National Academies Press: OpenBook

Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation (2022)

Chapter: Appendix G: BCOA Design Method Inputs

« Previous: Appendix F: Visual Distress Survey Results
Page 270
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 270
Page 271
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 271
Page 272
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 272
Page 273
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 273
Page 274
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 274
Page 275
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 275
Page 276
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 276
Page 277
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 277
Page 278
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 278
Page 279
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 279
Page 280
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 280
Page 281
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 281
Page 282
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 282
Page 283
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 283
Page 284
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 284
Page 285
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 285
Page 286
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 286
Page 287
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 287
Page 288
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 288
Page 289
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 289
Page 290
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 290
Page 291
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 291
Page 292
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 292
Page 293
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 293
Page 294
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 294
Page 295
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 295
Page 296
Suggested Citation:"Appendix G: BCOA Design Method Inputs." National Academies of Sciences, Engineering, and Medicine. 2022. Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation. Washington, DC: The National Academies Press. doi: 10.17226/26759.
×
Page 296

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

270 APPENDIX G: BCOA DESIGN METHOD INPUTS

271 BCOA-ME Table G-1. BCOA-ME Design Method Inputs Project ID Segment Estimated Design ESALs Maximum Allowable Slabs Cracked (%) Desired Reliability against Slab Cracking (%) AMDAT Region ID Map of Sunshine Zone Post-milling HMA Thickness (inch) HMA Fatigue CO I-70 Good 10,600,000 25 85 2 3 15.0 Adequate CO I-70 Poor 10,600,000 25 85 2 3 12.0 Adequate CO SH-83A Good 7,120,000 25 85 2 2 9.0 Adequate CO SH-83A Poor 7,120,000 25 85 2 2 8.0 Adequate CO SH-83B Good 2,066,000 25 85 2 2 7.0 Adequate CO SH-83B Poor 2,066,000 25 85 2 2 7.0 Adequate CO SH-121A Good 1,272,000 25 85 2 2 7.0 Adequate CO SH-121A Poor 1,272,000 25 85 2 2 8.0 Adequate CO SH-121B Good 3,026,032 25 85 2 2 4.0 Adequate CO SH-121B Poor 3,026,032 25 85 2 2 9.0 Adequate CO US-6 Good 1,338,000 25 85 2 3 3.0 Adequate CO US-6 Poor 1,338,000 25 85 2 3 3.0 Adequate IA US-71 Good 4,000,000 25 85 4 2 9.0 Adequate IA US-71 Poor 4,000,000 25 85 4 2 8.0 Adequate IL CH-27 Good 4,000,000 25 85 5 3 9.0 Adequate IL CH-27 Poor 4,000,000 25 85 5 3 3.0 Adequate IL SR-53 Good 4,000,000 25 85 5 3 6.0 Adequate IL SR-53 Poor 4,000,000 25 85 5 3 13.0 Adequate KS I-70 Good 8,130,000 25 85 3 4 18.0 Adequate KS I-70 Poor 8,130,000 25 85 3 4 26.0 Adequate LA US-167 Good 6,000,000 25 85 4 5 3.0 Adequate LA US-167 Poor 6,000,000 25 85 4 5 9.0 Adequate LA US-425 Good 4,000,000 25 85 4 5 10.0 Adequate LA US-425 Poor 4,000,000 25 85 4 5 10.0 Adequate MN CSAH-7 Good 4,000,000 25 85 5 1 6.0 Adequate MN CSAH-7 Poor 4,000,000 25 85 5 1 14.0 Adequate MN CSAH-22 Good 904,399 25 85 5 2 3.0 Adequate MN CSAH-22 Poor 904,399 25 85 5 2 7.0 Adequate MN I-35 Good 9,055,000 25 85 5 2 14.0 Adequate MN I-35 Poor 9,055,000 25 85 5 2 6.0 Adequate MN TH-30 Good 57,600 25 85 5 1 6.0 Adequate MN TH-30 Poor 57,600 25 85 5 1 6.0 Adequate MO US-60 Good 4,000,000 25 85 4 4 5.0 Adequate MO US-60 Poor 4,000,000 25 85 4 4 6.0 Adequate MT SR-16 Good 4,000,000 25 85 3 1 4.0 Adequate MT SR-16 Poor 4,000,000 25 85 3 1 3.0 Adequate PA SR-119 Good 5,335,600 25 85 6 3 9.0 Adequate PA SR-119 Poor 5,335,600 25 85 6 3 8.0 Adequate

272 Table G-1. BCOA-ME Design Method Inputs (continued) Project ID Segment k-value (pci) Existing HMA Pavement Transverse Cracks Average 28-day Flexural Strength (psi) Concrete Elastic Modulus (psi) CTE (x 10-6 in/in/°F) Fiber Type Fiber Content (lb/cy) Joint Spacing (ft) CO I-70 Good 150 Yes 650 4,200,000 5.669 None 0 6 CO I-70 Poor 150 Yes 650 4,200,000 5.669 None 0 6 CO SH-83A Good 150 Yes 650 4,200,000 5.609 None 0 6 CO SH-83A Poor 150 Yes 650 4,200,000 5.609 None 0 6 CO SH-83B Good 150 Yes 650 4,200,000 5.545 None 0 6 CO SH-83B Poor 150 Yes 650 4,200,000 5.160 None 0 6 CO SH-121A Good 150 Yes 650 4,200,000 4.614 Fibers(a) 80 6 CO SH-121A Poor 150 Yes 650 4,200,000 5.133 Fibers(a) 80 6 CO SH-121B Good 150 Yes 650 4,200,000 5.073 None 0 6 CO SH-121B Poor 150 Yes 650 4,200,000 5.345 None 0 6 CO US-6 Good 150 Yes 650 4,200,000 5.046 None 0 12 CO US-6 Poor 150 Yes 650 4,200,000 4.612 None 0 12 IA US-71 Good 150 Yes 650 4,200,000 6.280 None 0 6 IA US-71 Poor 150 Yes 650 4,200,000 6.280 None 0 6 IL CH-27 Good 150 Yes 650 4,200,000 5.283 None 0 6 IL CH-27 Poor 150 Yes 650 4,200,000 5.506 None 0 6 IL SR-53 Good 150 Yes 650 4,200,000 5.978 Fibers(a) 80 4 IL SR-53 Poor 150 Yes 650 4,200,000 5.969 Fibers(a) 80 4 KS I-70 Good 150 Yes 650 4,200,000 5.988 None 0 6 KS I-70 Poor 150 Yes 650 4,200,000 5.710 None 0 6 LA US-167 Good 150 Yes 650 4,200,000 6.181 None 0 4 LA US-167 Poor 150 Yes 650 4,200,000 6.181 None 0 4 LA US-425 Good 150 Yes 650 4,200,000 6.181 None 0 4 LA US-425 Poor 150 Yes 650 4,200,000 6.181 None 0 4 MN CSAH-7 Good 150 Yes 650 4,200,000 6.170 None 0 6 MN CSAH-7 Poor 150 Yes 650 4,200,000 6.170 None 0 6 MN CSAH-22 Good 150 Yes 650 4,200,000 6.169 None 0 6 MN CSAH-22 Poor 150 Yes 650 4,200,000 5.751 None 0 6 MN I-35 Good 150 Yes 650 4,200,000 6.320 None 0 6 MN I-35 Poor 150 Yes 650 4,200,000 6.320 None 0 6 MN TH-30 Good 150 Yes 650 4,200,000 5.834 None 0 12 MN TH-30 Poor 150 Yes 650 4,200,000 5.778 None 0 12 MO US-60 Good 150 Yes 650 4,200,000 4.900 Fibers(a) 80 4 MO US-60 Poor 150 Yes 650 4,200,000 4.900 Fibers(a) 80 4 MT SR-16 Good 150 Yes 650 4,200,000 4.900 None 0 4 MT SR-16 Poor 150 Yes 650 4,200,000 4.900 None 0 4 PA SR-119 Good 150 Yes 650 4,200,000 6.054 None 0 6 PA SR-119 Poor 150 Yes 650 4,200,000 6.129 None 0 6 (a) Synthetic Structural Fibers

273 CODOT Table G-2. CODOT Design Method Inputs Project ID Segment Highway Category Joint Spacing (inch) Concrete Elastic Modulus (psi) Concrete Poisson's Ratio Concrete Flexural Strength (psi) Asphalt Thickness (inch) Asphalt Elastic Modulus (psi) CO I-70 Good Primary 72 4,000,000 0.15 650 15.1 350,000 CO I-70 Poor Primary 72 4,000,000 0.15 650 12.1 350,000 CO SH-83A Good Primary 72 4,000,000 0.15 650 9.2 350,000 CO SH-83A Poor Primary 72 4,000,000 0.15 650 7.5 350,000 CO SH-83B Good Primary 72 4,000,000 0.15 650 6.9 350,000 CO SH-83B Poor Primary 72 4,000,000 0.15 650 6.9 350,000 CO SH-121A Good Primary 72 4,000,000 0.15 650 7.1 350,000 CO SH-121A Poor Primary 72 4,000,000 0.15 650 7.8 350,000 CO SH-121B Good Primary 72 4,000,000 0.15 650 3.7 350,000 CO SH-121B Poor Primary 72 4,000,000 0.15 650 9.0 350,000 CO US-6 Good Primary 144 4,000,000 0.15 650 3.4 350,000 CO US-6 Poor Primary 144 4,000,000 0.15 650 3.4 350,000 IA US-71 Good Primary 72 4,000,000 0.15 650 9.3 350,000 IA US-71 Poor Primary 72 4,000,000 0.15 650 7.6 350,000 IL CH-27 Good Primary 66 4,000,000 0.15 650 8.6 350,000 IL CH-27 Poor Primary 66 4,000,000 0.15 650 2.7 350,000 IL SR-53 Good Primary 48 4,000,000 0.15 650 5.6 350,000 IL SR-53 Poor Primary 48 4,000,000 0.15 650 12.7 350,000 KS I-70 Good Primary 72 4,000,000 0.15 650 18.1 350,000 KS I-70 Poor Primary 72 4,000,000 0.15 650 26.2 350,000 LA US-167 Good Primary 48 4,000,000 0.15 650 3.0 350,000 LA US-167 Poor Primary 48 4,000,000 0.15 650 8.9 350,000 LA US-425 Good Primary 48 4,000,000 0.15 650 9.5 350,000 LA US-425 Poor Primary 48 4,000,000 0.15 650 10.1 350,000 MN CSAH-7 Good Primary 72 4,000,000 0.15 650 6.3 350,000 MN CSAH-7 Poor Primary 72 4,000,000 0.15 650 14.0 350,000 MN CSAH-22 Good Primary 72 4,000,000 0.15 650 3.2 350,000 MN CSAH-22 Poor Primary 72 4,000,000 0.15 650 6.5 350,000 MN I-35 Good Primary 72 4,000,000 0.15 650 14.0 350,000 MN I-35 Poor Primary 72 4,000,000 0.15 650 6.0 350,000 MN TH-30 Good Primary 144 4,000,000 0.15 650 5.7 350,000 MN TH-30 Poor Primary 144 4,000,000 0.15 650 5.5 350,000 MO US-60 Good Primary 48 4,000,000 0.15 650 4.7 350,000 MO US-60 Poor Primary 48 4,000,000 0.15 650 5.5 350,000 MT SR-16 Good Primary 48 4,000,000 0.15 650 3.7 350,000 MT SR-16 Poor Primary 48 4,000,000 0.15 650 2.8 350,000 PA SR-119 Good Primary 72 4,000,000 0.15 650 9.1 350,000 PA SR-119 Poor Primary 72 4,000,000 0.15 650 8.3 350,000

274 Table G-2. CODOT Design Method Inputs Project ID Segment Asphalt Poisson's Ratio Asphalt Fatigue life Previously Consumed (%) Subgrade Modulus (pci) Temperature Gradient (°F/inch) Design ESALs CO I-70 Good 0.35 50 150 3 10,600,000 CO I-70 Poor 0.35 50 150 3 10,600,000 CO SH-83A Good 0.35 50 150 3 7,120,000 CO SH-83A Poor 0.35 50 150 3 7,120,000 CO SH-83B Good 0.35 50 150 3 2,066,000 CO SH-83B Poor 0.35 50 150 3 2,066,000 CO SH-121A Good 0.35 50 150 3 1,272,000 CO SH-121A Poor 0.35 50 150 3 1,272,000 CO SH-121B Good 0.35 50 150 3 3,026,032 CO SH-121B Poor 0.35 50 150 3 3,026,032 CO US-6 Good 0.35 50 150 3 1,338,000 CO US-6 Poor 0.35 50 150 3 1,338,000 IA US-71 Good 0.35 50 150 4 4,000,000 IA US-71 Poor 0.35 50 150 4 4,000,000 IL CH-27 Good 0.35 50 150 3 4,000,000 IL CH-27 Poor 0.35 50 150 3 4,000,000 IL SR-53 Good 0.35 50 150 3 4,000,000 IL SR-53 Poor 0.35 50 150 3 4,000,000 KS I-70 Good 0.35 50 150 2 8,130,000 KS I-70 Poor 0.35 50 150 2 8,130,000 LA US-167 Good 0.35 50 150 1 6,000,000 LA US-167 Poor 0.35 50 150 1 6,000,000 LA US-425 Good 0.35 50 150 1 4,000,000 LA US-425 Poor 0.35 50 150 1 4,000,000 MN CSAH-7 Good 0.35 50 150 5 4,000,000 MN CSAH-7 Poor 0.35 50 150 5 4,000,000 MN CSAH-22 Good 0.35 50 150 5 904,399 MN CSAH-22 Poor 0.35 50 150 5 904,399 MN I-35 Good 0.35 50 150 5 9,055,000 MN I-35 Poor 0.35 50 150 5 9,055,000 MN TH-30 Good 0.35 50 150 5 57,600 MN TH-30 Poor 0.35 50 150 5 57,600 MO US-60 Good 0.35 50 150 2 4,000,000 MO US-60 Poor 0.35 50 150 2 4,000,000 MT SR-16 Good 0.35 50 150 4 4,000,000 MT SR-16 Poor 0.35 50 150 4 4,000,000 PA SR-119 Good 0.35 50 150 3 5,335,600 PA SR-119 Poor 0.35 50 150 3 5,335,600

275 ILDOT Table G-3. ILDOT Design Method Inputs Project ID Segment Design Traffic Factor 14-Day Modulus of Rupture (psi) FRC Residual Strength Ratio Remaining Thickness of Asphalt (inch) Joint Spacing (inch) Elastic Modulus of Concrete (psi) CTE (x 10-6 in/in/°F) CO I-70 Good 10.60 650 0% 15.1 72 4,000,000 5.669 CO I-70 Poor 10.60 650 0% 12.1 72 4,000,000 5.669 CO SH-83A Good 7.12 650 0% 9.2 72 4,000,000 5.609 CO SH-83A Poor 7.12 650 0% 7.5 72 4,000,000 5.609 CO SH-83B Good 2.07 650 0% 6.9 72 4,000,000 5.545 CO SH-83B Poor 2.07 650 0% 6.9 72 4,000,000 5.160 CO SH-121A Good 1.27 650 20% 7.1 72 4,000,000 4.614 CO SH-121A Poor 1.27 650 20% 7.8 72 4,000,000 5.133 CO SH-121B Good 3.03 650 0% 3.7 72 4,000,000 5.073 CO SH-121B Poor 3.03 650 0% 9.0 72 4,000,000 5.345 CO US-6 Good 1.34 650 0% 3.4 144 4,000,000 5.046 CO US-6 Poor 1.34 650 0% 3.4 144 4,000,000 4.612 IA US-71 Good 4.00 650 0% 9.3 72 4,000,000 6.280 IA US-71 Poor 4.00 650 0% 7.6 72 4,000,000 6.280 IL CH-27 Good 4.00 650 0% 8.6 66 4,000,000 5.283 IL CH-27 Poor 4.00 650 0% 2.7 66 4,000,000 5.506 IL SR-53 Good 4.00 650 20% 5.6 48 4,000,000 5.978 IL SR-53 Poor 4.00 650 20% 12.7 48 4,000,000 5.969 KS I-70 Good 8.13 650 0% 18.1 72 4,000,000 5.988 KS I-70 Poor 8.13 650 0% 26.2 72 4,000,000 5.710 LA US-167 Good 6.00 650 0% 3.0 48 4,000,000 6.181 LA US-167 Poor 6.00 650 0% 8.9 48 4,000,000 6.181 LA US-425 Good 4.00 650 0% 9.5 48 4,000,000 6.181 LA US-425 Poor 4.00 650 0% 10.1 48 4,000,000 6.181 MN CSAH-7 Good 4.00 650 0% 6.3 72 4,000,000 6.170 MN CSAH-7 Poor 4.00 650 0% 14.0 72 4,000,000 6.170 MN CSAH-22 Good 0.90 650 0% 3.2 72 4,000,000 6.169 MN CSAH-22 Poor 0.90 650 0% 6.5 72 4,000,000 5.751 MN I-35 Good 9.06 650 0% 14.0 72 4,000,000 6.320 MN I-35 Poor 9.06 650 0% 6.0 72 4,000,000 6.320 MN TH-30 Good 0.06 650 0% 5.7 144 4,000,000 5.834 MN TH-30 Poor 0.06 650 0% 5.5 144 4,000,000 5.778 MO US-60 Good 4.00 650 20% 4.7 48 4,000,000 4.900 MO US-60 Poor 4.00 650 20% 5.5 48 4,000,000 4.900 MT SR-16 Good 4.00 650 0% 3.7 48 4,000,000 4.900 MT SR-16 Poor 4.00 650 0% 2.8 48 4,000,000 4.900 PA SR-119 Good 5.34 650 0% 9.1 72 4,000,000 6.054 PA SR-119 Poor 5.34 650 0% 8.3 72 4,000,000 6.129

276 Table G-3. ILDOT Design Method Inputs (continued) Project ID Segment Elastic Modulus of Asphalt (psi) k-value (pci) CO I-70 Good 350,000 150 CO I-70 Poor 350,000 150 CO SH-83A Good 350,000 150 CO SH-83A Poor 350,000 150 CO SH-83B Good 350,000 150 CO SH-83B Poor 350,000 150 CO SH-121A Good 350,000 150 CO SH-121A Poor 350,000 150 CO SH-121B Good 350,000 150 CO SH-121B Poor 350,000 150 CO US-6 Good 350,000 150 CO US-6 Poor 350,000 150 IA US-71 Good 350,000 150 IA US-71 Poor 350,000 150 IL CH-27 Good 350,000 150 IL CH-27 Poor 350,000 150 IL SR-53 Good 350,000 150 IL SR-53 Poor 350,000 150 KS I-70 Good 350,000 150 KS I-70 Poor 350,000 150 LA US-167 Good 350,000 150 LA US-167 Poor 350,000 150 LA US-425 Good 350,000 150 LA US-425 Poor 350,000 150 MN CSAH-7 Good 350,000 150 MN CSAH-7 Poor 350,000 150 MN CSAH-22 Good 350,000 150 MN CSAH-22 Poor 350,000 150 MN I-35 Good 350,000 150 MN I-35 Poor 350,000 150 MN TH-30 Good 350,000 150 MN TH-30 Poor 350,000 150 MO US-60 Good 350,000 150 MO US-60 Poor 350,000 150 MT SR-16 Good 350,000 150 MT SR-16 Poor 350,000 150 PA SR-119 Good 350,000 150 PA SR-119 Poor 350,000 150

277 PaveME Table G-4. PaveME Design Method Inputs CO CO CO CO Project Route I-70 I-70 SH-83A SH-83A Direction WB WB NB SB Segment Good Poor Good Poor General Information Design type Overlay Overlay Overlay Overlay Pavement type SJPCP SJPCP SJPCP SJPCP Design life (years) 20 20 20 20 Existing construction month/year Jun-1990 Jun-1990 Jun-1990 Jun-1990 Pavement construction month/year (assume Sep) 2011 2011 2000 2000 Traffic opening date month/year (assume Oct) 2011 2011 2000 2000 Performance Criteria SJPCP longitudinal cracking (percent slabs) 15 15 15 15 SJPCP longitudinal cracking reliability 50 50 50 50 SJPCP Design Surface shortwave absorptivity 0.85 0.85 0.85 0.85 Joint spacing (ft, square slab) 6.0 6.0 6.0 6.0 Joint sealant type asphalt asphalt asphalt asphalt Tied shoulders (yes or no) yes yes yes yes Perm. curl/warp effective temp difference (°F) (10) (10) (10) (10) Transverse joint LTE (%) 80 80 80 80 BCOA Layer Poisson's ratio 0.20 0.20 0.20 0.20 Thickness (in) 6.8 6.0 5.5 10.4(a) Unit weight (pcf) 150 150 150 150 Coefficient of thermal expansion (x10-6 in/in/°F) 5.669 5.669 5.609 5.609 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 1.25 1.25 1.25 1.25 Aggregate type Dolomite Dolomite Granite Granite Cementitious material content (lb/yd3) 564 564 563 563 Cement type Type I/II Type I/II Type I Type I Fibers No No No No Water to cement ratio 0.43 0.43 0.36 0.36 Curing method compound compound compound compound Reversible shrinkage (%) 50 50 50 50 PCC zero-stress temperature calculated calculated calculated calculated Time to 50% of ultimate shrinkage (days) 35 35 35 35 Ultimate shrinkage calculated calculated calculated calculated PCC strength (psi) 5,440 5,440 6,610 4,380 PCC elastic modulus (psi) 4,200,000 4,200,000 4,200,000 4,200,000 Asphalt Layer Thickness (in) 15.1(b) 12.1(b) 9.2 7.5 Air voids (%) 7 7 7 7 Effective binder content (%) 12 12 12 12 Poisson's ratio 0.35 0.35 0.35 0.35 Unit weight (pcf) 150 150 150 150 Asphalt binder grade PG 58-22 PG 58-22 PG 58-22 PG 58-22 Asphalt binder type unknown unknown unknown unknown Creep compliance (1/psi) Level 3 Level 3 Level 3 Level 3 Dynamic modulus Level 3 Level 3 Level 3 Level 3 HMA E* predictive model viscosity viscosity viscosity viscosity Reference temperature (°F) 70 70 70 70 Indirect tensile strength at 14 °F (psi) Level 3 Level 3 Level 3 Level 3 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 0.67 0.67 0.67 0.67 Thermal contraction calculated calculated calculated calculated (a) Less than allowable minimum value, increased to 6 ft. (b) Exceeds allowable maximum value, decreased to 10 inches.

278 Table G-4. PaveME Design Method Inputs (continued) CO CO CO CO Project Route I-70 I-70 SH-83A SH-83A Direction WB WB NB SB Segment Good Poor Good Poor Subgrade Layer Material type A-2-7 A-2-6 A-2-4 A-2-4 Coefficient of lateral earth pressure 0.5 0.5 0.5 0.5 Thickness (in) N/A N/A N/A N/A Poisson's ratio 0.35 0.35 0.35 0.35 Resilient modulus (psi) 21,476 9,871 7,798 15,952 #200 2 3 5 2 #100 10 11 15 8 #50 31 34 44 28 #40 39 44 58 61 #30 46 54 67 75 #16 67 75 78 89 #10 82 86 82 94 #8 85 88 96 95 #4 94 94 99 99 3/8-inch 98 98 100 100 1/2-inch 98 99 100 100 3/4-inch 100 100 100 100 1-inch 100 100 100 100 1 1/2-inch 100 100 100 100 Liquid Limit 43 34 NP 29 Plastic Limit 30 22 NP 22 Layer is compacted yes yes yes yes Climate Closest City Grand Junction Grand Junction Centennial Foxfield Traffic Two-way ADT 8,200 8,200 54,340 54,340 % Trucks 22.5 22.5 5.0 5.0 ESAL (20 year) 10,600,000 10,600,000 7,120,000 7,120,000 Functional Classification interstate interstate major arterial major arterial Number of lanes each direction 2 2 2 2 Percent trucks in design direction 50 50 50 50 Percent trucks in design lane 100 100 100 100 Operational speed (mph) 75 75 45 45

279 Table G-5.PaveME Design Method Inputs CO CO CO CO Project Route SH-83B SH-83B SH-121A SH-121A Direction NB SB NB NB Segment Good Poor Good Poor General Information Design type Overlay Overlay Overlay Overlay Pavement type SJPCP SJPCP SJPCP SJPCP Design life (years) 20 20 10 10 Existing construction month/year Jun-1990 Jun-1990 Jun-1990 Jun-1990 Pavement construction month/year (assume Sep) 2005 2005 2000 2000 Traffic opening date month/year (assume Oct) 2005 2005 2000 2000 Performance Criteria SJPCP longitudinal cracking (percent slabs) 15 15 15 15 SJPCP longitudinal cracking reliability 50 50 50 50 SJPCP Design Surface shortwave absorptivity 0.85 0.85 0.85 0.85 Joint spacing (ft, square slab) 6.0 6.0 6.0 6.0 Joint sealant type asphalt asphalt asphalt asphalt Tied shoulders (yes or no) yes yes yes yes Perm. curl/warp effective temp difference (°F) (10) (10) (10) (10) Transverse joint LTE (%) 80 80 80 80 BCOA Layer Poisson's ratio 0.20 0.20 0.20 0.20 Thickness (in) 5.9 6.0 6.0 5.7 Unit weight (pcf) 150 150 150 150 Coefficient of thermal expansion (x10-6 in/in/°F) 5.545 5.160 4.614 5.133 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 1.25 1.25 1.25 1.25 Aggregate type Dolomite Dolomite Dolomite Dolomite Cementitious material content (lb/yd3) 563 563 698 698 Cement type Type I Type I Type I Type I Fibers No No Yes Yes Water to cement ratio 0.36 0.36 0.38 0.38 Curing method compound compound compound compound Reversible shrinkage (%) 50 50 50 50 PCC zero-stress temperature calculated calculated calculated calculated Time to 50% of ultimate shrinkage (days) 35 35 35 35 Ultimate shrinkage calculated calculated calculated calculated PCC strength (psi) 6,140 5,250 5,290 5,270 PCC elastic modulus (psi) 4,200,000 4,200,000 4,200,000 4,200,000 Asphalt Layer Thickness (in) 12.7 12.9 13.1 13.5 Air voids (%) 7 7 7 7 Effective binder content (%) 12 12 12 12 Poisson's ratio 0.35 0.35 0.35 0.35 Unit weight (pcf) 150 150 150 150 Asphalt binder grade PG 58-22 PG 58-22 PG 58-22 PG 58-22 Asphalt binder type unknown unknown unknown unknown Creep compliance (1/psi) Level 3 Level 3 Level 3 Level 3 Dynamic modulus Level 3 Level 3 Level 3 Level 3 HMA E* predictive model viscosity viscosity viscosity viscosity Reference temperature (°F) 70 70 70 70 Indirect tensile strength at 14 °F (psi) Level 3 Level 3 Level 3 Level 3 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 0.67 0.67 0.67 0.67 Thermal contraction calculated calculated calculated calculated

280 Table G-5. PaveME Design Method Inputs (continued) CO CO CO CO Project Route SH-83B SH-83B SH-121A SH-121A Direction NB SB NB NB Segment Good Poor Good Poor Subgrade Layer Material type A-2-4 A-3 A-1-a A-1-a Coefficient of lateral earth pressure 0.5 0.5 0.5 0.5 Thickness (in) N/A N/A N/A N/A Poisson's ratio 0.35 0.35 0.35 0.35 Resilient modulus (psi) 22,850 10,749 17,314 8,549 #200 3 2 1 1 #100 9 6 6 6 #50 35 22 21 21 #40 63 41 30 30 #30 79 56 39 39 #16 94 85 54 54 #10 97 91 61 61 #8 98 92 62 62 #4 100 99 69 69 3/8-inch 100 100 78 78 1/2-inch 100 100 84 84 3/4-inch 100 100 91 91 1-inch 100 100 94 94 1 1/2-inch 100 100 100 100 Liquid Limit NP NP NP NP Plastic Limit NP NP NP NP Layer is compacted yes yes yes yes Climate Closest City Foxfield Foxfield Gridpoint Gridpoint Traffic Climate Traffic Two-way ADT 52,024 52,024 22,000 22,000 % Trucks 4.7 4.7 4.8 4.8 ESAL (20 year) 2,066,000 2,066,000 1,272,000 1,272,000 Functional Classification major arterial major arterial major arterial Major arterial Number of lanes each direction 2 2 2 2 Percent trucks in design direction 50 50 50 50 Percent trucks in design lane 100 100 100 100 Operational speed (mph) 45 45 55 55

281 Table G-6. PaveME Design Method Inputs CO CO CO CO Project Route SH-121B SH-121B US-6 US-6 Direction NB NB EB EB Segment Good Poor Good Poor General Information Design type Overlay Overlay Overlay Overlay Pavement type SJPCP SJPCP SJPCP SJPCP Design life (years) 20 20 20 20 Existing construction month/year Jun-1990 Jun-1990 Jun-1990 Jun-1990 Pavement construction month/year (assume Sep) 2012 2012 1998 1998 Traffic opening date month/year (assume Oct) 2012 2012 1998 1998 Performance Criteria SJPCP longitudinal cracking (percent slabs) 15 15 15 15 SJPCP longitudinal cracking reliability 50 50 50 50 SJPCP Design Surface shortwave absorptivity 0.85 0.85 0.85 0.85 Joint spacing (ft, square slab) 6.0 6.0 12.0(a) 12.0(a) Joint sealant type asphalt asphalt asphalt asphalt Tied shoulders (yes or no) yes yes yes yes Perm. curl/warp effective temp difference (°F) (10) (10) (10) (10) Transverse joint LTE (%) 80 80 80 80 BCOA Layer Poisson's ratio 0.20 0.20 0.20 0.20 Thickness (in) 7.5 6.7 5.8 5.8 Unit weight (pcf) 150 150 150 150 Coefficient of thermal expansion (x10-6 in/in/°F) 5.073 5.345 5.046 4.612 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 1.25 1.25 1.25 1.25 Aggregate type Dolomite Dolomite Dolomite Dolomite Cementitious material content (lb/yd3) 560 560 678 678 Cement type Type I/II Type I/II Type I Type I Fibers No No No No Water to cement ratio 0.38 0.38 0.37 0.37 Curing method compound compound compound compound Reversible shrinkage (%) 50 50 50 50 PCC zero-stress temperature calculated calculated calculated calculated Time to 50% of ultimate shrinkage (days) 35 35 35 35 Ultimate shrinkage calculated calculated calculated calculated PCC strength (psi) 4,210 6,320 6,010 6,860 PCC elastic modulus (psi) 4,200,000 4,200,000 4,200,000 4,200,000 Asphalt Layer Thickness (in) 3.7 9.0 3.4 3.4 Air voids (%) 7 7 7 7 Effective binder content (%) 12 12 12 12 Poisson's ratio 0.35 0.35 0.35 0.35 Unit weight (pcf) 150 150 150 150 Asphalt binder grade PG 58-22 PG 58-22 PG 58-22 PG 58-22 Asphalt binder type unknown unknown unknown unknown Creep compliance (1/psi) Level 3 Level 3 Level 3 Level 3 Dynamic modulus Level 3 Level 3 Level 3 Level 3 HMA E* predictive model viscosity viscosity viscosity viscosity Reference temperature (°F) 70 70 70 70 Indirect tensile strength at 14 °F (psi) Level 3 Level 3 Level 3 Level 3 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 0.67 0.67 0.67 0.67 Thermal contraction calculated calculated calculated calculated (a) Greater than allowable maximum value, decreased to 8 ft.

282 Table G-6. PaveME Design Method Inputs (continued) CO CO CO CO Project Route SH-121B SH-121B US-6 US-6 Direction NB NB EB EB Segment Good Poor Good Poor Subgrade Layer Material type A-1-a A-2-4 A-1-b A-1-b Coefficient of lateral earth pressure 0.5 0.5 0.5 0.5 Thickness (in) N/A N/A N/A N/A Poisson's ratio 0.35 0.35 0.35 0.35 Resilient modulus (psi) 10,959 13,833 7,415 8,856 #200 7 1 4 4 #100 21 3 12 8 #50 53 28 27 17 #40 63 43 40 25 #30 71 50 47 33 #16 87 71 63 51 #10 96 84 77 66 #8 97 87 80 70 #4 99 97 91 87 3/8-inch 99 99 97 97 1/2-inch 100 100 98 100 3/4-inch 100 100 99 100 1-inch 100 100 100 100 1 1/2-inch 100 100 100 100 Liquid Limit 20 37 18 NP Plastic Limit 19 27 17 NP Layer is compacted yes yes yes yes Climate Closest City Denver Denver Akron Akron Traffic Two-way ADT 40,100 40,100 unknown unknown % Trucks 3.6 3.6 unknown unknown ESAL (20 year) 3,026,032 3,026,032 1,338,000 1,338,000 Functional Classification Major arterial Major arterial Simple two-way Simple two-way Number of lanes each direction 2 2 1 1 Percent trucks in design direction 50 50 50 50 Percent trucks in design lane 100 100 100 100 Operational speed (mph) 55 55 30 30

283 Table G-7. PaveME Design Method Inputs IL IL IL IL Project Route CH-27 CH-27 SR-53 SR-53 Direction NB NB NB NB Segment Good Poor Good Poor General Information Design type Overlay Overlay Overlay Overlay Pavement type SJPCP SJPCP SJPCP SJPCP Design life (years) 20 20 20 20 Existing construction month/year Jun-1990 Jun-1990 Jun-1990 Jun-1990 Pavement construction month/year (assume Sep) 2003 2003 2012 2012 Traffic opening date month/year (assume Oct) 2003 2003 2012 2012 Performance Criteria SJPCP longitudinal cracking (percent slabs) 15 15 15 15 SJPCP longitudinal cracking reliability 50 50 50 50 SJPCP Design PCC surface shortwave absorptivity 0.85 0.85 0.85 0.85 PCC joint spacing (ft, square slab) 5.5(a) 5.5(a) 4.0(b) 4.0(b) Joint sealant type none none none none Tied shoulders (yes or no) no no no no Perm. curl/warp effective temp difference (°F) (10) (10) (10) (10) Transverse joint LTE (%) 80 80 80 80 BCOA Layer Poisson's ratio 0.20 0.20 0.20 0.20 Thickness (in) 5.2 5.5 4.0 3.5 Unit weight (pcf) 150 150 150 150 Coefficient of thermal expansion (x10-6 in/in/°F) 5.283 5.506 5.978 5.969 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 1.25 1.25 1.25 1.25 Aggregate type Dolomite Dolomite Dolomite Dolomite Cementitious material content (lb/yd3) 600 600 575 575 Cement type Type I Type I Type I Type I Fibers No No Yes Yes Water to cement ratio 0.42 0.42 0.41 0.41 Curing method unknown unknown compound compound Reversible shrinkage (%) 50 50 50 50 PCC zero-stress temperature calculated calculated calculated calculated Time to 50% of ultimate shrinkage (days) 35 35 35 35 Ultimate shrinkage calculated calculated calculated calculated PCC strength (psi) 5,560 7,620 5,990 5,990 PCC elastic modulus (psi) 4,200,000 4,200,000 4,200,000 4,200,000 Asphalt Layer Thickness (in) 8.6 2.7 5.6 12.7(c) Air voids (%) 7 7 7 7 Effective binder content (%) 12 12 12 12 Poisson's ratio 0.35 0.35 0.35 0.35 Unit weight (pcf) 150 150 150 150 Asphalt binder grade PG 58-22 PG 58-22 PG 58-22 PG 58-22 Asphalt binder type unknown unknown unknown unknown Creep compliance (1/psi) Level 3 Level 3 Level 3 Level 3 Dynamic modulus Level 3 Level 3 Level 3 Level 3 HMA E* predictive model viscosity viscosity viscosity viscosity Reference temperature (°F) 70 70 70 70 Indirect tensile strength at 14 °F (psi) Level 3 Level 3 Level 3 Level 3 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 0.67 0.67 0.67 0.67 Thermal contraction calculated calculated calculated calculated (a) Allowable joint spacing in whole feet, increased to 6 ft. (b) Less than allowable minimum value, increased to 5 ft. (c) Exceeds allowable maximum value, decreased to 10 inches.

284 Table G-7. PaveME Design Method Inputs (continued) IL IL IL IL Project Route CH-27 CH-27 SR-53 SR-53 Direction NB NB NB NB Segment Good Poor Good Poor Subgrade Layer Material type A-2-7 A-1-a A-2-7 A-2-4 Coefficient of lateral earth pressure 0.5 0.5 0.5 0.5 Thickness (in) N/A N/A N/A N/A Poisson's ratio 0.35 0.35 0.35 0.35 Resilient modulus (psi) 7,650 7,866 16,000 16,500 #200 4 4 1 11 #100 6 8 5 23 #50 10 14 25 39 #40 16 20 72 69 #30 21 25 80 90 #16 31 33 87 98 #10 40 39 92 99 #8 43 41 94 99 #4 59 53 97 100 3/8-inch 81 68 99 100 1/2-inch 89 73 99 100 3/4-inch 97 84 100 100 1-inch 100 95 100 100 1 1/2-inch 100 95 100 100 Liquid Limit 43 18 43 20 Plastic Limit 30 15 30 17 Layer is compacted yes yes yes yes Climate Closest City Decatur Decatur Chicago / Aurora Chicago / Aurora Traffic Two-way ADT 500 500 7,850 7,850 % Trucks 10.0 10.0 29.0 29.0 ESAL (20 year) 234,000(a) 234,000(a) 10,687,000(a) 10,687,000(a) Functional Classification Major collector Major collector Minor collector Minor collector Number of lanes each direction 1 1 1 1 Percent trucks in design direction 50 50 50 50 Percent trucks in design lane 100 100 100 100 Operational speed (mph) 30 30 30 30 (a) Calculated by PaveME based on two-way average daily traffic and percent trucks.

285 Table G-8. PaveME Design Method Inputs IA IA KS KS Project Route US-71 US-71 I-70 I-70 Direction NB NB WB WB Segment Good Poor Good Poor General Information Design type Overlay Overlay Overlay Overlay Pavement type SJPCP SJPCP SJPCP SJPCP Design life (years) 20 20 20 20 Existing construction month/year Jun-1990 Jun-1990 Jun-1990 Jun-1990 Pavement construction month/year (assume Sep) 2012 2012 2012 2012 Traffic opening date month/year (assume Oct) 2012 2012 2012 2012 Performance Criteria SJPCP longitudinal cracking (percent slabs) 15 15 15 15 SJPCP longitudinal cracking reliability 50 50 50 50 SJPCP Design PCC surface shortwave absorptivity 0.85 0.85 0.85 0.85 PCC joint spacing (ft, square slab) 6.0 6.0 6.0 6.0 Joint sealant type none none none none Tied shoulders (yes or no) yes yes yes yes Perm. curl/warp effective temp difference (°F) (10) (10) (10) (10) Transverse joint LTE (%) 80 80 80 80 BCOA Layer Poisson's ratio 0.20 0.20 0.20 0.20 Thickness (in) 6.5 6.5 5.9 5.5 Unit weight (pcf) 150 150 150 150 Coefficient of thermal expansion (x10-6 in/in/°F) 6.280 6.280 5.988 5.710 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 1.25 1.25 1.25 1.25 Aggregate type Dolomite Dolomite Dolomite Dolomite Cementitious material content (lb/yd3) 560 560 564 564 Cement type Type I Type I Type I Type I Fibers No No No No Water to cement ratio 0.40 0.40 0.40 0.40 Curing method compound compound compound compound Reversible shrinkage (%) 50 50 50 50 PCC zero-stress temperature calculated calculated calculated calculated Time to 50% of ultimate shrinkage (days) 35 35 35 35 Ultimate shrinkage calculated calculated calculated calculated PCC strength (psi) 7,000 7,000 5,850 5,850 PCC elastic modulus (psi) 4,200,000 4,200,000 4,200,000 4,200,000 Asphalt Layer Thickness (in) 9.3 7.6 18.1(a) 26.2(a) Air voids (%) 7 7 7 7 Effective binder content (%) 12 12 12 12 Poisson's ratio 0.35 0.35 0.35 0.35 Unit weight (pcf) 150 150 150 150 Asphalt binder grade PG 58-22 PG 58-22 PG 58-22 PG 58-22 Asphalt binder type unknown unknown unknown unknown Creep compliance (1/psi) Level 3 Level 3 Level 3 Level 3 Dynamic modulus Level 3 Level 3 Level 3 Level 3 HMA E* predictive model viscosity viscosity viscosity viscosity Reference temperature (°F) 70 70 70 70 Indirect tensile strength at 14 °F (psi) Level 3 Level 3 Level 3 Level 3 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 0.67 0.67 0.67 0.67 Thermal contraction calculated calculated calculated calculated (a) Exceeds allowable maximum value, decreased to 10 inches.

286 Table G-8. PaveME Design Method Inputs (continued) IA IA KS KS Project Route US-71 US-71 I-70 I-70 Direction NB NB WB WB Segment Good Poor Good Poor Subgrade Layer Material type A-1-b A-1-a A-2-7 A-2-4 Coefficient of lateral earth pressure 0.5 0.5 0.5 0.5 Thickness (in) N/A N/A N/A N/A Poisson's ratio 0.35 0.35 0.35 0.35 Resilient modulus (psi) 18,000 18,000 8,877 4,403 #200 1 1 9 16 #100 5 3 26 39 #50 24 9 72 65 #40 45 15 78 71 #30 52 18 82 78 #16 63 26 93 92 #10 68 33 97 97 #8 69 35 98 98 #4 78 51 99 99 3/8-inch 84 72 100 100 1/2-inch 88 82 100 100 3/4-inch 96 96 100 100 1-inch 100 100 100 100 1 1/2-inch 100 100 100 100 Liquid Limit NP NP 43 32 Plastic Limit NP NP 30 23 Layer is compacted yes yes yes yes Climate Closest City Spencer Spencer Salina Salina Traffic Two-way ADT 9,400 9,400 unknown unknown % Trucks 10.0 10.0 unknown unknown ESAL (20 year) 4,412,000(a) 4,412,000(a) 8,130,000 8,130,000 Functional Classification major arterial major arterial interstate interstate Number of lanes each direction 2 2 2 2 Percent trucks in design direction 50 50 50 50 Percent trucks in design lane 100 100 100 100 Operational speed (mph) 55 55 75 75 (b) Calculated by PaveME based on two-way average daily traffic and percent trucks.

287 Table G-9. PaveME Design Method Inputs LA LA LA LA Project Route US-167 US-167 US-425 US-425 Direction NB NB NB NB Segment Good Poor Good Poor General Information Design type Overlay Overlay Overlay Overlay Pavement type SJPCP SJPCP SJPCP SJPCP Design life (years) 20 20 20 20 Existing construction month/year Jun-1990 Jun-1990 Jun-1990 Jun-1990 Pavement construction month/year (assume Sep) 1999 1999 2003 2003 Traffic opening date month/year (assume Oct) 1999 1999 2003 2003 Performance Criteria SJPCP longitudinal cracking (percent slabs) 15 15 15 15 SJPCP longitudinal cracking reliability 50 50 50 50 SJPCP Design PCC surface shortwave absorptivity 0.85 0.85 0.85 0.85 PCC joint spacing (ft, square slab) 4.0(a) 4.0(a) 4.0(a) 4.0(a) Joint sealant type asphalt asphalt asphalt asphalt Tied shoulders (yes or no) curb gutter curb gutter no no Perm. curl/warp effective temp difference (°F) (10) (10) (10) (10) Transverse joint LTE (%) 80 80 80 80 BCOA Layer Poisson's ratio 0.20 0.20 0.20 0.20 Thickness (in) 14.0 4.6 4.5 3.8 Unit weight (pcf) 150 150 150 150 Coefficient of thermal expansion (x10-6 in/in/°F) 6.181 6.181 6.181 6.181 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 1.25 1.25 1.25 1.25 Aggregate type Dolomite Dolomite Dolomite Dolomite Cementitious material content (lb/yd3) 600 600 564 564 Cement type Type I Type I Type I Type I Fibers No No No No Water to cement ratio 0.42 0.42 0.42 0.42 Curing method compound compound compound compound Reversible shrinkage (%) 50 50 50 50 PCC zero-stress temperature calculated calculated calculated calculated Time to 50% of ultimate shrinkage (days) 35 35 35 35 Ultimate shrinkage calculated calculated calculated calculated PCC strength (psi) 4,430 8,620 4,330 4,330 PCC elastic modulus (psi) 4,200,000 4,200,000 4,200,000 4,200,000 Asphalt Layer Thickness (in) 0.0 8.9 9.5 10.1(a) Air voids (%) 7 7 7 7 Effective binder content (%) 12 12 12 12 Poisson's ratio 0.35 0.35 0.35 0.35 Unit weight (pcf) 150 150 150 150 Asphalt binder grade PG 58-22 PG 58-22 PG 58-22 PG 58-22 Asphalt binder type unknown unknown unknown unknown Creep compliance (1/psi) Level 3 Level 3 Level 3 Level 3 Dynamic modulus Level 3 Level 3 Level 3 Level 3 HMA E* predictive model viscosity viscosity viscosity viscosity Reference temperature (°F) 70 70 70 70 Indirect tensile strength at 14 °F (psi) Level 3 Level 3 Level 3 Level 3 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 0.67 0.67 0.67 0.67 Thermal contraction calculated calculated calculated calculated (a) Less than allowable minimum value, increased to 5 ft. (b) Exceeds allowable maximum value, decreased to 10 inches.

288 Table G-9. PaveME Design Method Inputs (continued) LA LA LA LA Project Route US-167 US-167 US-425 US-425 Direction NB NB NB NB Segment Good Poor Good Poor Subgrade Layer Material type A-2-4 A-2-4 A-1-b A-2-4 Coefficient of lateral earth pressure 0.5 0.5 0.5 0.5 Thickness (in) N/A N/A N/A N/A Poisson's ratio 0.35 0.35 0.35 0.35 Resilient modulus (psi) 7,625 8,043 18,000 16,500 #200 2 2 1 10 #100 7 7 3 19 #50 50 46 16 36 #40 59 56 32 44 #30 62 60 36 51 #16 69 68 44 65 #10 75 75 51 73 #8 76 77 53 75 #4 84 87 60 86 3/8-inch 93 95 68 97 1/2-inch 97 97 72 99 3/4-inch 99 100 82 100 1-inch 100 100 90 100 1 1/2-inch 100 100 100 100 Liquid Limit 28 24 NP 41 Plastic Limit 27 21 NP 34 Layer is compacted yes yes yes yes Climate Closest City Alexandria Alexandria Alexandria Alexandria Traffic Two-way ADT unknown unknown 7,900 7,900 % Trucks unknown unknown 14.0 14.0 ESAL (20 year) 6,000,000 6,000,000 5,191,000(a) 5,191,000(a) Functional Classification principal arterial principal arterial principal arterial principal arterial Number of lanes each direction 2 2 1 1 Percent trucks in design direction 50 50 50 50 Percent trucks in design lane 100 100 100 100 Operational speed (mph) 35 35 45 45 (a) Calculated by PaveME based on two-way average daily traffic and percent trucks.

289 Table G-10. PaveME Design Method Inputs MN MN MN MN Project Route CSAH-7 CSAH-7 CSAH-22 CSAH-22 Direction NB NB EB EB Segment Good Poor Good Poor General Information Design type Overlay Overlay Overlay Overlay Pavement type SJPCP SJPCP SJPCP SJPCP Design life (years) 20 20 20 20 Existing construction month/year Jun-1990 Jun-1990 Jun-1990 Jun-1990 Pavement construction month/year (assume Sep) 2009 2009 2011 2011 Traffic opening date month/year (assume Oct) 2009 2009 2011 2011 Performance Criteria SJPCP longitudinal cracking (percent slabs) 15 15 15 15 SJPCP longitudinal cracking reliability 50 50 50 50 SJPCP Design PCC surface shortwave absorptivity 0.85 0.85 0.85 0.85 PCC joint spacing (ft, square slab) 6.0 6.0 6.0 6.0 Joint sealant type none none asphalt asphalt Tied shoulders (yes or no) no no no no Perm. curl/warp effective temp difference (°F) (10) (10) (10) (10) Transverse joint LTE (%) 80 80 80 80 BCOA Layer Poisson's ratio 0.20 0.20 0.20 0.20 Thickness (in) 6.6 4.9 6.6 7.1 Unit weight (pcf) 150 150 150 150 Coefficient of thermal expansion (x10-6 in/in/°F) 6.170 6.170 6.169 5.751 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 1.25 1.25 1.25 1.25 Aggregate type Granite Granite Granite Granite Cementitious material content (lb/yd3) 585 585 572 572 Cement type Type 1 Type 1 Type I/II Type I/II Fibers No No No No Water to cement ratio 0.40 0.40 0.36 0.36 Curing method compound compound compound compound Reversible shrinkage (%) 50 50 50 50 PCC zero-stress temperature calculated calculated calculated calculated Time to 50% of ultimate shrinkage (days) 35 35 35 Ultimate shrinkage calculated calculated calculated calculated PCC strength (psi) 6,720 7,660 4,710 7,160 PCC elastic modulus (psi) 4,200,000 4,200,000 4,200,000 4,200,000 Asphalt Layer Thickness (in) 6.7 8.1 3.2 6.5 Air voids (%) 7 7 7 7 Effective binder content (%) 12 12 12 12 Poisson's ratio 0.35 0.35 0.35 0.35 Unit weight (pcf) 150 150 150 150 Asphalt binder grade PG 58-22 PG 58-22 PG 58-22 PG 58-22 Asphalt binder type unknown unknown unknown unknown Creep compliance (1/psi) Level 3 Level 3 Level 3 Level 3 Dynamic modulus Level 3 Level 3 Level 3 Level 3 HMA E* predictive model viscosity viscosity viscosity viscosity Reference temperature (°F) 70 70 70 70 Indirect tensile strength at 14 °F (psi) Level 3 Level 3 Level 3 Level 3 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 0.67 0.67 0.67 0.67 Thermal contraction calculated calculated calculated calculated (a) Exceeds allowable maximum value, decreased to 10 inches.

290 Table G-10. PaveME Design Method Inputs (continued) MN MN MN MN Project Route CSAH-7 CSAH-7 CSAH-22 CSAH-22 Direction NB NB EB EB Segment Good Poor Good Poor Subgrade Layer Material type A-2-7 A-1-b A-2-7 A-1-b Coefficient of lateral earth pressure 0.5 0.5 0.5 0.5 Thickness (in) N/A N/A N/A N/A Poisson's ratio 0.35 0.35 0.35 0.35 Resilient modulus (psi) 16,000 18,000 16,000 18,000 #200 2 2 - 2 #100 5 3 1 7 #50 16 8 9 18 #40 27 14 29 28 #30 36 21 39 35 #16 54 40 57 50 #10 62 52 65 56 #8 64 55 66 58 #4 72 72 75 66 3/8-inch 82 88 86 77 1/2-inch 87 92 93 82 3/4-inch 94 98 99 90 1-inch 100 100 100 100 1 1/2-inch 100 100 100 100 Liquid Limit 43 NP 43 NP Plastic Limit 30 NP 30 NP Layer is compacted yes yes yes yes Climate Closest City Redwood Falls Redwood Falls Minne- apolis Minne- apolis Traffic Two-way ADT 2,200 2,200 6,124 6,124 % Trucks 9.7 9.7 9.7 9.7 ESAL (20 year) 1,000,000(a) 1,000,000(a) 904,399 904,399 Functional Classification major collector major collector minor arterial minor arterial Number of lanes each direction 1 1 1 1 Percent trucks in design direction 50 50 50 50 Percent trucks in design lane 100 100 100 100 Operational speed (mph) 55 55 55 55 (a) Calculated by PaveME based on two-way average daily traffic and percent trucks.

291 Table G-11. PaveME Design Method Inputs (continued) MN MN MN MN Project Route I-35 I-35 TH-30 TH-30 Direction SB SB WB WB Segment Good Poor Good Poor General Information Design type Overlay Overlay Overlay Overlay Pavement type SJPCP SJPCP SJPCP SJPCP Design life (years) 20 20 20 20 Existing construction month/year Jun-1990 Jun-1990 Jun-1990 Jun-1990 Pavement construction month/year (assume Sep) 2009 2009 1993 1993 Traffic opening date month/year (assume Oct) 2009 2009 1993 1993 Performance Criteria SJPCP longitudinal cracking (percent slabs) 15 15 15 15 SJPCP longitudinal cracking reliability 50 50 50 50 SJPCP Design PCC surface shortwave absorptivity 0.85 0.85 0.85 0.85 PCC joint spacing (ft, square slab) 6.0 6.0 12.0(a) 12.0(a) Joint sealant type asphalt asphalt asphalt asphalt Tied shoulders (yes or no) no no no no Perm. curl/warp effective temp difference (°F) (10) (10) (10) (10) Transverse joint LTE (%) 80 80 80 80 BCOA Layer Poisson's ratio 0.20 0.20 0.20 0.20 Thickness (in) 6.0 6.3 6.0 6.5 Unit weight (pcf) 150 150 150 150 Coefficient of thermal expansion (x10-6 in/in/°F) 6.320 6.320 5.834 5.778 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 1.25 1.25 1.25 1.25 Aggregate type Granite Granite Dolomite Dolomite Cementitious material content (lb/yd3) 572 572 600 600 Cement type Type I/II Type I/II Type I Type I Fibers No No No No Water to cement ratio 0.36 0.36 0.42 0.42 Curing method compound compound compound compound Reversible shrinkage (%) 50 50 50 50 PCC zero-stress temperature calculated calculated calculated calculated Time to 50% of ultimate shrinkage (days) 35 35 35 35 Ultimate shrinkage calculated calculated calculated calculated PCC strength (psi) 3,970 4,350 6,320 4,210 PCC elastic modulus (psi) 4,200,000 4,200,000 4,200,000 4,200,000 Asphalt Layer Thickness (in) 14.0(a) 10.0 5.7 5.5 Air voids (%) 7 7 7 7 Effective binder content (%) 12 12 12 12 Poisson's ratio 0.35 0.35 0.35 0.35 Unit weight (pcf) 150 150 150 150 Asphalt binder grade PG 58-22 PG 58-22 PG 58-22 PG 58-22 Asphalt binder type unknown unknown unknown unknown Creep compliance (1/psi) Level 3 Level 3 Level 3 Level 3 Dynamic modulus Level 3 Level 3 Level 3 Level 3 HMA E* predictive model viscosity viscosity viscosity viscosity Reference temperature (°F) 70 70 70 70 Indirect tensile strength at 14 °F (psi) Level 3 Level 3 Level 3 Level 3 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 0.67 0.67 0.67 0.67 Thermal contraction calculated calculated calculated calculated (a) Greater than allowable maximum value, decreased to 8 ft. (b) Exceeds allowable maximum value, decreased to 10 inches.

292 Table G-11. PaveME Design Method Inputs (continued) MN MN MN MN Project Route I-35 I-35 TH-30 TH-30 Direction SB SB WB WB Segment Good Poor Good Poor Subgrade Layer Material type A-2-7 A-3 A-2-7 A-1-b Coefficient of lateral earth pressure 0.5 0.5 0.5 0.5 Thickness (in) N/A N/A N/A N/A Poisson's ratio 0.35 0.35 0.35 0.35 Resilient modulus (psi) 16,000 16,000 6,595 6,632 #200 5 48 - - #100 14 48 4 2 #50 54 50 24 14 #40 84 52 47 33 #30 88 55 64 44 #16 90 63 84 63 #10 92 67 91 72 #8 92 69 92 73 #4 95 76 97 83 3/8-inch 98 87 99 93 1/2-inch 99,100 92 100 96 3/4-inch 100 97 100 100 1-inch 100 100 100 100 1 1/2-inch 100 100 100 100 Liquid Limit 43 NP 43 NP Plastic Limit 30 NP 30 NP Layer is compacted yes yes yes yes Climate Closest City Minne- apolis Minne- apolis Redwood Falls Redwood Falls Traffic Two-way ADT 27,700 27,700 385 385 % Trucks unknown unknown unknown unknown ESAL (20 year) 9,055,000 9,055,000 57,600 57,600 Functional Classification interstate interstate minor arterial minor arterial Number of lanes each direction 2 2 1 1 Percent trucks in design direction 50 50 50 50 Percent trucks in design lane 100 100 100 100 Operational speed (mph) 70 70 55 55

293 Table G-12. PaveME Design Method Inputs MO MO MT MT Project Route US-60 US-60 SR-16 SR-16 Direction WB WB NB NB Segment Good Poor Good Poor General Information Design type Overlay Overlay Overlay Overlay Pavement type SJPCP SJPCP SJPCP SJPCP Design life (years) 20 20 20 20 Existing construction month/year Jun-1990 Jun-1990 Jun-1990 Jun-1990 Pavement construction month/year (assume Sep) 1999 1999 2001 2001 Traffic opening date month/year (assume Oct) 1999 1999 2001 2001 Performance Criteria SJPCP longitudinal cracking (percent slabs) 15 15 15 15 SJPCP longitudinal cracking reliability 50 50 50 50 SJPCP Design PCC surface shortwave absorptivity 0.85 0.85 0.85 0.85 PCC joint spacing (ft, square slab) 4.0(a) 4.0(a) 4.0(a) 4.0(a) Joint sealant type none none none none Tied shoulders (yes or no) no no no no Perm. curl/warp effective temp difference (°F) (10) (10) (10) (10) Transverse joint LTE (%) 80 80 80 80 BCOA Layer Poisson's ratio 0.20 0.20 0.20 0.20 Thickness (in) 4.5 4.3 4.5 4.3 Unit weight (pcf) 150 150 150 150 Coefficient of thermal expansion (x10-6 in/in/°F) 4.900 4.900 4.900 4.900 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 1.25 1.25 1.25 1.25 Aggregate type Dolomite Dolomite Dolomite Dolomite Cementitious material content (lb/yd3) 592 592 701 701 Cement type Type I Type I Type I/II Type I/II Fibers Yes Yes No No Water to cement ratio 0.42 0.42 0.38 0.38 Curing method compound compound compound compound Reversible shrinkage (%) 50 50 50 50 PCC zero-stress temperature calculated calculated calculated calculated Time to 50% of ultimate shrinkage (days) 35 35 35 35 Ultimate shrinkage calculated calculated calculated calculated PCC strength (psi) 6,120 5,560 9,810 8,410 PCC elastic modulus (psi) 4,200,000 4,200,000 4,200,000 4,200,000 Asphalt Layer Thickness (in) 4.7 5.5 3.7 2.8 Air voids (%) 7 7 7 7 Effective binder content (%) 12 12 12 12 Poisson's ratio 0.35 0.35 0.35 0.35 Unit weight (pcf) 150 150 150 150 Asphalt binder grade PG 58-22 PG 58-22 PG 58-22 PG 58-22 Asphalt binder type unknown unknown unknown unknown Creep compliance (1/psi) Level 3 Level 3 Level 3 Level 3 Dynamic modulus Level 3 Level 3 Level 3 Level 3 HMA E* predictive model viscosity viscosity viscosity viscosity Reference temperature (°F) 70 70 70 70 Indirect tensile strength at 14 °F (psi) Level 3 Level 3 Level 3 Level 3 Heat capacity (BTU/lb-°F) 0.23 0.23 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 0.67 0.67 0.67 0.67 Thermal contraction calculated calculated calculated calculated (a) Less than allowable minimum value, increased to 5 ft.

294 Table G-12. PaveME Design Method Inputs (continued) MO MO MT MT Project Route US-60 US-60 SR-16 SR-16 Direction WB WB NB NB Segment Good Poor Good Poor Subgrade Layer Material type A-1-a A-1-a A-2-7 A-1-b Coefficient of lateral earth pressure 0.5 0.5 0.5 0.5 Thickness (in) N/A N/A N/A N/A Poisson's ratio N/A N/A 0.35 0.35 Resilient modulus (psi) 18,000 18,000 30,436 18,000 #200 (a) (a) 7 6 #100 (a) (a) 10 9 #50 (a) (a) 21 19 #40 (a) (a) 27 33 #30 (a) (a) 31 38 #16 (a) (a) 38 49 #10 (a) (a) 42 52 #8 (a) (a) 44 53 #4 (a) (a) 50 59 3/8-inch (a) (a) 61 71 1/2-inch (a) (a) 69 79 3/4-inch (a) (a) 82 90 1-inch (a) (a) 89 95 1 1/2-inch (a) (a) 100 100 Liquid Limit 6 6 43 NP Plastic Limit 1 1 30 NP Layer is compacted Yes Yes yes yes Climate Closest City Joplin Joplin Miles City Miles City Traffic Two-way ADT 21,452 21,452 4,260 4,260 % Trucks 10.0 10.0 9.1 9.1 ESAL (20 year) 10,068,000(b) 10,068,000(b) 1,821,000(b) 1,821,000(b) Functional Classification principal arterial principal arterial principal arterial principal arterial Number of lanes each direction 1 1 1 1 Percent trucks in design direction 50 50 50 50 Percent trucks in design lane 100 100 100 100 Operational speed (mph) 45 45 45 45 (a) PaveME default values used for A-1-a soil type. (b) Calculated by PaveME based on two-way average daily traffic and percent trucks.

295 Table G-13. PaveME Design Method Inputs PA PA Project Route SR-119 SR-119 Direction SB SB Segment Good Poor General Information Design type Overlay Overlay Pavement type SJPCP SJPCP Design life (years) 20 20 Existing construction month/year Jun-1990 Jun-1990 Pavement construction month/year (assume Sep) 2010 2010 Traffic opening date month/year (assume Oct) 2010 2010 Performance Criteria SJPCP longitudinal cracking (percent slabs) 15 15 SJPCP longitudinal cracking reliability 50 50 SJPCP Design PCC surface shortwave absorptivity 0.85 0.85 PCC joint spacing (ft, square slab) 6.0 6.0 Joint sealant type asphalt asphalt Tied shoulders (yes or no) yes yes Perm. curl/warp effective temp difference (°F) (10) (10) Transverse joint LTE (%) 80 80 BCOA Layer Poisson's ratio 0.20 0.20 Thickness (in) 6.7 7.1 Unit weight (pcf) 150 150 Coefficient of thermal expansion (x10-6 in/in/°F) 6.054 6.129 Heat capacity (BTU/lb-°F) 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 1.25 1.25 Aggregate type Dolomite Dolomite Cementitious material content (lb/yd3) 611 611 Cement type Type I Type I Fibers No No Water to cement ratio 0.42 0.42 Curing method compound compound Reversible shrinkage (%) 50 50 PCC zero-stress temperature calculated calculated Time to 50% of ultimate shrinkage (days) 35 35 Ultimate shrinkage calculated calculated PCC strength (psi) 12,950(a) 12,950(a) PCC elastic modulus (psi) 4,200,000 4,200,000 Asphalt Layer Thickness (in) 9.1 8.3 Air voids (%) 7 7 Effective binder content (%) 12 12 Poisson's ratio 0.35 0.35 Unit weight (pcf) 150 150 Asphalt binder grade PG 58-22 PG 58-22 Asphalt binder type unknown unknown Creep compliance (1/psi) Level 3 Level 3 Dynamic modulus Level 3 Level 3 HMA E* predictive model viscosity viscosity Reference temperature (°F) 70 70 Indirect tensile strength at 14 °F (psi) Level 3 Level 3 Heat capacity (BTU/lb-°F) 0.23 0.23 Thermal conductivity (BTU/hr-ft-°F) 0.67 0.67 Thermal contraction calculated calculated (a) Exceeds allowable maximum value, decreased to 10,000.

Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation Get This Book
×
 Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The TRB National Cooperative Highway Research Program's NCHRP Web-Only Document 329: Bonded Concrete Overlays on Asphalt Pavements: Resources for Evaluation provides Appendices A through G of the contractor’s final report, which detail survey responses from transportation agencies on bonded concrete overlays on asphalt pavements as well as agency plans and projects.

The document is supplemental to NCHRP Research Report 1007: Evaluation of Bonded Concrete Overlays on Asphalt Pavements.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!