National Academies Press: OpenBook

Review of the Inland Estimated Recovery System Potential (ERSP) Prototype Calculator (2022)

Chapter: Appendix C: Potential Improvements to the USCG Inland ERSP Calculator

« Previous: Appendix B: USCG Inland ERSP Calculator Software Issues
Suggested Citation:"Appendix C: Potential Improvements to the USCG Inland ERSP Calculator." National Academies of Sciences, Engineering, and Medicine. 2022. Review of the Inland Estimated Recovery System Potential (ERSP) Prototype Calculator. Washington, DC: The National Academies Press. doi: 10.17226/26649.
×

Appendix C

Potential Improvements to the USCG Inland ERSP Calculator

As written in Recommendation 4.2, “If the intent of the calculator is to predict potential recovery under a specific scenario and potentially a geographic location, the calculator should more accurately reflect the location and scenario-specific details of oil fate and behavior.” The current version of the USCG Inland ERSP Calculator lacks the ability to address details about specific locations of interest and their attributes. This has been done to minimize the complexity of the tool and to facilitate its use by those with limited experience. Unfortunately, this also limits the utility of the calculator for those with more experience and interest in gaining additional insight into spill response in particular areas.

It is suggested that the USCG consider developing a more inclusive calculator that allows the user to readily apply it to specific geographic locations. As envisioned, the user will select the area of interest using a topographic (digital elevation) map. The area of focus could be a river/stream or lake/pond. Once selected, the interface would provide the user with a summary of the databases that are available to provide information on the stream flow or waterbody and its characteristics. The USCG might achieve this goal by enhancing the database used to support SAROPS (Search and Rescue Optimal Planning System)1 or accessing data from the Integrated Ocean Observing System (IOOS)2 community. As an example, Figure C.1 shows the current data that is available via OceansMap, which is operated on behalf of MARACOOS (Mid Atlantic Regional Association for Coastal Ocean Observing).3 There are IOOS regional associations covering the entire coast of the U.S., including Alaska. The IOOS coverage often includes major rivers up to the head of the tide and has multiple models from which the user can select (see insert in Figure C.1 below, left side).

For inland areas, the U.S. Geological Survey (USGS) has developed a countrywide monitoring network to observe flows in rivers and streams with over 13,000 stations. Figure C.2 (upper panel) shows the location of the observation stations, color coded by stream flow rate from the USGS National Water Dashboard.4 An interrogation tool (lower panel) allows the user to determine the flow rate for the most recent observation, in this case on the Mississippi River at Vicksburg, MS. The user can also follow links to find a summary of prior observations and associated statistics. As an example, Figure C.3 shows the mean flow values from 2009 to 2020.

The flow rate data needs to be converted into flow speed for it to be used in the USCG Inland ERSP model. To do that, one can ideally rely on the underlying topographic observations used by the USGS. As an alternative for streams that are not well documented, one could use an approximate method such as that developed by Andreadis et al. (2013), which estimates channel width and depth using empirical equations based on an analysis of global stream characteristics using satellite imagery. With the channel dimensions, one can determine channel flow speed. Assuming a limited area of application data from the various sources noted above, the model could apply simple conservation of water mass principles to determine the flow fields in the area of interest. This information can then be used directly as input to the USCG Inland ERSP model to help provide locally specific data.

___________________

1 See https://www.dcms.uscg.mil/Our-Organization/Assistant-Commandant-for-Acquisitions-CG-9/International-Acquisition/sarops/; accessed 9 August 2022.

2 See https://ioos.noaa.gov/; accessed 9 August 2022.

3 See https://oceansmap.maracoos.org/; accessed 9 August 2022.

4 See https://dashboard.waterdata.usgs.gov/app/nwd/?aoi=default; accessed 9 August 2022.

Suggested Citation:"Appendix C: Potential Improvements to the USCG Inland ERSP Calculator." National Academies of Sciences, Engineering, and Medicine. 2022. Review of the Inland Estimated Recovery System Potential (ERSP) Prototype Calculator. Washington, DC: The National Academies Press. doi: 10.17226/26649.
×
Image
FIGURE C.1 MARACOOS OceansMap web site map, displaying model predictions for 1 August 2022 for the Northeast coast of the U.S., using the NERACOOS (Northeast Regional Coastal Ocean Observing System) Gulf of Maine FVCOM model.

Image

Suggested Citation:"Appendix C: Potential Improvements to the USCG Inland ERSP Calculator." National Academies of Sciences, Engineering, and Medicine. 2022. Review of the Inland Estimated Recovery System Potential (ERSP) Prototype Calculator. Washington, DC: The National Academies Press. doi: 10.17226/26649.
×
Image
FIGURE C.2 USGS National Water Dashboard displaying stream flows (upper panel) and ability to determine current discharge at the location of interest (lower panel).
Image
FIGURE C.3 Access to mean discharge by water year (2009 to 2020) for the Mississippi River at Vicksburg, MS from the USGS.

As an alternative to using the current version of the USCG Inland ERSP Calculator, an oil spill model could be applied locally using input from the above flow model and specifications of the spill release rate, duration, and oil type to predict the oil spill transport and fate. The model would provide predictions of the oil mass balance, and thickness and size of the slick, as a function of time since release for a user

Suggested Citation:"Appendix C: Potential Improvements to the USCG Inland ERSP Calculator." National Academies of Sciences, Engineering, and Medicine. 2022. Review of the Inland Estimated Recovery System Potential (ERSP) Prototype Calculator. Washington, DC: The National Academies Press. doi: 10.17226/26649.
×

defined spill release and oil type. This could include oil by typical classes or the detailed characteristic of a particular oil of interest. The user could also specify the shoreline type for the area of interest. Predictions of the spill model would be adjusted by the removal of oil from the environment by booming and skimming operations, as is currently done in the USCG Inland ERSP Calculator. If a more rigorous analysis is required, then the SLICKMAP model, funded by U.S. Department of Transportation and Minerals Management Service (now the Bureau of Ocean Energy Management, Regulation, and Enforcement), could be used (Grilli et al., 1996a, b; 1997; 2000). SLICKMAP predicts the detailed behavior of the dynamics of oil containment by booms and has been extensively verified by laboratory scale studies.

REFERENCES

Andreadis, K. A., G. J.-P. Schumann, and T. Pavelsky. 2013. A simple global riverbank full width and depth database, Water Resources Res., 49, 7164–7168, doi:10.1002/wrcr.20440.

Grilli, S. T., Z. Hu, and M. L. Spaulding. 1996a. A Hydrodynamic Model of Oil Containment by a Boom: Phase I. Final Technical Report. DOT Grant No. DTRS57-94-G-00076, Washington, DC: U.S. Department of Transportation.

Grilli, S. T., Z. Hu, and M. L. Spaulding. 1996b. Numerical modeling of oil containment by a boom. In Proc. 19th Arctic and Marine Oilspill Program Tech. Seminar (Arctic and Marine Oilspill Program, Calgary, Alberta), pp. 343–376. Environment Canada.

Grilli, S. T., Z. Hu, M. L. Spaulding, and D. Liang, 1997. Numerical Modeling of Oil Containment by a Boom/Barrier System: Phase II. Final Technical Report. Washington, DC: Department of Transportation.

Grilli, S. T., T. Fake, and M. L. Spaulding, 2000. Numerical Modeling of Oil Containment by a Boom/Barrier System: Phase III. Final Technical Report. Washington, DC: Department of Transportation.

Suggested Citation:"Appendix C: Potential Improvements to the USCG Inland ERSP Calculator." National Academies of Sciences, Engineering, and Medicine. 2022. Review of the Inland Estimated Recovery System Potential (ERSP) Prototype Calculator. Washington, DC: The National Academies Press. doi: 10.17226/26649.
×
Page 50
Suggested Citation:"Appendix C: Potential Improvements to the USCG Inland ERSP Calculator." National Academies of Sciences, Engineering, and Medicine. 2022. Review of the Inland Estimated Recovery System Potential (ERSP) Prototype Calculator. Washington, DC: The National Academies Press. doi: 10.17226/26649.
×
Page 51
Suggested Citation:"Appendix C: Potential Improvements to the USCG Inland ERSP Calculator." National Academies of Sciences, Engineering, and Medicine. 2022. Review of the Inland Estimated Recovery System Potential (ERSP) Prototype Calculator. Washington, DC: The National Academies Press. doi: 10.17226/26649.
×
Page 52
Suggested Citation:"Appendix C: Potential Improvements to the USCG Inland ERSP Calculator." National Academies of Sciences, Engineering, and Medicine. 2022. Review of the Inland Estimated Recovery System Potential (ERSP) Prototype Calculator. Washington, DC: The National Academies Press. doi: 10.17226/26649.
×
Page 53
Next: Appendix D: Committee Biographies »
Review of the Inland Estimated Recovery System Potential (ERSP) Prototype Calculator Get This Book
×
Buy Ebook | $14.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

In the wake of major oil spills, including the Exxon Valdez spill in 1989 and Deepwater Horizon spill in 2010, the United States developed tools for calculating the clean-up capability of oil spill response equipment. These tools, while useful for open-water spills, had limited applicability in nearshore and inland environments, leading the U.S. Coast Guard and partners to develop a new, inland Estimated Recovery System Potential (ERSP) calculator for oil recovery. The present review evaluates the inland ERSP calculator and accompanying documentation.

While acknowledging the complexities associated with developing such a calculator for inland environments, the report recommends changes to the methodologies used and the software developed to better meet user needs. The calculator should be modified to more clearly establish the scope of its capabilities, so users understand the limitations on data they can input as well as what the calculator outputs tell them about the recovery potential of selected clean-up equipment. The calculator should also undergo thorough third-party validation and verification as well as quality assurance testing, to ensure it operates as intended.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!