National Academies Press: OpenBook
« Previous: Closing Thoughts
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26566.
×

References

Abarbanel, H. D. I., P. J. Rozdeba, and S. Shirman. 2018. “Machine Learning: Deepest Learning as Statistical Data Assimilation Problems.” Neural Computation 30(8):2025–2055. https://doi.org/10.1162/neco_a_01094.

Abernathey, R. P., T. Augspurger, A. Banihirwe, C. C. Blackmon-Luca, T. J. Crone, C. L. Gentemann, J. J. Hamman, N. Henderson, C. Lepore, T. A. McCaie, N. H. Robinson, and R. P. Signell. 2021. "Cloud-Native Repositories for Big Scientific Data." Computing in Science & Engineering 23(2):26–35. https://doi.org/10.1109/MCSE.2021.3059437.

Adewoyin, R. A., P. Dueben, P. Watson, Y. He, and R. Dutta. 2021. “TRU-NET: A Deep Learning Approach to High Resolution Prediction of Rainfall.” Machine Learning 110:2035–2062. https://doi.org/10.1007/s10994-021-06022-6.

Albers, J. R., and M. Newman. 2019. “A Priori Identification of Skillful Extratropical Subseasonal Forecasts.” Geophysical Research Letters 46(21):12527–12536. https://doi.org/10.1029/2019gl085270.

Albers, J. R., and M. Newman. 2021. “Subseasonal Predictability of the North Atlantic Oscillation.” Environmental Research Letters 16:044024. https://doi.org/10.1088/1748-9326/abe781.

Allen, J., and M. Tippett. 2015. “The Characteristics of United States Hail Reports: 1955–2014.” Journal of Severe Storms Meteorology 10:1–31.

Allen, R. 2012. “Transforming Earthquake Detection?” Science 335(6066):297–298. https://doi.org/10.1126/science.1214650.

Arcomano, T., I. Szunyogh, J. Pathak, A. Wikner, B. R. Hunt, and E. Ott. 2020. “A Machine Learning-based Global Atmospheric Forecast Model.” Geophysical Research Letters 47:e2020GL087776. https://doi.org/10.1029/2020GL087776.

Barnes, E. A., R. J. Barnes, and N. Gordillo. 2021. “Adding Uncertainty to Neural Network Regression Tasks in the Geosciences.” https://arxiv.org/abs/2109.07250.

Beucler, T., M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P. Gentine. 2021a. “Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems.” Physical Review Letters 126:098302. https://doi.org/10.1103/PhysRevLett.126.098302.

Beucler, T., M. Pritchard, J. Yuval, A. Gupta, L. Peng, S. Rasp, F. Ahmed, P. A. O’Gorman, J. D. Neelin, N. J. Lutsko, and P. Gentine. 2021b. “Climate-Invariant Machine Learning.” arXiv preprint. https://doi.org/10.48550/arXiv.2112.08440.

Brooks, B. A., M. Protti, T. Ericksen, J. Bunn, F. Vega, E. S. Cochran, C. Duncan, J. Avery, S. E. Minson, E. Chaves, J. C. Baez, J. Foster, and C. L. Glennie. 2021. “Robust Earthquake Early Warning at a Fraction of the Cost: ASTUTI Costa Rica.” AGU Advances 2:e2021AV000407. https://doi.org/10.1029/2021AV000407.

Buldyrev, S., R. Parshani, G. Paul, H. E. Stanley, and S. Havlin. 2010. “Catastrophic Cascade of Failures in Interdependent Networks.” Nature 464:1025–1028. https://doi.org/10.1038/nature08932.

Clutton-Brock, P., D. Rolnick, P. L. Donti, and L. H. Kaack. 2021. Climate Change and AI: Recommendations for Government Action. Global Partnership on AI Report. https://www.gpai.ai/projects/climate-change-and-ai.pdf.

Cochran, E. S. 2018. “To Catch a Quake.” Nature Communications 9(1):1–4. https://doi.org/10.1038/s41467-018-04790-9.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26566.
×

de La Beaujardière, J. 2019. “A Geodata Fabric for the 21st Century.” Eos 100. https://doi.org/10.1029/2019EO136386.

Dueben, P., U. Modigliani, A. Geer, S. Siemen, F. Pappenberger, P. Bauer, A. Brown, M. Palkovic, B. Raoult, N. Wedi, and V. Baousis. 2021. “Machine Learning at ECMWF: A Roadmap for the Next 10 Years.” Technical Memorandum No. 878. https://doi.org/10.21957/ge7ckgm.

Ebert-Uphoff, I., and K. Hilburn. 2020. "Evaluation, Tuning, and Interpretation of Neural Networks for Working with Images in Meteorological Applications." Bulletin of the American Meteorological Society 101(12):E2149–E2170. https://doi.org/10.1175/BAMS-D-20-0097.1.

Ganguly, A. R., E. Kodra, U. Bhatia, M. E. Warner, K. Duffy, A. Banerjee, and S. Ganguly. 2018. "Data-driven Solutions." Climate 2020: Degrees of Devastation 82–85.

Gebru, T., J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. Daumé III, and K. Crawford. 2020. “Datasheets for Datasets.” ArXiv:1803.09010 [Cs]. http://arxiv.org/abs/1803.09010.

Gentemann, C. L., C. Holdgraf, R. Abernathey, D. Crichton, J. Colliander, E. J. Kearns, Y. Panda, and R. P. Signell. 2021. “Science Storms the Cloud.” AGU Advances 2:e2020AV000354. https://doi.org/10.1029/2020AV000354.

Gupta, A., P. J. Haley, D. N. Subramani, and P. F. J. Lermusiaux. 2019. “Fish Modeling and Bayesian Learning for the Lakshadweep Islands.” OCEANS ’19 MTS/IEEE Seattle. https://doi.org/10.23919/OCEANS40490.2019.8962892.

Gupta, A., and P. F. J. Lermusiaux. 2021. “Neural Closure Models for Dynamical Systems.” Proceedings of The Royal Society A 477(2252):1–29. https://doi.org/10.1098/rspa.2020.1004.

Haley, Jr., P. J., A. Gupta, C. Mirabito, and P. F. J. Lermusiaux. 2020. “Towards Bayesian Ocean Physical-Biogeochemical-Acidification Prediction and Learning Systems for Massachusetts Bay.” OCEANS ’20 IEEE/MTS, 1–9. https://doi.org/10.1109/IEEECONF38699.2020.9389210.

Kaack, L., P. Donti, E. Strubell, G. Kamiya, F. Creutzig, and D. Rolnick. 2021. “Aligning Artificial Intelligence with Climate Change Mitigation.” HAL Open Science. https://hal.archives-ouvertes.fr/hal-03368037/document.

Klocek, S., H. Dong, M. Dixon, P. Kanengoni, N. Kazmi, P. Luferenko, Z. Lv, S. Sharma, J. Weyn, and S. Xiang. 2021. “MS-nowcasting: Operational Precipitation Nowcasting with Convolutional LSTMs at Microsoft Weather.” NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning. https://www.climatechange.ai/papers/neurips2021/19.

Kubo, H., T. Kunugi, W. Suzuki, S. Suzuki, and S. Aoi. 2020. “Hybrid Predictor for Ground-motion Intensity with Machine Learning and Conventional Ground Motion Prediction Equation.” Scientific Reports 10:11871. https://doi.org/10.1038/s41598-020-68630-x.

Kulkarni, C. S., A. Gupta, and P. F. J. Lermusiaux. 2020. “Sparse Regression and Adaptive Feature Generation for the Discovery of Dynamical Systems.” In DDDAS 2020: Dynamic Data Driven Application Systems. Lecture Notes in Computer Science 12312:208–216, edited by F. Darema, E. Blasch, S. Ravela, and A. Aved. https://doi.org/10.1007/978-3-030-61725-7_25.

Labe, Z. M., and E. A. Barnes. 2021. “Predicting Slowdowns in Decadal Climate Warming Trends with Explainable Neural Networks.” Earth and Space Science Open Archive preprint. https://doi.org/10.1002/essoar.10508874.1.

Laloyaux, P., T. Kurth, P. D. Dueben, and D. Hall. 2022. “Deep Learning to Estimate Model Biases in an Operational NWP Assimilation System.” Earth and Space Science Open Archive preprint. https://doi.org/10.1002/essoar.10510309.1.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26566.
×

Lapuschkin, S., S. Wäldchen, A. Binder, G. Montavon, W. Samek, and K.-R. Müller. 2019. “Unmasking Clever Hans Predictors and Assessing What Machines Really Learn.” Nature Communications 10:1096. https://doi.org/10.1038/s41467-019-08987-4.

Lermusiaux, P. F. J., P. J. Haley Jr., S. Jana, A. Gupta, C. S. Kulkarni, C. Mirabito, W. H. Ali, D. N. Subramani, A. Dutt, J. Lin, A. Y. Shcherbina, C. M. Lee, and A. Gangopadhyay. 2017a. “Optimal Planning and Sampling Predictions for Autonomous and Lagrangian Platforms and Sensors in the Northern Arabian Sea.” Oceanography 30(2):172–185. https://doi.org/10.5670/oceanog.2017.242.

Lermusiaux, P. F. J., D. N. Subramani, J. Lin, C. S. Kulkarni, A. Gupta, A. Dutt, T. Lolla, P. J. Haley Jr., W. H. Ali, C. Mirabito, and S. Jana. 2017b. “A Future for Intelligent Autonomous Ocean Observing Systems.” Journal of Marine Research 75(6):765–813. https://doi.org/10.1357/002224017823524035.

Lermusiaux, P. F. J., C. Mirabito, P. J. Haley, Jr., W. H. Ali, A. Gupta, S. Jana, E. Dorfman, A. Laferriere, A. Kofford, G. Shepard, M. Goldsmith, K. Heaney, E. Coelho, J. Boyle, J. Murray, L. Freitag, and A. Morozov. 2020. “Real-time Probabilistic Coupled Ocean Physics-Acoustics Forecasting and Data Assimilation for Underwater GPS.” OCEANS ’20 IEEE/MTS, 1–9. https://doi.org/10.1109/IEEECONF38699.2020.9389003.

Li, Z., M. A. Meier, E. Hauksson, Z. Zhan, and J. Andrews. 2018. “Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning.” Geophysical Research Letters 45(10):4773–4779. https://doi.org/10.1029/2018GL077870.

Lin, H., and S. G. Penny. 2021. “Fourier Reservoir Computing for Data-Driven Prediction of MultiScale Coupled Quasi-geostrophic Dynamics.” Earth and Space Science Open Archive preprint. https://doi.org/10.1002/essoar.10509867.1.

Lindsey, N. J., H. Rademacher, and J. B. Ajo-Franklin. 2020. “On the Broadband Instrument Response of Fiber-optic DAS Arrays.” Journal of Geophysical Research: Solid Earth 125:e2019JB018145. https://doi.org/10.1029/2019JB018145.

Lu, P., and P. F. J. Lermusiaux. 2021. “Bayesian Learning of Stochastic Dynamical Models.” Physica D 427:133003. https://doi.org/10.1016/j.physd.2021.133003.

Mamalakis, A., I. Ebert-Uphoff, and E. A. Barnes. 2021. “Neural Network Attribution Methods for Problems in Geoscience: A Novel Synthetic Benchmark Dataset.” https://arxiv.org/abs/2103.10005.

Mamalakis, A., E. A. Barnes, and I. Ebert-Uphoff. 2022. “Investigating the Fidelity of Explainable Artificial Intelligence Methods for Applications of Convolutional Neural Networks in Geoscience.” https://arxiv.org/abs/2202.03407.

Mayer, K. J., and E. A. Barnes. 2021. “Subseasonal Forecasts of Opportunity Identified by an Explainable Neural Network.” Geophysical Research Letters 48:e2020GL092092. https://doi.org/10.1029/2020GL092092.

McGovern, A., R. Lagerquist, D. J. Gagne II, G. E. Jergensen, K. L. Elmore, C. R. Homeyer, and T. Smith. 2019. "Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning." Bulletin of the American Meteorological Society 100(11):2175–2199. https://doi.org/10.1175/BAMS-D-18-0195.1.

McGovern, A., I. Ebert-Uphoff, D. Gagne, and A. Bostrom. 2022. “Why We Need to Focus on Developing Ethical, Responsible, and Trustworthy Artificial Intelligence Approaches for Environmental Science.” Environmental Data Science 1:E6. https://doi.org/10.1017/eds.2022.5.

Meier, M. A., Z. E. Ross, A. Ramachandran, A. Balakrishna, S. Nair, P. Kundzicz, Z. Li, J. Andrews, E. Hauksson, and Y. Yue. 2019. “Reliable Real-time Seismic Signal/Noise Discrimination with

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26566.
×

Machine Learning.” Journal of Geophysical Research: Solid Earth, 124(1):788–800. https://doi.org/10.1029/2018JB016661.

Miller, T. 2019. “Explanation in Artificial Intelligence: Insights from the Social Sciences.” Artificial Intelligence: 267:1–38. https://doi.org/10/gfwcxw.

Montavon, G., S. Lapuschkin, A. Binder, W. Samek, and K. Müller. 2017. “Explaining Nonlinear Classification Decisions with Deep Taylor Decomposition.” Pattern Recognition 65:211–222. https://doi.org/10.1016/j.patcog.2016.11.008.

Mousavi, S. M., W. L. Ellsworth, W. Zhu, L. Y. Chuang, and G. C. Beroza. 2020. “Earthquake Transformer—An Attentive Deep-learning Model for Simultaneous Earthquake Detection and Phase Picking.” Nature Communications 11(1):1–12. https://doi.org/10.1038/s41467-020-17591-w.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2021. Next Generation Earth Systems Science at the National Science Foundation. Washington, DC: The National Academies Press. https://doi.org/10.17226/26042.

NASEM. 2022. Human-AI Teaming: State-of-the-Art and Research Needs. Washington, DC: The National Academies Press. https://doi.org/10.17226/26355.

NOAA (National Oceanic and Atmospheric Administration). 2021. “NOAA Artificial Intelligence Strategic Plan 2021-2025: Analytics for Next-Generate Earth Science.” https://sciencecouncil.noaa.gov/Portals/0/Artificial%20Intelligence%20Strategic%20Plan_Final%20Signed.pdf?ver=2021-01-19-114254-380.

Olson, R. S., W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H. Moore. 2017. “PMLB: A Large Benchmark Suite for Machine Learning Evaluation and Comparison.” BioData Mining 10:36. https://doi.org/10.1186/s13040-017-0154-4.

Pagan, N., and F. Dörfler. 2019. “Game Theoretical Inference of Human Behavior in Social Networks.” Nature Communications 10:5507. https://doi.org/10.1038/s41467-019-13148-8.

Patil, D. J., and H. Mason. 2014. “Data Driven: Creating a Data Culture.” O’Reilly, December 14. https://www.oreilly.com/content/data-driven.

Penny, S. G., T. A. Smith, T. Chen, J. A. Platt, H. Lin, M. Goodliff, and H. D. I. Abarbanel. 2021. “Integrating Recurrent Neural Networks with Data Assimilation for Scalable Data-Driven State Estimation.” https://doi.org/10.48550/arXiv.2109.12269.

Platt, J. A., A. Wong, R. Clark, S. G. Penny, and H. D. I. Abarbanel. 2021. "Robust Forecasting Using Predictive Generalized Synchronization in Reservoir Computing." Chaos 31:123118. https://doi.org/10.1063/5.0066013.

Potvin, C. K., C. Broyles, P. S. Skinner, H. E. Brooks, and E. Rasmussen. 2019. “A Bayesian Hierarchical Modeling Framework for Correcting Reporting Bias in the U.S. Tornado Database.” Weather and Forecasting 34:15–30. https://doi.org/10.1175/WAF-D-18-0137.1.

Raoult, B., and F. Pinault. 2022. “CliMetLab: A Python Package to Support the Development of Machine Learning Applications Based on Climate and Weather Data.” 12th Symposium on Advances in Modeling and Analysis Using Python. Houston, January 24, 2022.

Rasp, S., M. S. Pritchard, and P. Gentine. 2018. “Deep Learning to Represent Subgrid Processes in Climate Models.” Proceedings of the National Academy of Sciences 115(39):9684–9689. https://doi.org/10.1073/pnas.1810286115.

Ravuri, S., K. Lenc, M. Willson, D. Kangin, R. Lam, P. Mirowski, M. Fitzsimons, M. Athanassiadou, S. Kashem, S. Madge, R. Prudden, A. Mandhane, A. Clark, A. Brock, K. Simonyan, R. Hadsell, N. Robinson, E. Clancy, A. Arribas, and S. Mohamed. 2021. “Skillful Precipitation Nowcasting Using Deep Generative Models of Radar.” Nature 597:672–677. https://doi.org/10.1038/s41586-021-03854-z.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26566.
×

Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and Prabhat. 2019. “Deep Learning and Process Understanding for Data-driven Earth System Science.” Nature 566:195–204. https://doi.org/10.1038/s41586-019-0912-1.

Rolnick, D., P. L. Donti, L. H. Kaack, K. Kochanski, A. Lacoste, K. Sankaran, A. S. Ross, N. Milojevic-Dupont, N. Jaques, A. Waldman-Brown, A. Luccioni, T. Maharaj, E. D. Sherwin, S. K. Mukkavilli, K. P. Kording, C. Gomes, Y. Ng, D. Hassabis, J. C. Platt, F. Creutzig, J. Chayes, and Y. Bengio. 2022. “Tackling Climate Change with Machine Learning.” ACM Computing Surveys 55(2):1–96. https://doi.org/10.1145/3485128.

Ross, Z. E., M. Men-Andrin, E. Hauksson, and T. Heaton. 2018. “Generalized Seismic Phase Detection with Deep Learning.” Bulletin of the Seismological Society of America 108 (5A):2894–2901.

Ross, Z. E., E. S. Cochran, D. T. Trugman, and J. D. Smith. 2020. “3D Fault Architecture Controls the Dynamism of Earthquake Swarms.” Science 368(6497):1357–1361. https://doi.org/10.1126/science.abb0779.

Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. J. Humphreys, and P. A. Johnson. 2017. “Machine Learning Predicts Laboratory Earthquakes.” Geophysical Research Letters 44:9276–9282. https://doi.org/10.1002/2017GL074677.

Rudin, C. 2019. “Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.” Nature Machine Intelligence 1:206–215. https://doi.org/10.1038/s42256-019-0048-x.

Sambasivan, N., S. Kapania, H. Highfill, D. Akrong, P. K. Paritosh, and L. M. Aroyo. 2021. “Everyone Wants to Do the Model Work, Not the Data Work": Data Cascades in High-Stakes AI. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21). Association for Computing Machinery, 39, 1–15. https://doi.org/10.1145/3411764.3445518.

San, O., and R. Maulik. 2018. “Machine Learning Closures for Model Order Reduction of Thermal Fluids.” Applied Mathematical Modelling 60:681–710. https://doi.org/10.1016/j.apm.2018.03.037.

Sønderby, C. K., L. Espeholt, J. Heek, M. Dehghani, A. Oliver, T. Salimans, S. Agrawal, J. Hickey, and N. Kalchbrenner. 2020. “MetNet: A Neural Weather Model for Precipitation Forecasting.” arXiv preprint. arXiv:2003.12140.

Toms, B. A., E. A. Barnes, and I. Ebert-Uphoff. 2020. “Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability.” Journal of Advances in Modeling Earth Systems 12:e2019MS002002. https://doi.org/10.1029/2019MS002002.

van den Ende, M. P. A., and J.-P. Ampuero. 2020. “Automated Seismic Source Characterization Using Deep Graph Neural Networks.” Geophysical Research Letters 47:e2020GL088690. https://doi.org/10.1029/2020GL088690.

Veillette, M., A. Samsi, and C. Mattioli. 2020. “SEVIR: A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology.” Advances in Neural Information Processing Systems 33:22009–22019.

Wan, Z. Y., P. Vlachas, P. Koumoutsakos, and T. Sapsis. 2018. “Data-assisted Reduced-order Modeling of Extreme Events in Complex Dynamical Systems.” PLOS ONE 13(5):e0197704. https://doi.org/10.1371/journal.pone.0197704.

Wang, L., A. H. Hakim, J. Ng, C. Dong, and K. Germaschewski. 2020. “Exact and Locally Implicit Source Term Solvers for Multifluid-Maxwell Systems.” Journal of Computational Physics 415:109510. https://doi.org/10.1016/j.jcp.2020.109510.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26566.
×

Xie, Y., M. Ebad Sichani, J. E. Padgett, and R. DesRoches. 2020. “The Promise of Implementing Machine Learning in Earthquake Engineering: A State-of-the-Art Review.” Earthquake Spectra 36(4):1769–1801. https://doi.org/10.1177/8755293020919419.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26566.
×
Page 43
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26566.
×
Page 44
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26566.
×
Page 45
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26566.
×
Page 46
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26566.
×
Page 47
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2022. Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/26566.
×
Page 48
Next: Appendix A: Statement of Task »
Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop Get This Book
×
 Machine Learning and Artificial Intelligence to Advance Earth System Science: Opportunities and Challenges: Proceedings of a Workshop
Buy Paperback | $22.00 Buy Ebook | $17.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The Earth system - the atmospheric, hydrologic, geologic, and biologic cycles that circulate energy, water, nutrients, and other trace substances - is a large, complex, multiscale system in space and time that involves human and natural system interactions. Machine learning (ML) and artificial intelligence (AI) offer opportunities to understand and predict this system. Researchers are actively exploring ways to use ML/AI approaches to advance scientific discovery, speed computation, and link scientific communities.

To address the challenges and opportunities around using ML/AI to advance Earth system science, the National Academies convened a workshop in February 2022 that brought together Earth system experts, ML/AI researchers, social and behavioral scientists, ethicists, and decision makers to discuss approaches to improving understanding, analysis, modeling, and prediction. Participants also explored educational pathways, responsible and ethical use of these technologies, and opportunities to foster partnerships and knowledge exchange. This publication summarizes the workshop discussions and themes that emerged throughout the meeting.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!