic findings include childhood onset, mitral valve prolapse and quadricuspid aortic valve (deletion syndrome), hiatal hernia and other gastrointestinal issues, urogenital anomalies in the deletion syndrome (ambiguous genitalia, bicornuate uterus, renal agenesis, urethral prolapse), joint hypermobility and subluxations, arthralgia, piezogenic papules and brachydactyly of the feet, leg edema, hyperextensible skin with no scarring, proximal muscle weakness and atrophy, and chronic fatigue. Diagnostic criteria
Similar to classical form of EDS but lacks skin scarring and has autosomal-recessive inheritance
Laboratory genetic (mutation) testing
TNXB
Contiguous deletion that includes TNXB and CYP21A2
Other laboratory findings
Serum, absence of TNX
Electromyogram with myopathic pattern
Elevated serum 17-hydroxyproges-terone level (seen in patients with contiguous gene defect)
Classical-like EDS type 2 Classical-like EDS type 2 is an autosomal-recessive disorder that falls in the EDS spectrum, associated with joint hypermobility, skin laxity, delayed wound healing, abnormal scarring, and aortic dilation. Clinical findings include joint laxity with dislocations, redundant and hyperextensible skin, poor wound healing with abnormal scarring, piezogenic papules, osteoporosis, micrognathia, ptosis, mitral valve prolapse and aortic dilation, bowel rupture, gut dysmotility, hernias, pes planus, and hallux valgus. Diagnostic criteria
Similar to classical form of EDS but with autosomal-recessive inheritance
Laboratory genetic (mutation) testing
AE-Binding Protein 1 (AEBP1)
Other laboratory findings
Transmission electron microscopy of skin shows irregular disrupted collagen fibrils with moderate variation in collagen size
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Selected HDCTs Description Documentation
(e.g., laboratory tests, diagnostic criteria)
Cardiac-valvular EDS The cardiac-valvular type of EDS is an ultrarare autosomal-recessive disorder characterized by generalized peripheral joint hypermobility, moderate to severe cardiac valvular disease (particularly the mitral valve), skin hyperextensibility, variable atrophic scarring, easy bruising, lower-eyelid ptosis, inguinal hernias, bilateral flatfeet with hindfoot pronation, genu recurvata, and hypoplasia of the interphalangeal creases. Diagnostic criteria
Findings of EDS
Suspected if patient presents with severe cardiovascular involvement that is progressive
Laboratory genetic (mutation) testing
Recessively inherited COL1A2 nonsense (null mutations)
Vascular EDS (vEDS) The vascular form of EDS is an autosomal-dominant disorder defined by the major complications of arterial and bowel rupture, and uterine rupture during pregnancy. Clinical features include short stature; thin lips; lobeless ears; keratoconus; pinched-appearing, thin nose; periodontal disease and early loss of teeth; mitral valve prolapse; intracranial aneurysms; spontaneous pneumothorax and hemoptysis; inguinal hernias; spontaneous rupture of bowel; uterine rupture during pregnancy; uterine and bladder prolapse; joint laxity of the distal phalanges with acroosteolysis; hip dislocations; clubfeet; fragile skin with paper-thin scars and prominent vascular markings, poor wound healing, molluscoid pseudotumors and acrogeria; and scalp alopecia. Death often occurs before the fifth decade. Diagnostic criteria
Suspected if patient, particularly younger than age 40, presents with one of the following: arterial aneurysms, dissection, or rupture; intestinal rupture; uterine rupture during pregnancy; family history of vEDS
Laboratory genetic (mutation) testing
COL3A1
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Arthrochalasia EDS The arthrochalasia type of EDS, formerly EDS type 7A and 7B, is an autosomal-dominant disorder that is distinguished from other types of EDS by the markedly increased frequency of congenital hip dislocation and extreme joint laxity with recurrent joint subluxations and minimal skin involvement. Clinical findings include mild to moderate short stature; midface hypoplasia; severe joint dislocations with recurrent joint subluxations; early-onset osteoarthritis; osteopenia with increased risk for fractures; kyphoscoliosis and scoliosis; congenital hip dislocations; thin, hyperextensible, atrophic scars; hypotonia with gross-motor developmental delay. Diagnostic criteria
Severe joint hypermobility, congenital hip dislocation, facial dysmorphism, osteopenia, kyphoscoliosis
Laboratory genetic (mutation) testing
COL1A1
COL1A2
Dermatosparaxis EDS Dermatosparaxis EDS is an autosomal-recessive disorder of connective tissue resulting from deficiency of procollagen peptidase. Characteristic findings include extreme skin fragility with congenital and postnatal skin tears, soft and doughy skin with hyperextensibility and atrophic scars, excessive skin at joints with increased palmar creases, and severe bruisability with risk for hematomas and hemorrhage. Facial findings include delayed closure of the anterior fontanel, blue sclera, epicanthal folds, blepharochalasis, prominent lips, hypodontia, and discolored teeth. Other findings include umbilical and inguinal hernias, short stature, joint laxity, osteopenia, delayed motor milestones, organ system abnormalities due to visceral fragility (diaphragmatic and bladder rupture, rectal prolapse), and prematurity. Diagnostic criteria
Autosomal-recessive inheritance Minimal criteria for diagnosis include extreme skin fragility and characteristic facial findings
Laboratory genetic (mutation) testing
ADAMTS2
Other laboratory findings
Collagen fibrils demonstrate hieroglyphic pattern
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Selected HDCTs Description Documentation
(e.g., laboratory tests, diagnostic criteria)
Kyphoscoliotic EDS type 1 Kyphoscoliotic EDS type 1 is an autosomal-recessive disorder resultant from mutations in the gene PLOD1. Characteristic findings include marfanoid habitus, keratoconus, microcornea, myopia, retinal detachment, ocular rupture, glaucoma, blindness, tooth crowding, gastrointestinal hemorrhage, bladder prolapse, joint laxity with dislocations, osteoporosis, congenital scoliosis and progressive kyphosis, arachnodactyly, pes planus, talipes equinovarus, thin skin, moderate scarring, molluscoid pseudotumors, decreased fetal movements, and premature rupture of membranes. Risks include rupture of medium-size arteries, cardiac failure, decreased pulmonary function, recurrent pneumonias, and respiratory insufficiency secondary to chest deformity. Diagnostic criteria
Autosomal-recessive inheritance
Major criteria: Congenital muscular hypotonia (progressive or early-onset kyphoscoliosis)
Generalized joint hypermobility with dislocations/subluxations (shoulders, hips, and knees in particular)
Laboratory genetic (mutation) testing
PLOD1

Other laboratory findings
Increased ratio of deoxypyridinoline to pyridinoline crosslinks in urine measured by high-performance liquid chromatography
Kyphoscoliotic EDS type 2 Kyphoscoliotic EDS type 2 is an autosomal-recessive disorder caused by mutations in the gene encoding FKBP14. Characteristic findings include hearing loss, myopia, occasional cleft palate, tricuspid valve insufficiency, aortic rupture and arterial dissection, subdural hygroma, insufficiency of cardiac valves, restrictive lung disease due to severe scoliosis, hernias, bladder diverticulum, progressive kyphoscoliosis, hypermobility of large and small joints, pes planus, equinovarus, hyperelastic skin, easy bruising, follicular hyperkeratosis, muscular atrophy, and myopathy. Diagnostic criteria
Autosomal-recessive inheritance
Major criteria: Congenital muscular hypotonia Congenital or early-onset kyphoscoliosis
Generalized joint hypermobility
Laboratory genetic (mutation) testing
FKBP14
Other laboratory findings
Normal pyridinoline excretion in urine
Electromyography: myopathic pattern in adulthood
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Brittle cornea syndrome type 1 Brittle cornea syndrome type 1, one of the EDS, is an autosomal-recessive disorder due to mutations in the gene ZNF469. Characteristic findings include marfanoid habitus, macrocephaly, hearing loss, myopia, brittle cornea (extreme thinning of the cornea, with risk of tearing or rupture leading to blindness), keratoconus, keratoglobus, blue sclera, dentinogenesis imperfecta, mitral valve prolapse, joint laxity, hip dislocations and dysplasia, scoliosis, skin scarring, molluscoid pseudotumor, excessively wrinkled skin (particularly palms and soles), and red hair. Diagnostic criteria
Corneal topography, anterior segment optical coherence tomography, corneal pachymetry
Ocular manifestations with extraocular findings of deafness, developmental hip dysplasia, and joint hypermobility
Laboratory genetic (mutation) testing
ZFN469
Other laboratory findings
Normal lysyl hydroxylase activity
Normal dermal hydroxylysine content
Brittle cornea syndrome type 2 Brittle cornea syndrome type 2, one of the EDS, is an autosomal-recessive disorder due to mutations in the gene PDRM5. Characteristic findings include hearing loss due to hypercompliant tympanic membranes, myopia, brittle cornea with corneal thinning and risk of rupture, blue sclera, keratoconus, megalocornea, sclerocornea, cornea plana, keratoglobus, hernias, small-joint hypermobility, increased fracture incidence, hip dysplasia, myalgias, skin hyperelasticity, and poor wound healing. Diagnostic criteria
Corneal topography, anterior segment optical coherence tomography, corneal pachymetry
Ocular manifestations with extraocular findings of deafness, developmental hip dysplasia, and joint hypermobility
Laboratory genetic (mutation) testing
PDRM5
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Selected HDCTs Description Documentation
(e.g., laboratory tests, diagnostic criteria)
Spondylodysplastic EDS 1 type Spondylodysplastic EDS type 1 is an autosomal-recessive disorder caused by mutations in the B4GALT7 gene. Characteristic findings include dysmorphic features, sparse hair, blue sclera, occasional pectus excavatum, large-joint laxity, kyphoscoliosis, spatulate fingers, talipes equinovarus, hypotonia, hyperextensible skin, cutis laxa, mild developmental delay (occasional), and multiple radiographic abnormalities. Diagnostic criteria
Progressive short stature
Poor muscle tone
Bowing of lower extremities
Characteristic facial features
Radiographic findings
Laboratory genetic (mutation) testing
B3GALT7
Other laboratory findings
Galactosyltransferase I deficiency in fibroblasts
Spondylodysplastic EDS type 2 Spondylodysplastic EDS type 2 is an autosomal-recessive disorder caused by mutations in the B3GALT6 gene. Characteristic findings include dysmorphic features, sparse hair, blue sclera, occasional pectus excavatum, large-joint laxity, kyphoscoliosis, spatulate fingers, talipes equinovarus, hypotonia, hyperextensible skin, cutis laxa, and multiple radiographic abnormalities. Diagnostic criteria
Progressive short stature
Poor muscle tone
Bowing of lower extremities
Characteristic facial features
Radiographic findings
Laboratory genetic (mutation) testing
B3GALT6
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Spondylodysplastic EDS type 3 Spondylodysplastic EDS type 3 is an autosomal-recessive disorder caused by mutations in the zinc transporter gene SLC39A13. The disorder is characterized by moderate short stature; protuberant eyes; high-arched palate with bifid uvula; hypodontia; sparse hair; joint laxity; finger contractures; fine-wrinkled palms; hypothenar muscle atrophy; inability to adduct thumbs; short fingers; pes planus; thin, hyperelastic skin; abnormal scars with poor healing; delayed wound healing; muscle weakness; osteopenia; mild intellectual disability; and radiographic abnormalities. Diagnostic criteria
Progressive short stature
Poor muscle tone
Bowing of lower extremities
Characteristic facial features
Radiographic findings
Laboratory genetic (mutation) testing
SLC39A13
Other laboratory findings
Lysyl pyridinoline/hydroxylysyl pyridinoline (LP/HP) ratio approximately 1 (nl LP/HP: 0.2 + 0.03)
Musculocontractural EDS type 1 Musculocontractural EDS type 1 is an autosomal-recessive disorder caused by mutations in the CHST14 gene. Characteristic findings include wasted body build; dysmorphic facies with prominent ears; hearing impairment; blue sclera; strabismus; myopia; glaucoma; microcornea; retinal detachment; anterior chamber abnormality; cleft palate; cardiac valvular anomalies; atrial septal defect; hemopneumothorax; pectus excavatum; hernias; constipation; duodenal obstruction; hydronephrosis; recurrent cystitis; congenital contractures that include adducted thumbs and distal arthrogryposis; joint laxity and dislocations; tendon abnormalities; scoliosis; progressive talipes valgus and planus; hyperextensible, fragile, transparent skin with atrophic scarring; delayed wound healing; hyperalgesia; recurrent subcutaneous infections; low muscle mass and gross motor delay; and developmental delay in some. Diagnostic criteria
Congenital malformations
Contractures of hands and feet
Dysmorphic features
Laboratory genetic (mutation) testing
CHST14
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Selected HDCTs Description Documentation
(e.g., laboratory tests, diagnostic criteria)
Musculocontractural EDS type 2 Musculocontractural EDS type 2 is an autosomal-recessive disorder caused by mutations in the DSE gene. Characteristic findings include hypotonic facies with prominent and abnormally shaped ears, hypertelorism, blue sclera, mitral valve prolapse and regurgitation, mixomatous degeneration of mitral valve, eventration of abdominal wall after surgery, hernia, uterine and bladder prolapse in females, arachnodactyly, camptodactyly, talipes equinovarus, delayed wound healing with atrophic scars, recurrent large subcutaneous hematomas, postecchymotic calcifications, generalized muscle weakness, pain, and occasional cerebral atrophy. Diagnostic criteria
Clinical findings
Laboratory genetic (mutation) testing
DSE

Other laboratory findings
Adulthood, abnormal muscle fiber pattern in histology
Myopathic EDS The myopathic type of EDS, also known as Bethlem myopathy-2, is an autosomal-dominant disorder due to mutations in the gene that encodes type XII collagen (COL12A1) and recessive mutations in the gene COL6A1. Characteristic findings include muscle weakness present in childhood that improves with age but is followed by some deterioration, distal hyperlaxity and flexion contractures, joint hypermobility, and hypertrophic scars. Diagnostic criteria
Clinical findings
Laboratory genetic (mutation) testing
COL12A1 (autosomal-dominant)
COL6A1 (autosomal-recessive)
Other laboratory findings
Increased serum creatine kinase
Fibroblasts show a reduction of and disorganization in type XII collagen in the extracellular matrix
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Periodontal EDS type 1 Periodontal EDS type 1 is an autosomal-dominant disorder caused by heterozygous mutations in the C1R gene, with the defining feature of severe periodontal inflammation. Characteristic findings include significant gingivitis with gum inflammatory destruction of dental attachments and premature loss of teeth; tall stature; acrogeric facies; cerebral and aortic aneurysm; scoliosis; joint laxity; hypermobility; and thin, atrophic skin with easy tearing and bruisability, pretibial hyperpigmentation, and pretibial plaques. Diagnostic criteria
Early-onset severe periodontitis Generalized lack of attached gingiva Pretibial plaques
Family history in a first-degree relative
Laboratory genetic (mutation) testing
C1R
Other laboratory findings
Electron microscopy: Abnormally enlarged endoplasmic reticulum cisterna
Abnormal variation in collagen fibril diameter
Periodontal EDS type 2 Periodontal EDS type 2 is an autosomal-dominant disorder caused by heterozygous mutation in the C1S gene. Characteristic findings include aggressive periodontitis with gingival recession, tooth loss, hernias, prominent subcutaneous vasculature, irritable bowel and gastrointestinal symptoms, scoliosis, spinal osteoarthritis, joint hypermobility and pain, skin fragility, pretibial hyperpigmentation, abnormal scarring, and increased incidence of cancer. Diagnostic criteria
Early-onset severe periodontitis
Generalized lack of attached gingiva Pretibial plaques
Family history in a first-degree relative
Laboratory genetic (mutation) testing
C1S
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Selected HDCTs Description Documentation
(e.g., laboratory tests, diagnostic criteria)
Hypermobility spectrum disorders (HSD) Hypermobility spectrum disorders are a wide spectrum of related disorders with joint hypermobility (JH) of unknown molecular etiology. HSD is used as a diagnosis after other well-defined types of EDS, including hEDS, are excluded. Joint hypermobility is defined as the ability of a joint or group of joints to move passively or actively beyond normal physiologic limits. It can be an isolated finding in some individuals. There are four types of JH: generalized (joint) HSD (G-HSD), peripheral (joint) HSD, localized (joint) HSD, and historical (joint) HSD. Individuals with HSD are predisposed to joint trauma, including dislocations, subluxations, and damage to joint tissues; increased occasional and recurrent musculoskeletal pain; decreased muscle mass; and decreased proprioception. G-HSD can be also associated with extra-articular complications that include anxiety disorders, orthostatic tachycardia, a variety of functional gastrointestinal disorders, and pelvic and bladder dysfunction often similar to what is seen in hEDS. Diagnostic Criteria
Ability of a joint or group of joints to move beyond physiologic limits Exclusion of other well-defined etiologies for joint hypermobility

NOTE: HDCT = heritable disorder of connective tissue and disability.

SOURCES: Bertoli-Avella et al., 2015; Callewaert, 2019; Doyle et al., 2012; Frischmeyer-Guerrerio et al., 2013; Greally, 2020; Gupta et al., 2002; Lindsay et al., 2012; Loeys and Dietz, 2018; Loeys et al., 2005, 2010; Matyas et al., 2014; Regalado et al., 2011; Rienhoff et al., 2013; Tan et al., 2013; Van Hemelrijk et al., 2010.

Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 73
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 74
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 75
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 76
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 77
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 78
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 79
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 80
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 81
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 82
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 83
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 84
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 85
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 86
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 87
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 88
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 89
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 90
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 91
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 92
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 93
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 94
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 95
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 96
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 97
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 98
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 99
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 100
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 101
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 102
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 103
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 104
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 105
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 106
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 107
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 108
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 109
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 110
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 111
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 112
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 113
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 114
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 115
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 116
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 117
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 118
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 119
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 120
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 121
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 122
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 123
Suggested Citation:"4 Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders." National Academies of Sciences, Engineering, and Medicine. 2022. Selected Heritable Disorders of Connective Tissue and Disability. Washington, DC: The National Academies Press. doi: 10.17226/26431.
×
Page 124
Next: 5 Heritable Disorders of Connective Tissue and Effects on Function »
Selected Heritable Disorders of Connective Tissue and Disability Get This Book
×
 Selected Heritable Disorders of Connective Tissue and Disability
Buy Paperback | $35.00 Buy Ebook | $28.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Heritable disorders of connective tissue (HDCTs) are a diverse group of inherited genetic disorders and subtypes. Because connective tissue is found throughout the body, the impairments associated with HDCTs manifest in multiple body systems and may change or vary in severity throughout an affected individual's lifetime. In some cases, these impairments may be severe enough to qualify an eligible child or adult for monetary benefits through the U.S. Social Security Administration's (SSA's) Social Security Disability Insurance or Supplemental Security Income program. SSA asked the National Academies of Sciences, Engineering, and Medicine to convene an expert committee that would provide current information regarding the diagnosis, treatment, and prognosis of selected HDCTs, including Marfan syndrome and the Ehlers-Danlos syndromes, and the effect of the disorders and their treatment on functioning. The resulting report, Selected Heritable Disorders of Connective Tissue and Disability, presents the committee's findings and conclusions.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!