National Academies Press: OpenBook
« Previous: 4 Strategies for Achieving the Vision and Increasing the Public Health Impact of National Wastewater Surveillance
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

References

Aarestrup, F. M., and M. E. J. Woolhouse. 2020. Using sewage for surveillance of antimicrobial resistance. Science 367(6478):630–632. https://doi.org/10.1126/science.aba3432.

Abe, M., H. Katano, M. Nagi, Y. Higashi, Y. Sato, K. Kikuchi, H. Hasegawa, and Y. Miyazaki. 2020. Potency of gastrointestinal colonization and virulence of Candida auris in a murine endogenous candidiasis. PLOS One 15(12):e0243223. https://doi.org/10.1371/journal.pone.0243223.

Adhikari, S., and R. U. Halden. 2022. Opportunities and limits of wastewater-based epidemiology for tracking global health and attainment of UN Sustainable Development Goals. Environment International 163:107217. https://doi.org/10.1016/j.envint.2022.107217.

Adu, F. D., F. A. Kembi, A. Bamgboye, and M. Osei-Kwasi. 1998. Wild polio virus surveillance in the sewage system of selected communities at the risk of poliomyelitis in southwest Nigeria. East African Medical Journal 75(2):97–99.

Agrawal, S., L. Orschler, S. Tavazzi, R. Greither, B. M. Gawlik, and S. Lackner. 2022. Genome sequencing of wastewater confirms the arrival of the SARS-CoV-2 Omicron variant at Frankfurt Airport but limited spread in the city of Frankfurt, Germany, in November 2021. Microbiology Resource Announcements 11(2):e0122921. https://doi.org/10.1128/MRA.01229-21.

Ahmed, W., N. Angel, J. Edson, K. Bibby, A. Bivins, J. W. O’Brien, P. M. Choi, M. Kitajima, S. L. Simpson, J. Li, B. Tscharke, R. Verhagen, W. J. M. Smith, J. Zaugg, L. Dierens, P. Hugenholtz, K. V. Thomas, and J. F. Mueller. 2020. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of the Total Environment 728:138764. https://doi.org/10.1016/j.scitotenv.2020.138764.

Ahmed, W., A. Bivins, S. Metcalfe, W. J. M. Smith, M. E. Verbyla, E. M. Symonds, and S. L. Simpson. 2022. Evaluation of process limit of detection and quantification variation of SARS-CoV-2 RT-qPCR and RT-dPCR assays for wastewater surveillance. Water Research 213:118132. https://doi.org/10.1016/j.watres.2022.118132.

Alexander, D. J. 2007. An overview of the epidemiology of avian influenza. Vaccine 25(30):5637–5644. https://doi.org/10.1016/j.vaccine.2006.10.051.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

AMC (Antimicrobial Resistance Collaborators). 2022. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet 399:629–655. https://doi.org/10.1016/S0140-6736(21)02724-0.

Anderson, R. M., and R. M. May. 1992. Infectious diseases of humans: Dynamics and control. Oxford: Oxford University Press.

ASPR (Administration for Strategic Preparedness and Response) and NSC (National Security Council). 2018. United States Health Security National Action Plan: Strengthening implementation of the international health regulations based on the 2016 Joint External Evaluation. https://www.phe.gov/Preparedness/international/Documents/jee-nap-508.pdf

Barber, G. 2020. One way to potentially track Covid-19? Sewage. Wired, April 7. https://wired.com/story/one-way-to-potentially-track-covid-19-sewage-surveillance/.

Bhardwaj, S. K., N. Bhardwaj, V. Kumar, D. Bhatt, A. Azzouz, J. Bhaumik, K. H. Kim, and A. Deep. 2021. Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. Environment International 146:106183.

Boehm, A., and E. A. U. Riley. 2022. Wastewater provides a solution for monitoring Omicron’s spread. The Hill, December 9. https://thehill.com/opinion/healthcare/584894-wastewater-provides-a-solution-for-monitoring-omicrons-spread/.

Borchardt, M. A., A. B. Boehm, M. Salit, S. K. Spencer, K. R. Wigginton, and R. T. Noble. 2021. The Environmental Microbiology Minimum Information (EMMI) Guidelines: qPCR and dPCR quality and reporting for environmental microbiology. Environmental Science & Technology 55(15):10210–10223. https://doi.org/10.1021/acs.est.1c01767.

Böttiger, M., and E. Herrström. 1992. Isolation of polioviruses from sewage and their characteristics: Experience over two decades in Sweden. Scandinavian Journal of Infectious Diseases 24(2):151–155. https://doi.org/10.3109/00365549209052605.

Brinch, C., P. Leekitcharoenphon, A. S. R. Duarte, C. A. Svendsen, J. D. Jensen, and F. M. Aarestrup. 2020. Long-term temporal stability of the resistome in sewage from Copenhagen. mSystems 5(5):e00841–20. https://doi.org/10.1128/mSystems.00841-20.

CCHD (Carteret County Health Department) and NCDHHS (North Carolina Department of Health and Human Services). 2021. COVID-19 monitoring detects elevated levels of COVID-19 in wastewater. https://www.beaufortnc.org/sites/default/files/fileattachments/public_utilities/page/10091/wastewater_joint_release_.pdf.

CDC (U.S. Centers for Disease Control and Prevention). 2019. Antibiotic resistance threats in the United States, 2019. Atlanta, GA: Centers for Disease Control and Prevention. http://dx.doi.org/10.15620/cdc:82532.

Cheng, Q., P. A. Collender, A. K. Heaney, X. Li, R. Dasan, C. Li, J. A. Lewnard, J. L. Zelner, S. Liang, H. H. Chang, L. A. Waller, B. A. Lopman, C. Yang, and J. V. Remais. 2020. The DIOS framework for optimizing infectious disease surveillance: Numerical methods for simulation and multi-objective optimization of surveillance network architectures. PLOS Computational Biology 16(12):e1008477. https://doi.org/10.1371/journal.pcbi.1008477.

Cheng, Y. C., S. Hannaoui, T. R. John, S. Dudas, S. Czub, and S. Gilch. 2016. Early and non-invasive detection of chronic wasting disease prions in elk feces by real-time quaking induced conversion. PLOS One 11(11):e0166187. https://doi.org/10.1371/journal.pone.0166187.

Chik, A. H. S., M. B. Glier, M. Servos, C. S. Mangat, X. L. Pang, Y. Qiu, P. M. D’Aoust, J. B. Burnet, R. Delatolla, S. Dorner, Q. Geng, J. P. Giesy Jr., R. M. McKay, M. R. Mulvey, N. Prystajecky, N. Srikanthan, Y. Xie, B. Conant, S. E. Hrudey, and Canadian SARS-CoV-2 Inter-Laboratory Consortium. 2021. Comparison of approaches to quantify SARS-CoV-2 in wastewater using RT-qPCR: Results and implications from a collaborative interlaboratory study in Canada. Journal of Environmental Sciences (China) 107:218–229. https://doi.org/10.1016/j.jes.2021.01.029.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

Cipolletta, S., G. R. Andreghetti, and G. Mioni. 2022. Risk perception towards COVID-19: A systematic review and qualitative synthesis. International Journal of Environmental Research and Public Health 19(8):4649. https://doi.org/10.3390/ijerph19084649.

Clason, L. 2022. COVID-19 wastewater efforts confront long-term questions. Roll Call, May 16. https://rollcall.com/2022/05/16/covid-19-wastewater-efforts-confront-long-term-questions/.

Crank, K., W. Chen, A. Bivins, S. Lowry, and K. Bibby. 2022. Contribution of SARS-CoV-2 RNA shedding routes to RNA loads in wastewater. Science of the Total Environment 806:150376.

Crits-Christoph, A., R. S. Kantor, M. R. Whitney, O. N. Olm, B. Al-Shaye, Y. C. Lou, A. Flamholz, L. C. Kennedy, H. Greenwald, A. Hinkle, and J. Hetzel. 2021. Genome sequencing of sewage detects regionally prevalent SARS-CoV-2 variants. Mbio 12(1):e02703–e02720. https://doi.org/10.1128%2FmBio.02703-20.

CWN (Canadian Water Network). 2020. Ethics and communications guidance for wastewater surveillance to inform public health decision-making about COVID-19. Canadian Coalition on Wastewater-related COVID-19 Research. https://cwn-rce.ca/wp-content/uploads/COVID19-Wastewater-Coalition-Ethics-and-Communications-Guidance-v4-Sept-2020.pdf.

Dadras, O., S. SeyedAlinaghi, A. Karimi, A. Shojaei, A. Amiri, S. Mahdiabadi, A. Fakhfouri, A. Razi, H. Mojdeganlou, P. Mojdeganlou, A. Barzegary, Z. Pashaei, A. M. Afsahi, P. Shobeiri, and E. Mehraeen. 2022. COVID-19 vaccines’ protection over time and the need for booster doses: A systematic review. Archives of Academic Emergency Medicine 10(1):e53. https://doi.org/10.22037/aaem.v10i1.1582.

D’Aoust, P. M., T. E. Graber, E. Mercier, D. Montpetit, I. Alexandrov, N. Neault, A. T. Baig, J. Mayne, X. Zhang, T. Alain, M. R. Servos, N. Srikanthan, M. MacKenzie, D. Figeys, D. Manuel, P. Juni, A. E. MacKenzie, and R. Delatolla. 2021. Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. Science of the Total Environment 770:145319. https://doi.org/10.1016/j.scitotenv.2021.145319.

De Jong, E. 2021. Auckland lockdown to end despite three new cases of COVID-19. The Guardian, February 17. https://www.theguardian.com/world/2021/feb/17/new-zealandreports-two-new-cases-of-covid-19-community-transmission.

De Jonge, E. F., C. M. Peterse, J. M. Koelewijn, A. M. R. van der Drift, R. F. van der Beek, E. Nagelkerke, and W. J. Lodder. 2022. The detection of monkeypox virus DNA in wastewater samples in the Netherlands. Science of the Total Environment 852:158265. https://doi.org/10.1016/j.scitotenv.2022.158265.

Delamater, P. L., E. J. Street, T. F. Leslie, Y. T. Yang, and K. H. Jacobsen. 2019. Complexity of the basic reproduction number (R0). Emerging Infectious Diseases 25(1):1–4. https://doi.org/10.3201/eid2501.171901.

Dixon, B. E., S. Dearth, T. J. Duszynski, and S. J. Grannis. 2022. Dashboards are trendy, visible components of data management in public health: Sustaining their use after the pandemic requires a broader view. American Journal of Public Health 112(6):900–903. https://doi.org/10.2105/AJPH.2022.306849.

Eaton, C., S. Coxon, I. Pattis, and B. Gilpin. 2021. Wastewater-based epidemiology: A framework to identify and prioritise health determinants for wastewater monitoring. https://www.esr.cri.nz/assets/files/Framework-to-identify-September-2021.pdf.

EclinicalMedicine. 2021. Antimicrobial resistance: A top ten global public health threat. EclinicalMedicine 41:101221. https://doi.org/10.1016/j.eclinm.2021.101221.

Elliot, P., O. Eales, N. Steyn, D. Tang, B. Bodinier, H. Wang, J. Elliott, M. Whitaker, C. Atchison, P. J. Diggle, A. J. Page, A. J. Trotter, D. Ashby, W. Barclay, G. Taylor, H. Ward, A. Darzi, G. S. Cooke, C. A. Donnelly, and M. Chadeau-Hyam. 2022. Twin peaks: The Omicron SARS-CoV-2 BA.1 and BA.2 epidemics in England. Science 376(6600). https://doi.org/10.1126/science.abq4411.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

EPA (U.S. Environmental Protection Agency). 2021. A compendium of U.S. wastewater surveillance to support COVID-19 public health response. https://www.epa.gov/system/files/documents/2021-09/wastewater-surveillance-compendium.pdf.

Erster, O., I. Bar-Or, V. Levy, R. Shatzman-Steuerman, D. Sofer, L. Weiss, R. Vasserman, I. S. Fratty, K. Kestin, M. Elul, N. Levi, R. Alkrenawi, E. Mendelson, M. Mandelboim, and M. Weil. 2022. Monitoring of enterovirus D68 outbreak in Israel by a parallel clinical and wastewater based surveillance. Viruses 14(5):1010. https://doi.org/10.3390/v14051010.

Fairchild, A. L., and R. Bayer. 2004. Public health: Ethics and the conduct of public health surveillance. Science 303(5658):631–632. https://doi.org/10.1126/science.1094038.

Fairchild, G., P. M. Polgreen, E. Foster, G. Rushton, and A. M. Segre. 2013. How many suffice? A computational framework for sizing sentinel surveillance networks. International Journal of Health Geographics 12(1):56. https://doi.org/10.1186/1476-072X-12-56.

Farkas, K., C. Pellett, N. Alex-Sanders, M. T. P. Bridgman, A. Corbishley, J. M. S. Grimsley, B. Kasprzyk-Hordern, J. L. Kevill, I. Pântea, I. S. Richardson-O’Neill, K. LambertSlosarska, N. Woodhall, and D. L. Jones. 2022. Comparative assessment of filtration- and precipitation-based methods for the concentration of SARS-CoV-2 and other viruses from wastewater. Microbiology Spectrum 10(4):e0110222. https://doi.org/10.1128/spectrum.01102-22.

Feng, S., A. Roguet, J. S. McClary-Gutierrez, R. J. Newton, N. Kloczko, J. G. Meiman, and S. L. McLellan. 2021. Evaluation of sampling, analysis, and normalization methods for SARS-CoV-2 concentrations in wastewater to assess COVID-19 burdens in Wisconsin communities. Environmental Science: Water Research & Technology 1(8):1955–1965.

Fernandez-Cassi, X., A. Scheidegger, C. Banziger, F. Cariti, A. Tunas Corzon, P. Ganesanandamoorthy, J. C. Lemaitre, C. Ort, T. R. Julian, and T. Kohn. 2021. Wastewater monitoring outperforms case numbers as a tool to track COVID-19 incidence dynamics when test positivity rates are high. Water Research 200:117252. https://doi.org/10.1016/j.watres.2021.117252.

Gable, L., N. Ram, and J. L. Ram. 2020. Legal and ethical implications of wastewater monitoring of SARS-CoV-2 for COVID-19 surveillance. Journal of Law and the Biosciences 7(1):lsaa039. https://doi.org/10.1093/jlb/lsaa039.

Galani, A., R. Aalizadeh, M. Kostakis, A. Markou, N. Alygizakis, T. Lytras, P. G. Adamopoulos, J. Peccia, D. C. Thompson, A. Kontou, A. Karagiannidis, E. S. Lianidou, M. Avgeris, D. Paraskevis, S. Tsiodras, A. Scorilas, V. Vasiliou, M. A. Dimopoulos, and N. S. Thomaidis. 2022. SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissions. Science of the Total Environment 804:150151. https://doi.org/10.1016/j.scitotenv.2021.150151.

Gershy-Damet, G. M., A. Lanusse, and M. Dosso. 1987. Surveillance des enterovirus dans les eaux usées en Cote-d’Ivoire [Surveillance of enteroviruses in the waste water of the Ivory Coast]. Bulletin de la Société de Pathologie Exotique et de Ses Filiales 80(2):180–186.

Graham, K. E., S. K. Loeb, M. K. Wolfe, D. Catoe, N. Sinnott-Armstrong, S. Kim, K. M. Yamahara, L. M. Sassoubre, L. M. Mendoza Grijalva, L. Roldan-Hernandez, K. Langenfeld, K. R. Wigginton, and A. B. Boehm. 2021. SARS-CoV-2 RNA in wastewater settled solids is associated with COVID-19 cases in a large urban sewershed. Environmental Science & Technology 55(1):488–498. https://doi.org/10.1021/acs.est.0c06191.

Green, A. J. E., and G. Zanusso. 2018. Chapter 19: Prion protein amplification techniques. Handbook of Clinical Neurology 153:357–370. https://doi.org/10.1016/B978-0-444-63945-5.00019-2.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

Grubaugh, N. D., K. Gangavarapu, J. Quick, N. L. Matteson, J. G. De Jesus, B. J. Main, A. L. Tan, L. M. Paul, D. E. Brackney, S. Grewal, N. Gurfield, K. K. A. Van Rompay, S. Isern, S. F. Michael, L. L. Coffey, N. J. Loman, and K. G. Andersen. 2019. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biology 20(1):8. https://doi.org/10.1186/s13059-018-1618-7.

Haley, N. J., C. K. Mathiason, S. Carver, M. Zabel, G. C. Telling, and E. A. Hoover. 2011. Detection of chronic wasting disease prions in salivary, urinary, and intestinal tissues of deer: Potential mechanisms of prion shedding and transmission. Journal of Virology 85(13):6309–6318. https://doi.org/10.1128/JVI.00425-11.

Hall, W., J. Prichard, P. Kirkbride, R. Bruno, P. K. Thai, C. Gartner, F. Y. Lai, C. Ort, and J. F. Mueller. 2012. An analysis of ethical issues in using wastewater analysis to monitor illicit drug use. Addiction 107(10):1767–1773. https://doi.org/10.1111/j.1360-0443.2012.03887.x.

Helfferich, J., M. Knoester, C. C. Van Leer-Buter, R. F. Neuteboom, L. C. Meiners, H. G. Niesters, and O. F. Brouwer. 2019. Acute flaccid myelitis and enterovirus D68: Lessons from the past and present. European Journal of Pediatrics 178(9):1305–1315. https://doi.org/10.1007/s00431-019-03435-3.

Hendriksen, R. S., P. Munk, P. Njage, B. van Bunnik, L. McNally, O. Lukjancenko, T. Röder, D. Nieuwenhuijse, S. Karlsmose Pedersen, J. Kjeldgaard, R. S. Kaas, P. T. L. C. Clausen, J. K. Vogt, P. Leekitcharoenphon, M. G. M. van de Schans, T. Zuidema, A. M. de Roda Husman, S. Rasmussen, B. Petersen, The Global Sewage Surveillance project Consortium, C. Amid, G. Cochrane, T. Sicheritz-Ponten, H. Schmitt, J. R. M. Alvarez, A. Aidara-Kane, S. J. Pamp, O. Lund, T. Hald, M. Woolhouse, M. P. Koopmans, H. Vigre, T. Nordahl Petersen, and F. M. Aarestrup. 2019. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nature Communications 10:1124. https://doi.org/10.1038/s41467-019-08853-3.

Hoar, C., J. McClary-Gutierrez, M. K. Wolfe, A. Bivins, K. Bibby, A. I. Silverman, and S. L. McLellan. 2022. Looking forward: The role of academic researchers in building sustainable wastewater surveillance programs. Environmental Health Perspectives 130(12). https://doi.org/10.1289/EHP11519.

Holm, R. H., J. M. Brick, A. R. Amraotkar, J. L. Hart, A. Mukherjee, J. Zeigler, A. M. BushauSprinkle, L. B. Anderson, K. L. Walker, D. Talley, R. J. Keith, S. N. Rai, K. E. Palmer, A. Bhatnagar, and T. Smith. 2022a. Public awareness of and support for the use of wastewater for SARS-CoV-2 monitoring: A community survey in Louisville, Kentucky. Environmental Science & Technology: Water. https://doi.org/10.1021/acsestwater.1c00405.

Holm, R. H., A. Mukherjee, J. P. Rai, R. A. Yeager, D. Talley, S. N. Rai, A. Bhatnagar, and T. Smith. 2022b. SARS-CoV-2 RNA abundance in wastewater as a function of distinct urban sewershed size. Environmental Science: Water Research & Technology 8(4):807–819. https://doi.org/10.1039/D1EW00672J.

Hopkins, L., D. Persse, K. Caton, K. Ensor, R. Schneider, C. McCall, and L. B. Stadler. 2022. Citywide wastewater SARS-CoV-2 levels strongly correlated with multiple disease surveillance indicators and outcomes over three COVID-19 waves. Science of the Total Environment 855(2023):158967. http://dx.doi.org/10.1016/j.scitotenv.2022.158967.

Horstmann, D. M., J. Emmons, L. Gimpel, T. Subrahmanyan, and J. T. Riordan. 1973. Enterovirus surveillance following a community-wide oral poliovirus vaccination program: A seven-year study. American Journal of Epidemiology 97(3):173–186. https://doi.org/10.1093/oxfordjournals.aje.a121498.

Hovi, T., M. Stenvik, H. Partanen, and A. Kangas. 2001. Poliovirus surveillance by examining sewage specimens. Quantitative recovery of virus after introduction into sewerage at remote upstream location. Epidemiology and Infection 127(1):101–106. https://doi.org/10.1017/S0950268801005787.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

Hrudey, S. E., D. S. Silva, J. Shelley, W. Pons, J. Isaac-Renton, A. H. S. Chik, and B. Conant. 2021. Ethics guidance for environmental scientists engaged in surveillance of wastewater for SARS-CoV-2. Environmental Science and Technology 55(13):8484–8491. https://doi.org/10.1021/acs.est.1c00308.

Indiana ACIR (Advisory Committee for Intergovernmental Relations). 2019. More than 11,000 wastewater failures reported in Indiana’s unsewered communities.19-C08. https://www.in.gov/iurc/files/IN-Advisory-Commission-March-2019-Indianas-UnseweredCommunities.pdf.

Islam, G., A. Gedge, L. Lara-Jacobo, A. Kirkwood, D. Simmons, and J. P. Desaulniers. 2022. Pasteurization, storage conditions and viral concentration methods influence RT-qPCR detection of SARS-CoV-2 RNA in wastewater. Science of the Total Environment 821:153228. https://doi.org/10.1016/j.scitotenv.2022.153228.

Jacobs, D., T. McDaniel, A. Varsani, R. U. Halden, S. Forrest, and H. Lee. 2021. Wastewater monitoring raises privacy and ethical considerations. IEEE Transactions on Technology and Society 2(3):116–121. https://doi.org/10.1109/TTS.2021.3073886.

Joh, E. E. 2021. COVID sewage testing as a police surveillance infrastructure. Notre Dame Journal of Emerging Technologies 2(2). https://ndlsjet.com/covid-19-sewage-testing-as-a-police-surveillance-infrastructure/.

Kaiser, J. 2020. Poop tests stop COVID-19 outbreak at University of Arizona. Science News, August 28. https://www.science.org/content/article/poop-tests-stop-covid-19-outbreakuniversity-arizona.

Kantor, R. 2022. SARS-CoV-2 variant tracking from wastewater. In Public Health and Water Conference Proceedings 2022. Water Environment Federation. https://www.accesswater.org.

Karthikeyan, S., J. I. Levy, P. De Hoff, G. Humphrey, A. Birmingham, K. Jepsen, S. Farmer, H. M. Tubb, T. Valles, C. E. Tribelhorn, R. Tsai, S. Aigner, S. Sathe, N. Moshiri, B. Henson, A. M. Mark, A. Hakim, N. A. Baer, T. Barber, P. Belda-Ferre, M. Chacon, W. Cheung, E. S. Cresini, E. R. Eisner, A. L. Lastrella, E. S. Lawrence, C. A. Marotz, T. T. Ngo, T. Ostrander, A. Plascencia, R. A. Salido, P. Seaver, E. W. Smoot, D. McDonald, R. M. Neuhard, A. L. Scioscia, A. M. Satterlund, E. H. Simmons, D. B. Abelman, D. Brenner, J. C. Bruner, A. Buckley, M. Ellison, J. Gattas, S. L. Gonias, M. Hale, F. Hawkins, L. Ikeda, H. Jhaveri, T. Johnson, V. Kellen, B. Kremer, G. Matthews, R. W. McLawhon, P. Ouillet, D. Park, A. Pradenas, S. Reed, L. Riggs, A. Sanders, B. Sollenberger, A. Song, B. White, T. Winbush, C. M. Aceves, C. Anderson, K. Gangavarapu, E. Hufbauer, E. Kurzban, J. Lee, N. L. Matteson, E. Parker, S. A. Perkins, K. S. Ramesh, R. RoblesSikisaka, M. A. Schwab, E. Spencer, S. Wohl, L. Nicholson, I. H. McHardy, D. P. Dimmock, C. A. Hobbs, O. Bakhtar, A. Harding, A. Mendoza, A. Bolze, D. Becker, E. T. Cirulli, M. Isaksson, K. M. Schiabor Barrett, N. L. Washington, J. D. Malone, A. M. Schafer, N. Gurfield, S. Stous, R. Fielding-Miller, R. S. Garfein, T. Gaines, C. Anderson, N. K. Martin, R. Schooley, B. Austin, D. R. MacCannell, S. F. Kingsmore, W. Lee, S. Shah, E. McDonald, A. T. Yu, M. Zeller, K. M. Fisch, C. Longhurst, P. Maysent, D. Pride, P. K. Khosla, L. C. Laurent, G. W. Yeo, K. G. Andersen, and R. Knight. 2022. Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission. Nature 609:101–108. https://doi.org/10.1038/s41586-022-05049-6.

Karthikeyan, S., A. Nguyen, D. McDonald, Y. Zong, N. Ronquillo, J. Ren, J. Zou, S. Farmer, G. Humphrey, D. Henderson, T. Javidi, K. Messer, C. Anderson, R. Schooley, N. K. Martin, and R. Knight. 2021. Rapid, large-scale wastewater surveillance and automated reporting system enable early detection of nearly 85% of COVID-19 cases on a university campus. mSystems 6(4):e0079321. https://doi.org/10.1128/mSystems.00793-21.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

Keshaviah, A., I. Huff, X. C. Hu, V. Guidry, A. Christensen, S. Berkowitz, S. Reckling, S. McLellan, A. Roguet, and I. Mussa. 2022a. Separating signal from noise in wastewater data: An algorithm to identify community-level COVID-19 surges. medRxiv. https://doi.org/10.1101/2022.09.19.22280095.

Keshaviah, A., R. N. Karmali, D. Vohra, T. Huffman, X. C. Hu, and M. B. Diamond. 2022b. The role of wastewater data in pandemic management. Washington, DC: Mathematica. https://www.rockefellerfoundation.org/wp-content/uploads/2022/04/The-Role-of-Wastewater-Data-in-Pandemic-Management-Survey-Research-Brief-Final.pdf.

Kim, H., R. G. Webster, and R. J. Webby. 2018. Influenza virus: Dealing with a drifting and shifting pathogen. Viral Immunology 31(2):174–183. https://doi.org/10.1089/vim.2017.0141.

Kirby, A. E. 2022. National wastewater surveillance system: Implementation overview. Presentation at Meeting 1 of the NASEM Committee on Community Wastewater-based Infectious Disease Surveillance. Virtual meeting. April 21. https://www.nationalacademies.org/event/04-21-2022/community-wastewater-based-infectious-disease-surveillance-meeting-1-public-session.

Kirby, A. E., M. S. Walters, W. C. Jennings, R. Fugitt, N. LaCross, M. Mattioli, Z. A. Marsh, V. A. Roberts, J. W. Mercante, J. Yoder, and V. R. Hill. 2021. Using wastewater surveillance data to support the COVID-19 response—United States, 2020–2021. Morbidity and Mortality Weekly Report 70(36):1242–1244. http://dx.doi.org/10.15585/mmwr.mm7036a2.

Kirby, A. E., R. M. Welsh, Z. A. Marsh, A. T. Yu, D. J. Vugia, A. B. Boehm, M. K. Wolfe, B. J. White, S. R. Matzinger, A. Wheeler, L. Bankers, K. Andresen, C. Salatas, New York City Department of Environmental Protection, D. A. Gregory, M. C. Johnson, M. Trujillo, S. Kannoly, D. S. Smyth, J. J. Dennehy, N. Sapoval, K. Ensor, T. Treangen, L. B. Stadler, and L. Hopkins. 2022. Notes from the field: Early Evidence of the SARS-CoV-2 B.1.1.529 (Omicron) variant in community wastewater–United States, November–December 2021. Morbidity and Mortality Weekly Report 71(3):103–105. https://doi.org/10.15585%2Fmmwr.mm7103a5.

Klapsa, D., T. Wilton, A. Zealand, E. Bujaki, E. Saxentoff, C. Troman, A. G. Shaw, A. Tedcastle, M. Majumdar, R. Mate, J. O. Akello, S. Huseynov, A. Zeb, M. Zambon, A. Bell, J. Hagan, M. J. Wade, M. Ramsay, N. C. Grassly, V. Saliba, and J. Martin. 2022. Sustained detection of type 2 poliovirus in London sewage between February and July, 2022, by enhanced environmental surveillance. The Lancet 400(10362):1531–1538. https://doi.org/10.1016/S0140-6736(22)01804-9.

Kline, K. E., J. Shover, A. J. Kallen, D. R. Lonsway, S. Watkins, and J. R. Miller. 2016. Investigation of first identified mcr-1 gene in an isolate from a U.S. patient—Pennsylvania, 2016. Morbidity and Mortality Weekly Report 65(36):977–978. http://dx.doi.org/10.15585/mmwr.mm6536e2.

Klingler, C., D. S. Silva, C. Schuermann, A. A. Reis, A. Saxena, and D. Strech. 2017. Ethical issues in public health surveillance: A systematic qualitative review. BMC Public Health 17(295). https://doi.org/10.1186/s12889-017-4200-4.

Krüger, D., A. Thomzig, G. Lenz, K. Kampf, P. McBride, and M. Beekes. 2009. Faecal shedding, alimentary clearance and intestinal spread of prions in hamsters fed with scrapie. Veterinary Research 40(4). https://doi.org/10.1051/vetres:2008042.

LaJoie, A. S., R. H. Holm, L. B. Anderson, H. D. Ness, and T. Smith. 2022. Survey of nationwide public perceptions regarding acceptance of wastewater used for community health monitoring in the United States. medRxiv. https://doi.org/10.1101/2022.03.16.22272262.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

Layton, B. A., D. Kaya, C. Kelly, K. J. Williamson, D. Alegre, S. M. Bachhuber, P. G. Banwarth, J. W. Bethel, K. Carter, B. D. Dalziel, M. Dasenko, M. Geniza, A. George, A. M. Girard, R. Haggerty, K. A. Higley, D. M. Hynes, J. Lubchenco, K. R. McLaughlin, F. J. Nieto, A. Noakes, M. Peterson, A. D. Piemonti, J. L. Sanders, B. M. Tyler, and T. S. Radniecki. 2022. Evaluation of a wastewater-based epidemiological approach to estimate the prevalence of SARS-CoV-2 infections and the detection of viral variants in disparate Oregon communities at city and neighborhood scales. Environmental Health Perspectives 130(6):67010. https://ehp.niehs.nih.gov/doi/10.1289/EHP10289.

Lee, L. M., C. M. Heilig, and A. White. 2012. Ethical justification for conducting public health surveillance without patient consent. American Journal of Public Health 102:38–44. https://doi.org/10.2105/AJPH.2011.300297.

Lee, W. L., X. Gu, F. Armas, F. Chandra, H. Chen, F. Qu, M. Leifels, A. Xiao, F. J. D. Chua, G. W. C. Kwok, S. Jolly, C. Y. J. Lim, J. Thompson, and E. J. Alm. 2021. Quantitative SARS-CoV-2 tracking of variants Delta, Delta plus, Kappa and Beta in wastewater by allele-specific RT-qPCR. medRxiv. https://doi.org/10.1101/2021.08.03.21261298.

Li, B., D. Yoong Wen Di, P. Saingam, M. K. Jeon, and T. Yan. 2021. Fine-scale temporal dynamics of SARS-CoV-2 RNA abundance in wastewater during a COVID-19 lockdown. Water Research 197:117093. https://doi.org/10.1016/j.watres.2021.117093.

Link-Gelles, R., E. Lutterloh, P. Schnabel Ruppert, P. B. Backenson, K. St George, E. S. Rosenberg, B. J. Anderson, M. Fuschino, M. Popowich, C. Punjabi, M. Souto, K. McKay, S. Rulli, T. Insaf, D. Hill, J. Kumar, I. Gelman, J. Jorba, T. F. F. Ng, N. Gerloff, N. B. Masters, A. Lopez, K. Dooling, S. Stokley, S. Kidd, M. S. Oberste, J. Routh, and 2022 U.S. Poliovirus Response Team. 2022. Public health response to a case of paralytic poliomyelitis in an unvaccinated person and detection of poliovirus in wastewater—New York, June–August 2022. Morbidity and Mortality Weekly Report 71(33):1065–1068. https://doi.org/10.15585/mmwr.mm7133e2.

Liu, Y. Y., Y. Wang, T. R. Walsh, L. X. Yi, R. Zhang, J. Spencer, Y. Doi, G. Tian, B. Dong, X. Huang, L. F. Yu, D. Gu, H. Ren, X. Chen, L. Lv, D. He, H. Zhou, Z. Liang, J. H. Liu, and J. Shen. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet 16(2):161–168. https://doi.org/10.1016/S1473-3099(15)00424-7.

Long, A. S., A. L. Hanlon, and K. L. Pellegrin. 2018. Socioeconomic variables explain rural disparities in US mortality rates: Implications for rural health research and policy. SSM-Population Health 6:72–74.

Lu, F. S., M. W. Hattab, C. L. Clemente, M. Biggerstaff, and M. Santillana. 2019. Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches. Nature Communications 10(1):1–10.

Majumdar, M., T. Wilton, Y. Hajarha, D. Klapsa, and J. Martin. 2019. Detection of enterovirus D68 in wastewater samples from the United Kingdom during outbreaks reported globally between 2015 and 2018. BioRxiv. https://doi.org/10.1101/738948.

Maksimovic Carvalho Ferreira, O., Ž. Lengar, Z. Kogej, K. Ba nik, I. Bajde, M. Milavec, A. Županič, N. Mehle, D. Kutnjak, M. Ravnikar, and I. Gutierrez-Aguirre. 2022. Evaluation of methods and processes for robust monitoring of SARS-CoV-2 in wastewater. Food and Environmental Virology 1–17. https://doi.org/10.1007/s12560-022-09533-0.

Manning, S., and M. Walton. 2021. COVID-19 surveillance in wastewater: Communications and equity. New Zealand Crown Research Institute of Environmental Science and Research. https://www.esr.cri.nz/assets/ESR-2021-Covid-in-Wastewater-social-summary.pdf.

Manor, Y., R. Handsher, T. Halmut, M. Neuman, B. Abramovitz, A. Mates, and E. Mendelson. 1999a. A double-selective tissue culture system for isolation of wild-type poliovirus from sewage applied in a long-term environmental surveillance. Applied and Environmental Microbiology 65(4):1794–1797. https://doi.org/10.1128/AEM.65.4.1794-1797.1999.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

Manor, Y., R. Handsher, T. Halmut, M. Neuman, A. Bobrov, H. Rudich, A. Vonsover, L. Shulman, O. Kew, and E. Mendelson. 1999b. Detection of poliovirus circulation by environmental surveillance in the absence of clinical cases in Israel and the Palestinian Authority. Journal of Clinical Microbiology 37(6):1670–1675. https://doi.org/10.1128/JCM.37.6.1670-1675.1999.

Marques, E., E. E. Da Silva, V. M. Dos Santos, O. M. Kew, and M. T. Martins. 1993. Application of the polymerase chain reaction (PCR) to poliomyelitis surveillance through the analyses of sewage samples. World Journal of Microbiology and Biotechnology 9(5):566–569. https://doi.org/10.1007/BF00386295.

Mataraci-Kara, E., M. Ataman, G. Yilmaz, and B. Ozbek-Celik. 2020. Evaluation of antifungal and disinfectant-resistant Candida species isolated from hospital wastewater. Archives of Microbiology 202(9):2543–2550. https://doi.org/10.1007/s00203-020-01975-z.

McClary-Gutierrez, J. S., M. C. Mattioli, P. Marcenac, A. I. Silverman, A. B. Boehm, K. Bibby, M. Balliet, F. L. de los Reyes, D. Gerrity, J. F. Griffith, P. A. Holden, D. Katehis, G. Kester, N. LaCross, E. K. Lipp, J. Meiman, R. T. Noble, D. Brossard, and S. L. McLellan. 2021. SARS-CoV-2 wastewater surveillance for public health action. Emerging Infectious Diseases 27(9):1–8. https://doi.org/10.3201/eid2709.210753.

McMahan, C. S., S. Self, L. Rennert, C. Kalbaugh, D. Kriebel, D. Graves, C. Colby, J. A. Deaver, S. C. Popat, T. Karanfil, and D. L. Freedman. 2021. COVID-19 wastewater epidemiology: A model to estimate infected populations. The Lancet Planetary Health 5(12):e874–e881. https://doi.org/10.1016/S2542-5196(21)00230-8.

Medema, G., L. Heijnen, G. Elsinga, R. Italiaander, and A. Brouwer. 2020. Presence of SARSCoronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in The Netherlands. Environmental Science & Technology Letters 7(7):511–516. https://doi.org/10.1021/acs.estlett.0c00357.

Medina, C. Y., K. Kadonsky, F. A. R. Roman, A. Q. Tariqi, R. Sinclair, P. M. D’Aoust, R. Delatolla, H. Bischel, and C. C. Naughton. 2022. The need of an environmental justice approach for wastewater based epidemiology for rural and disadvantaged communities: A review in California. Current Opinion in Environmental Science & Health 27:100348. https://doi.org/10.1016%2Fj.coesh.2022.100348.

Melnick, J. L. 1947. Poliomyelitis virus in urban sewage in epidemic and in nonepidemic times. American Journal of Epidemiology 45(2):240–253. https://doi.org/10.1093/oxfordjournals.aje.a119132.

Mendoza Grijalva, L., B. Brown, A. Cauble, and W. A. Tarpeh. 2022. Diurnal variability of SARS-CoV-2 RNA concentrations in hourly grab samples of wastewater influent during low COVID-19 incidence. Environmental Science and Technology: Water. https://doi.org/10.1021/acsestwater.2c00061.

Mercier, E., P. M. D’Aoust, O. Thakali, N. Hegazy, J. J. Jia, Z. Zhang, W. Eid, J. Plaza-Diaz, M. P. Kabir, W. Fang, A. Cowan, S. E. Stephenson, L. Pisharody, A. E. MacKenzie, T. E. Graber, S. Wan, and R. Delatolla. 2022. Wastewater surveillance of influenza activity: Early detection, surveillance, and subtyping in city and neighbourhood communities. medRxiv. https://doi.org/10.1101/2022.06.28.22276884.

Miller, M. W., and E. S. Williams. 2004. Chronic wasting disease of cervids. Current Topics in Microbiology and Immunology 284:193–214. https://doi.org/10.1007/978-3-662-084410_8.

NASEM (National Academies of Sciences, Engineering, and Medicine). 2022. Combating antimicrobial resistance and protecting the miracle of modern medicine. Washington, DC: The National Academies Press. https://doi.org/10.17226/26350.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

Natarajan, A., S. Zlitni, E. F. B. Brooks, S. E. Vance, A. Dahlen, H. Hedlin, R. M. Park, A. Han, D. T. Schmidtke, R. Verma, K. B. Jacobson, J. Parsonnet, H. F. Bonilla, U. Singh, B. A. Pinsky, J. R. Andrews, P. Jagannathan, and A. S. Bhatt. 2022. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med (New York, New York) 3(6):371–387.e9. https://doi.org/10.1016/j.medj.2022.04.001.

Naughton, C. C., F. A. Roman Jr., A. G. F. Alvarado, A. Q. Tariqi, M. A. Deeming, K. Bibby, A. Bivins, J. B. Rose, G. Medema, W. Ahmed, P. Katsivelis, V. Allan, R. Sinclair, Y. Zhang, and M. N. Kinyua. 2021. Show us the data: Global COVID-19 wastewater monitoring efforts, equity, and gaps. medRxiv https://doi.org/10.1101/2021.03.14.21253564.

NDWAC (National Drinking Water Advisory Council). 2004. National Drinking Water Advisory Council report on the CCL Classification Process to the U.S. Environmental Protection Agency. https://www.epa.gov/sites/default/files/2015-11/documents/report_ccl_ndwac_07-06-04.pdf.

Nelson, B. 2022. What poo tells us: Wastewater surveillance comes of age amid covid, monkeypox, and polio. BMJ 378. https://doi.org/10.1136/bmj.o1869.

Nelson, W. W., T. A. Scott, M. Boules, C. Teigland, A. Parente, S. Unni, and P. Feuerstadt. 2021. Health care resource utilization and costs of recurrent Clostridioides difficile infection in the elderly: A real-world claims analysis. Journal of Managed Care and Specialty Pharmacy 27(7):828–838. https://doi.org/10.18553/jmcp.2021.20395.

Nicholson, E. M. 2015. Detection of the disease-associated form of the prion protein in biological samples. Future Science 7(2). https://doi.org/10.4155/bio.14.301.

Nordahl Petersen, T., S. Rasmussen, H. Hasan, C. Carøe, J. Bælum, A. C. Schultz, L. Bergmark, C. A. Svendsen, O. Lund, T. Sicheritz-Pontén, and F. M. Aarestrup. 2015. Meta-genomic analysis of toilet waste from long distance flights: A step towards global surveillance of infectious diseases and antimicrobial resistance. Scientific Reports 5:11444. https://doi.org/10.1038/srep11444.

NRC (National Research Council). 2001. Classifying drinking water contaminants for regulatory consideration. Washington, DC: National Academy Press. https://doi.org/10.17226/10080.

NSF (National Science Foundation). 2009. Chapter II - Proposal Preparation Instructions. https://www.nsf.gov/pubs/policydocs/pappguide/nsf09_1/gpg_2.jsp.

Parnanen, K. M. M., C. Narciso-da-Rocha, D. Kneis, T. U. Beredonk, D. Cacace, T. T. Do, C. Elpers, D. Fatta-Kassinos, I. Henriques, T. Jaeger, A. Karkman, J. L. Martinez, S. G. Michael, I. Michael-Kordatou, K. O’Sullivan, S. Rodriguez-Mozaz, T. Schwartz, H. Sheng, H. Sørum, R. D. Stedtfeld, J. M. Tiedje, S. Varella della Giustina, F. Walsh, I. Vaz-Moreira, and C. M. Manaia. 2019. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science Advances 5(3). https://doi.org/10.1126/sciadv.aau9124.

Paul, J. R., and J. D. Trask. 1941. The virus of poliomyelitis in stools and sewage. Journal of the American Medical Association 116(6):493–498. https://doi.org/10.1001/jama.1941.02820060041009.

Paul, J. R., J. D. Trask, and S. Gard. 1940. II. Poliomyelitic virus in urban sewage. The Journal of Experimental Medicine 71(6):765–777. https://doi.org/10.1084/jem.71.6.765.

Peccia, J., A. Zulli, D. E. Brackney, N. D. Grubaugh, E. H. Kaplan, A. Casanovas-Massana, A. I. Ko, A. A. Malik, D. Wang, M. Wang, J. L. Warren, D. M. Weinberger, W. Arnold, and S. B. Omer. 2020. Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nature Biotechnology 38(10):1164–1167. https://doi.org/10.1038/s41587-020-0684-z.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

Pecson, B. M, E. Darby, C. Haas, Y. Amha, M. Bartolo, R. Danielson, Y. Dearborn, G. Di Giovanni, C. Ferguson, S. Fevig, E. Gaddis, D. Gray, G. Lukasik, B. Mull, A. Olivieri, Y. Qu, and SARS-CoV-2 Interlaboratory Consortium. 2021. Reproducibility and sensitivity of 36 methods to quantify the SARS-CoV-2 genetic signal in raw wastewater: Findings from an interlaboratory methods evaluation in the U.S. Environmental Science: Water Research & Technology 7:504–520. https://doi.org/10.1039/D0EW00946F.

Philo, S. E., A. Q. W. Ong, E. K. Keim, R. Swanstrom, A. L. Kossik, N. A. Zhou, N. K. Beck, and J. S. Meschke. 2022. Development and validation of the skimmed milk pellet extraction protocol for SARS-CoV-2 wastewater surveillance. Food and Environmental Virology. https://doi.org/10.1007/s12560-022-09512-5.

Polo, D., M. Quintela-Baluja, A. Corbishley, D. L. Jones, A. C. Singer, D. W. Graham, and J. L. Romalde. 2020. Making waves: Wastewater-based epidemiology for COVID-19–approaches and challenges for surveillance and prediction. Water Research 186:116404. https://doi.org/10.1016/j.watres.2020.116404.

Pöyry, T., M. Stenvik, and T. Hovi. 1988. Viruses in sewage waters during and after a poliomyelitis outbreak and subsequent nationwide oral poliovirus vaccination campaign in Finland. Applied and Environmental Microbiology 54(2):371–374. https://doi.org/10.1128/aem.54.2.371-374.1988.

Rader, B., A. Gertz, A. D. Iuliano, M. Gilmer, L. Wronski, C. M. Astley, K. Sewalk, T. J. Varrelman, J. Cohen, R. Parikh, H. E. Reese, C. Reed, and J. S. Brownstein. 2022. Use of at-home COVID-19 tests—United States, August 23, 2021–March 12, 2022. Morbidity and Mortality Weekly Report 71(13):489–494. http://dx.doi.org/10.15585/mmwr.mm7113e1.

Ram, N., L. Gable, and J. L. Ram. 2022. The future of wastewater monitoring for the public health. University of Richmond Law Review 56(911):911–952. https://lawreview.richmond.edu/files/2022/05/Ram-563-online.pdf.

Ranta, J., T. Hovi, and E. Arjas. 2001. Poliovirus surveillance by examining sewage water specimens: Studies on detection probability using simulation models. Risk Analysis 21(6):1087–1096. https://doi.org/10.1111/0272-4332.t01-1-216174.

Ritchey, M. D., H. G. Rosenblum, K. Del Guercio, M. Humbard, S. Santos, J. Hall, J. Chaitram, and R. M. Salerno. 2022. COVID-19 self-test data: Challenges and opportunities—United States, October 31, 2021–June 11, 2022. Morbidity and Mortality Weekly Report 71:1005–1010. http://dx.doi.org/10.15585/mmwr.mm7132a1.

Rolfes, M. A., I. M. Foppa, S. Garg, B. Flannery, L. Brammer, J. A. Singleton, E. Burns, D. Jernigan, S. J. Olsen, J. Bresee, and C. Reed. 2018. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza and Other Respiratory Viruses 12(1):132–137. https://doi.org/10.1111/irv.12486.

Ryerson, A. B., D. Lang, M. A. Alazawi, M. Neyra, D. T. Hill, K. St George, M. Fuschino, E. Lutterloh, B. Backenson, S. Rulli, P. S. Ruppert, J. Lawler, N. McGraw, A. Knecht, I. Gelman, J. R. Zucker, E. Omoregie, S. Kidd, D. E. Sugerman, J. Jorba, Gerloff, T. F. F. Ng, A. Lopez, N. B. Masters, J. Leung, C. C. Burns, J. Routh, S. R. Bialek, M. S. Oberste, and E. S. Rosenberg. 2022. Wastewater testing and detection of poliovirus type 2 genetically linked to virus isolated from a paralytic polio case - New York, March 9-October 11, 2022. 2022. Morbidity and Mortality Weekly Report 71(44):1418–1424. https://doi.org/10.15585/mmwr.mm7144e2.

Saad-Roy, C. M., C. J. E. Metcalf, and B. T. Grenfell. 2022. Immuno-epidemiology and the predictability of viral evolution. Science 376(6598):1161–1162. https://doi.org/10.1126/science.abn9410.

Safar, J. G., P. Lessard, G. Tamgüney, Y. Freyman, C. Deering, F. Letessier, S. J. Dearmond, and S. B. Prusiner. 2008. Transmission and detection of prions in feces. Journal of Infectious Diseases 198(1):81–89. https://doi.org/10.1086/588193.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

Safford, H., K. Shapiro, and H. N. Bischell. 2022. Wastewater analysis can be a powerful public health tool—if it’s done sensibly. Proceedings of the National Academy of Sciences 119(6):e2119600119. https://www.pnas.org/doi/10.1073/pnas.2119600119.

Saguti, F., E. Magnil, L. Enache, M. P. Churqui, A. Johansson, D. Lumley, F. Davidsson, L. Dotevall, A. Mattsson, E. Trybala, and M. Lagging. 2021. Surveillance of wastewater revealed peaks of SARS-CoV-2 preceding those of hospitalized patients with COVID-19. Water Research 189:116620. https://doi.org/10.1016/j.watres.2020.116620.

Scassa, T., P. J. Robinson, and R. Mosoff. 2022. The datafication of wastewater: Legal, ethical and civic considerations. Technology and Regulation: 23–35. https://doi.org/10.26116/techreg.2022.003.

Schussman, M. K., A. Roguet, A. Schmoldt, B. Dinan, and S. L. McLellan. 2022. Wastewater surveillance using ddPCR reveals highly accurate tracking of Omicron variant due to altered N1 probe binding efficiency. medRxiv. https://doi.org/10.1101/2022.02.18.22271188.

Sharara, N., N. Endo, C. Duvallet, N. Ghaeli, M. Matus, J. Heussner, S. W. Olesen, E. J. Alm, P. R. Chai, and T. B. Erickson. 2021. Wastewater network infrastructure in public health: Applications and learnings from the COVID-19 pandemic. PLOS Global Public Health 1(12). https://doi.org/10.1371/journal.pgph.0000061.

Sims, N., L. Avery, and B. Kasprzyk-Hordern. 2021. Review of wastewater monitoring applications for public health and novel aspects of environmental quality (CD2020_07). Scotland’s Centre of Expertise for Waters. https://www.crew.ac.uk/sites/www.crew.ac.uk/files/publication/FINAL_REPORT_FOR_Review%20of%20wastewater%20monitoring%20applications.pdf.

Smyth, D. S., M. Trujillo, D. A. Gregory, K. Cheung, A. Gao, M. Graham, Y. Guan, C. Guldenpfennig, I. Hoxie, S. Kannoly, N. Kubota, T. D. Lyddon, M. Markman, C. Rushford, K. M. San, G. Sompanya, F. Spagnolo, R. Suarez, E. Teixeiro, M. Daniels, M. C. Johnson, and J. J. Dennehy. 2022. Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater. Nature Communications 13(1):1836. https://doi.org/10.1038/s41467-022-29573-1.

Snyder, A., and S. Cullinane. 2020. Some scientists are using sewage to measure the prevalence of coronavirus in their communities. CNN News, April 26. https://www.cnn.com/2020/04/26/us/covid-19-sewage-testing/index.html.

Soller, J., W. Jennings, M. Schoen, A. Boehm, K. Wigginton, R. Gonzalez, K. E. Graham, G. McBride, A. Kirby, and M. Mattioli. 2022. Modeling infection from SARS-CoV-2 wastewater concentrations: Promise, limitations, and future directions. Journal of Water and Health 20(8):1197–1211. https://doi.org/10.2166/wh.2022.094.

Sooksawasdi Na Ayudhya, S., B. M. Laksono, and D. van Riel. 2021. The pathogenesis and virulence of enterovirus-D68 infection. Virulence 12(1):2060–2072. https://doi.org/10.1080/21505594.2021.1960106.

Sousan, S., M. Fan, K. Outlaw, S. Williams, and R. L. Roper. 2022. SARS-CoV-2 detection in air samples from inside heating, ventilation, and air conditioning (HVAC) systems-COVID surveillance in student dorms. American Journal of Infection Control 50(3):330–335. https://doi.org/10.1016/j.ajic.2021.10.009/.

Stadler, L. B., K. B. Ensor, J. R. Clark, P. Kalvapalle, Z. W. LaTurner, L. Mojica, A. Terwilliger, Y. Zhuo, P. Ali, V. Avadhanula, R. Bertolusso, T. Crosby, H. Hernandez, M. Hollstein, K. Weesner, D. M. Zong, D. Persse, P. A. Piedra, A. W. Maresso, and L. Hopkins. 2020. Wastewater analysis of SARS-CoV-2 as a predictive metric of positivity rate for a major metropolis. medRxiv. https://doi.org/10.1101/2020.11.04.20226191.

Tamburini, F. B., T. M. Andermann, E. Tkachenko, F. Senchyna, N. Banaei, and A. S. Bhatt. 2018. Precision identification of diverse bloodstream pathogens in the gut microbiome. Nature Medicine 24:1809–1814. https://doi.org/10.1038/s41591-018-0202-8.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

Tchobanoglous, G., F. L. Burton, and H. D. Stensel. 2003. Wastewater engineering: Treatment and reuse. 4th ed. New York: McGraw-Hill.

Tedcastle, A., T. Wilton, E. Pegg, D. Klapsa, E. Bujaki, R. Mate, M. Fritzsche, M. Majumdar, and J. Martin. 2022. Detection of enterovirus D68 in wastewater samples from the UK between July and November 2021. Viruses 14(1):143. https://doi.org/10.3390/v14010143.

Tennant, J. M., M. Li, D. M. Henderson, M. L. Tyer, N. D. Denkers, N. J. Haley, C. K. Mathiason, and E. A. Hoover. 2020. Shedding and stability of CWD prion seeding activity in cervid feces. PLOS One 15(3):e0227094. https://doi.org/10.1371/journal.pone.0227094.

Terry, L. A., L. Howells, K. Bishop, C. A. Baker, S. Everest, L. Thorne, B. C. Maddison, and K. C. Gough. 2011. Detection of prions in the faeces of sheep naturally infected with classical scrapie. Veterinary Research 42(65). https://doi.org/10.1186/1297-9716-42-65.

Thompson, W. W., D. K. Shay, E. Weintraub, L. Brammer, C. B. Bridges, N. J. Cox, and K. Fukuda. 2004. Influenza-associated hospitalizations in the United States. JAMA 292(11):1333–1340. https://doi.org/10.1001/jama.292.11.1333.

Thraenhart, O., E. Kuwert, and W. Worringen. 1977. Modellversuche zur Uberwachung der poliomyelitisgefährdung der Bevölkerung einer Grossstadt (Essen) im Ruhrgebiet durch Abwasseruntersuchungen [Experiments on poliomyelitis surveillance in an urban population of the Ruhr Valley (Essen) by means of virological investigations of the sewage water (author’s transl)]. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe B: Hygiene, Präventive Medizin 164(4):328–339.

U.S. Census Bureau. 2022. The 2021 American Housing Survey. https://www.census.gov/programs-surveys/ahs/data/2021/ahs-2021-public-use-file--puf-/ahs-2021-national-public-use-file--puf-.html.

van der Avoort, H. G., J. H. Reimerink, A. Ras, M. N. Mulders, and A. M. van Loon. 1995. Isolation of epidemic poliovirus from sewage during the 1992-3 type 3 outbreak in The Netherlands. Epidemiology and Infection 114(3):481–491. https://doi.org/10.1017/s0950268800052195.

Vogel, G. 2022. Signals from the sewer: Measuring virus levels in wastewater can help track the pandemic. But how useful is that? Science 375(6585):1100–1104. https://www.science.org/doi/10.1126/science.adb1874.

Wade, M. J., A. L. Jacomo, E. Armenise, M. R. Brown, J. T. Bunce, G. J. Cameron, Z. Fang, D. F. Gilpin, D. W. Graham, J. M. Grimsley, and A. Hart. 2022. Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: Lessons learned from the United Kingdom national COVID-19 surveillance programmes. Journal of Hazardous Materials 424:127456. https://doi.org/10.1016/j.jhazmat.2021.127456.

Ward, I. L., C. Bermingham, D. Ayoubkhani, O. J. Gethings, K. Pouwels, T. Yates, K. Khunti, J. Hippisley-Cox, A. Banerjee, A. S. Walker, and V. Nafilyan. 2022. Risk of COVID-19 related deaths for SARS-CoV-2 Omicron (B.1.1.529) compared with Delta (B.1.617.2). medRxiv. https://doi.org/10.1136/bmj-2022-070695.

Ward, T., and A. Johnsen. 2021. Understanding an evolving pandemic: An analysis of the clinical time delay distributions of COVID-19 in the United Kingdom. PLOS One 16(10):e0257978. https://doi.org/10.1371/journal.pone.0257978.

Wehrendt, D. P., M. G. Massó, A. Gonzales Machuca, C. V. Vargas, M. E. Barrios, J. Campos, D. Costamagna, L. Bruzzone, D. M. Cisterna, N. G. Iglesias, V. A. Mbayed, E. Baumeister, D. Centrón, M. P. Quiroga, and L. Erijman. 2021. A rapid and simple protocol for concentration of SARS-CoV-2 from sewage. Journal of Virological Methods 297:114272. https://doi.org/10.1016/j.jviromet.2021.114272.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

Weil, M., M. Mandelboim, E. Mendelson, Y. Manor, L. Shulman, D. Ram, G. Barkai, Y. Shemer, D. Wolf, Z. Kra-Oz, and L. Weiss. 2017. Human enterovirus D68 in clinical and sewage samples in Israel. Journal of Clinical Virology 86:52–55. https://doi.org/10.1016/j.jcv.2016.11.013.

WHO (World Health Organization). 2015. Ebola situation report: 18 November 2015. https://apps.who.int/iris/bitstream/handle/10665/195839/ebolasitrep_18Nov2015_eng.pdf?sequence=1&isAllowed=y.

WHO. 2017. WHO guidelines on ethical issues in public health surveillance. Geneva: World Health Organization. License: CC BY-NC-SA 3.0 IGO. https://apps.who.int/iris/bitstream/handle/10665/255721/9789241512657-eng.pdf.

Wise, J. 2022. Poliovirus is detected in sewage from north and east London. BMJ 377:o1546. https://doi.org/10.1136/bmj.o1546.

Wolfe, M. K., D. Duong, K. M. Bakker, M. Ammerman, L. Mortenson, B. Hughes, P. Arts, A. S. Lauring, W. J. Fitzsimmons, E. Bendall, C. E. Hwang, E. T. Martin, B. J. White, A. B. Boehm, and K. R. Wigginton. 2022. Wastewater-based detection of two influenza outbreaks. Environmental Science and Technology Letters 9(8):687–692. https://doi.org/10.1021/acs.estlett.2c00350.

Wu, F., A. Xiao, J. Zhang, K. Moniz, N. Endo, F. Armas, R. Bonneau, M. A. Brown, M. Bushman, P. R. Chai, C. Duvallet, T. B. Erickson, K. Foppe, N. Ghaeli, X. Gu, W. P. Hanage, K. H. Huang, W. L. Lee, M. Matus, K. A. McElroy, J. Nagler, S. F. Rhode, M. Santillana, J. A. Tucker, S. Wuertz, S. Zhao, J. Thompson, and E. J. Alm. 2022a. SARS-CoV-2 RNA concentrations in wastewater foreshadow dynamics and clinical presentation of new COVID-19 cases. Science of the Total Environment 805:150121. https://doi.org/10.1016/j.scitotenv.2021.150121.

Wu, Y., L. Kang, Z. Guo, J. Liu, M. Liu, and W. Liang. 2022b. Incubation period of COVID-19 caused by unique SARS-CoV-2 strains: A systematic review and meta-analysis. JAMA Network Open 5(8):e222800. https://doi.org/10.1001/jamanetworkopen.2022.28008.

Xiao, A., F. Wu, M. Bushman, J. Zhang, M. Imakaev, P. R. Chai, C. Duvallet, N. Endo, T. B. Erickson, F. Armas, B. Arnold, H. Chen, F. Chandra, N. Ghaeli, X. Gu, W. P. Hanage, W. L. Lee, M. Matus, K. A. McElroy, K. Moniz, S. F. Rhode, J. Thompson, and E. J. Alm. 2022. Metrics to relate COVID-19 wastewater data to clinical testing dynamics. Water Research 212:118070. https://doi.org/10.1016/j.watres.2022.118070.

Ye, Y., R. M. Ellenberg, K. E. Graham, and K. R. Wigginton. 2016. Survivability, partitioning, and recovery of enveloped viruses in untreated municipal wastewater. Environmental Science and Technology 50(10):5077–5085. https://doi.org/10.1021/acs.est.6b00876.

Yeager, R., R. H. Holm, K. Saurabh, J. L. Fuqua, D. Talley, A. Bhatnagar, and T. Smith. 2021. Wastewater sample site selection to estimate geographically resolved community prevalence of COVID-19: A sampling protocol perspective. GeoHealth 5(7):e2021GH000420. https://doi.org/10.1029/2021GH000420.

Yokoyama, T. 1999. The immunodetection of the abnormal isoform of prion protein. The Histochemical Journal 31(4):209–212. https://doi.org/10.1023/a:1003514021800.

Yong, D., M. A. Toleman, C. G. Giske, H. S. Cho, K. Sundman, K. Lee, and T. R. Walsh. 2009. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence Type 14 from India. Antimicrobial Agents and Chemotherapy 53(12):5046–5054. https://doi.org/10.1128/AAC.00774-09.

Yu, A. T., B. Hughes, M. K. Wolfe, T. Leon, D. Duong, A. Rabe, L. C. Kennedy, S. Ravuri, B. J. White, K. R. Wigginton, A. B. Boehm, and D. J. Vugia. 2022. Estimating relative abundance of 2 SARS-CoV-2 variants through wastewater surveillance at 2 large metropolitan sites, United States. Emerging Infectious Diseases 28(5):940–947. https://doi.org/10.3201/eid2805.212488.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

Zdrazílek, J., K. Zácek, J. Chvapil, V. Mikesová, L. Pokorná, V. Tomanová, J. Trauc, and J. Vrábková. 1971. [Virological surveys of the presence of enteroviruses in waste water. I. Incidence of polioviruses in Prague at the end of 1968 and in 1969]. Ceskoslovenská Epidemiologie, Mikrobiologie, Imunologie 20(2):67–72.

Zhang, Y., L. Yakob, M. B. Bonsall, and W. Hu. 2019. Predicting seasonal influenza epidemics using cross-hemisphere influenza surveillance data and local internet query data. Scientific Reports 9(1):1–7.

Zhang, Y., M. Cen, M. Hu, L. Du, W. Hu, J. J. Kim, and N. Dai. 2021. Prevalence and persistent shedding of fecal SARS-CoV-2 RNA in patients with COVID-19 infection: A systematic review and meta-analysis. Clinical and Translational Gastroenterology 12(4):e00343. https://doi.org/10.14309/ctg.0000000000000343.

Zheng, X., Y. Deng, X. Xu, S. Li, Y. Zhang, J. Ding, H. Y. On, J. C. C. Lai, C. In Yau, A. W. H. Chin, L. L. M. Poon, H. M. Tun, and T. Zhang. 2022. Comparison of virus concentration methods and RNA extraction methods for SARS-CoV-2 wastewater surveillance. Science of the Total Environment 824:153687. https://doi.org/10.1016/j.scitotenv.2022.153687.

Zuckerman, N. S., I. Bar-Or, D. Sofer, E. Bucris, H. Morad, L. M. Shulman, N. Levi, L. Weiss, I. Aguvaev, Z. Cohen, K. Kestin, R. Vasserman, M. Elul, I. S. Fratty, M. Geva, M. Wax, O. Erster, R. Yishai, L. Hecht-Sagie, S. Alroy-Preis, E. Mendelson, and M. Weil. 2022. Emergence of genetically linked vaccine-originated poliovirus type 2 in the absence of oral polio vaccine, Jerusalem, April to July 2022. Euro Surveillance 27(37). https://doi.org/10.2807/1560-7917.ES.2022.27.37.2200694.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×

This page intentionally left blank.

Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 123
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 124
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 125
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 126
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 127
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 128
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 129
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 130
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 131
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 132
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 133
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 134
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 135
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 136
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 137
Suggested Citation:"References." National Academies of Sciences, Engineering, and Medicine. 2023. Wastewater-based Disease Surveillance for Public Health Action. Washington, DC: The National Academies Press. doi: 10.17226/26767.
×
Page 138
Next: Appendix A: Committee Members and Staff Biographical Sketches »
Wastewater-based Disease Surveillance for Public Health Action Get This Book
×
Buy Paperback | $24.00 Buy Ebook | $19.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The COVID-19 pandemic spurred a rapid expansion of wastewater-based infectious disease surveillance systems to monitor and anticipate disease trends in communities.The Centers for Disease Control and Prevention (CDC) launched the National Wastewater Surveillance System in September 2020 to help coordinate and build upon those efforts. Produced at the request of CDC, this report reviews the usefulness of community-level wastewater surveillance during the pandemic and assesses its potential value for control and prevention of infectious diseases beyond COVID-19.

Wastewater-based Disease Surveillance for Public Health Action concludes that wastewater surveillance is and will continue to be a valuable component of infectious disease management. This report presents a vision for a national wastewater surveillance system that would track multiple pathogens simultaneously and pivot quickly to detect emerging pathogens, and it offers recommendations to ensure that the system is flexible, equitable, and economically sustainable for informing public health actions. The report also recommends approaches to address ethical and privacy concerns and develop a more representative wastewater surveillance system. Predictable and sustained federal funding as well as ongoing coordination and collaboration among many partners will be critical to the effectiveness of efforts moving forward.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!