National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures. Washington, DC: The National Academies Press. doi: 10.17226/26897.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures. Washington, DC: The National Academies Press. doi: 10.17226/26897.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures. Washington, DC: The National Academies Press. doi: 10.17226/26897.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures. Washington, DC: The National Academies Press. doi: 10.17226/26897.
×
Page R4
Page v
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures. Washington, DC: The National Academies Press. doi: 10.17226/26897.
×
Page R5
Page vi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures. Washington, DC: The National Academies Press. doi: 10.17226/26897.
×
Page R6
Page vii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2019. Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures. Washington, DC: The National Academies Press. doi: 10.17226/26897.
×
Page R7

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

ACRP Web-Only Document 43: Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures J. Micah Downing Matthew F. Calton Blue Ridge Research & Consulting, LLC Asheville, NC Juliet A. Page Volpe, The National Transportation Systems Center Cambridge, MA Judith L. Rochat Cross-Spectrum Associates Inc. Pasadena, CA Contractor’s Final Report for ACRP Project 02-79 Submitted August 2019 ACKNOWLEDGMENT This work was sponsored by the Federal Aviation Administration (FAA). It was conducted through the Airport Cooperative Research Program (ACRP), which is administered by the Transportation Research Board (TRB) of the National Academies of Sciences, Engineering, and Medicine. COPYRIGHT INFORMATION Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or persons who own the copyright to any previously published or copyrighted material used herein. Cooperative Research Programs (CRP) grants permission to reproduce material in this publication for classroom and not-for-profit purposes. Permission is given with the understanding that none of the material will be used to imply TRB, AASHTO, FAA, FHWA, FMCSA, FRA, FTA, Office of the Assistant Secretary for Research and Technology, PHMSA, or TDC endorsement of a particular product, method, or practice. It is expected that those reproducing the material in this document for educational and not-for-profit uses will give appropriate acknowledgment of the source of any reprinted or reproduced material. For other uses of the material, request permission from CRP. DISCLAIMER The opinions and conclusions expressed or implied in this report are those of the researchers who performed the research. They are not necessarily those of the Transportation Research Board; the National Academies of Sciences, Engineering, and Medicine; or the program sponsors. The information contained in this document was taken directly from the submission of the author(s). This material has not been edited by TRB.

The National Academy of Sciences was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, non- governmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for outstanding contributions to research. Dr. Marcia McNutt is president. The National Academy of Engineering was established in 1964 under the charter of the National Academy of Sciences to bring the practices of engineering to advising the nation. Members are elected by their peers for extraordinary contributions to engineering. Dr. John L. Anderson is president. The National Academy of Medicine (formerly the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. Dr. Victor J. Dzau is president. The three Academies work together as the National Academies of Sciences, Engineering, and Medicine to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The National Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine. Learn more about the National Academies of Sciences, Engineering, and Medicine at www.national-academies.org. The Transportation Research Board is one of seven major programs of the National Academies of Sciences, Engineering, and Medicine. The mission of the Transportation Research Board is to provide leadership in transportation improvements and innovation through trusted, timely, impartial, and evidence-based information exchange, research, and advice regarding all modes of transportation. The Board’s varied activities annually engage about 8,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation. Learn more about the Transportation Research Board at www.TRB.org.

C O O P E R A T I V E R E S E A R C H P R O G R A M S CRP STAFF FOR ACRP WEB-ONLY DOCUMENT 43 Christopher J. Hedges, Director, Cooperative Research Programs Lori L. Sundstrom, Deputy Director, Cooperative Research Programs Marci A. Greenberger, Manager, Airport Cooperative Research Program Joseph D. Navarrete, Senior Program Officer Hana Vagnerova, Senior Program Assistant Eileen P. Delaney, Director of Publications Natalie Barnes, Associate Director of Publications Jennifer J. Weeks, Publishing Projects Manager ACRP PROJECT 02-79 PANEL Field of Environment Sandra J. Lancaster, Dallas Fort Worth International Airport, DFW Airport, TX (Chair) Ataa Aly, San Diego County Regional Airport Authority, San Diego, CA Justin W. Cook, HMMH, Anaheim, CA Kai Ming Li, Purdue University, West Lafayette, IN Dana M. Nelson, Metropolitan Airports Commission, Minneapolis, MN Dharma R. Thapa, Ricondo & Associates, Inc., Chicago, IL James B. Byers, III, FAA Liaison Bill He, FAA Liaison Christine Gerencher, TRB Liaison AUTHOR ACKNOWLEDGMENTS The research reported herein was performed under ACRP Project 02-79 by Blue Ridge Research and Consulting, LLC (BRRC) in Asheville, NC with support from Volpe, The National Transportation Systems Center in Cambridge, MA, and Cross-Spectrum Acoustics in Pasadena, CA. Dr. Micah Downing, Chief Scientist at BRRC, was the Principal Investigator. The other authors of this report are Matt Calton, Engineer at BRRC, Juliet Page, Physical Scientist at Volpe, and Dr. Judith Rochat, Principal Associate at Cross-Spectrum Acoustics. The airport measurements were performed in cooperation with Dan Yeung, Kathryn Pantoja, and Joanne Choi from the Los Angeles World Airport (LAWA) Noise Management office at Los Angeles International Airport, and Ron Reeves and Ryan McMullan from the Airport Noise and Environmental Affairs office at Long Beach Airport.

ACRP Web‐Only Document 43: Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures    Contents  Summary ....................................................................................................................................................... 1 1 Background........................................................................................................................................... 5 2 Research Approach .............................................................................................................................. 8 3 Findings and Application .................................................................................................................... 10 3.1 Evaluated Models ........................................................................................................................ 10 3.1.1 Terrain Effects Modeling ..................................................................................................... 10 3.1.2 Barrier Effects Modeling ..................................................................................................... 12 3.1.3 Manmade Structures .......................................................................................................... 12 3.2 Comparison with Data ................................................................................................................ 13 3.2.1 Computational Benchmarking Dataset ............................................................................... 14 3.2.2 Comparison with Empirical Datasets .................................................................................. 21 3.2.3 Airport Noise Measurements .............................................................................................. 35 3.3 Blended Method ......................................................................................................................... 56 3.3.1 Selected Models .................................................................................................................. 56 3.3.2 Computational Flow for Effects of Terrain and Manmade Structures ................................ 57 3.3.3 Region of Application .......................................................................................................... 60 3.3.4 Outside of Region ................................................................................................................ 65 3.3.5 Blended Method Summary ................................................................................................. 66 3.3.6 AEDT Integration ................................................................................................................. 66 4 Conclusions and Suggested Research ................................................................................................ 71 5 References .......................................................................................................................................... 74    

ACRP Web‐Only Document 43: Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures    List of Figures  Figure 1‐1. Conceptual effects of terrain on aircraft noise propagation ...................................................... 6 Figure 1‐2. Conceptual effects of manmade structure on aircraft noise propagation ................................. 6 Figure 2‐1. Proposed blended model development process ........................................................................ 8 Figure 3‐1. AAM terrain categories for topographic attenuation calculation (Bradley et al. 2016) ........... 11 Figure 3‐2. TNM terrain variation with a barrier showing multiple diffraction points ............................... 12 Figure 3‐3. Calculation of warning siren coverage in an urban setting ...................................................... 13 Figure 3‐4. Example of the benchmarking computational case geometry ................................................. 14 Figure 3‐5. Comparison of different models dB Gain results as a function of receiver distance for a  line  source at various heights: (a) 1.5 m, (b) 12.5 m, (c) 50 m, (d) 100 m, (e) 400 m, and (f) 800 m at a  distance of 400 m away from a 64 x 16 x 64 m (H x D x W) building ................................................... 17 Figure 3‐6. Effect of source distance for (a) 1.5 m high and (b) 400 m high line source from the facade of a  64 x 16 x 64 m (H x W x D) building calculated by TNM 3.0 ................................................................. 18 Figure 3‐7. Effect of source height for lines sources at distances for (a) 25 m and (b) 2000 m for 64 x 32 x  64 m (H x W x D) building calculated by CadnaA ISO 9613‐2 ............................................................... 19 Figure 3‐8. Effect of building width for a  line source at distances of 100 m and height of 12.5 m for (a)  small building (8 x 8 m (H x D)) and (b) large building (64 x 64 m (H x D)), calculated by TNM 3.0 ..... 20 Figure 3‐9. Urban high‐density setting from the NYC helicopter measurements ...................................... 22 Figure 3‐10. Overview of the Narvik measurement area and layout ......................................................... 24 Figure 3‐11. A‐weighted time history comparison for the Narvik noise monitoring sites for Operation A06  .............................................................................................................................................................. 26 Figure 3‐12.  Site  12CA  showing microphones  behind  a  highway  noise  barrier  for  the  TNM  validation  measurements ...................................................................................................................................... 27 Figure 3‐13. Site 12CA, measured, TNM‐predicted, and ISO‐predicted reduction in noise from reference  .............................................................................................................................................................. 29 Figure 3‐14. Site 12CA, TNM‐predicted and ISO‐predicted barrier insertion loss (comparing sound levels  with and without barrier) ..................................................................................................................... 30 Figure 3‐15. Site 14CA, measured, TNM‐predicted, and ISO‐predicted reduction in noise from reference  .............................................................................................................................................................. 30 Figure 3‐16. Site 14CA, TNM‐predicted and ISO‐predicted barrier insertion loss (comparing sound levels  with and without barrier) ..................................................................................................................... 31 Figure 3‐17. Diagram from NCHRP study “Field evaluation of reflected noise from a single noise barrier”  .............................................................................................................................................................. 32 Figure 3‐18. Site SR‐71, NCHRP 25‐44 Study; top: cross section with barrier, bottom: cross section without  barrier ................................................................................................................................................... 33 Figure 3‐19. Site SR‐71, NCHRP 25‐44 Study, 9:49 time block; 3 sets of comparisons: from  left to right,  receiver between highway and barrier, opposite side receiver close to road, opposite side receiver far  from road .............................................................................................................................................. 34 Figure 3‐20. Site SR‐71, NCHRP 25‐44 Study, 12:45 time block; 3 sets of comparisons: from left to right,  receiver between highway and barrier, opposite side receiver close to road, opposite side receiver far  from road .............................................................................................................................................. 34 Figure 3‐21.  Instrumentation  deployed  at measurement  sites.  Left:  sound  level meter  system,  right:  meteorological system and sound recorder system ............................................................................ 36 Figure 3‐22. Measurement locations during measurement campaign at Los Angeles International Airport  .............................................................................................................................................................. 38

ACRP Web‐Only Document 43: Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures    Figure 3‐23.  El  Segundo neighborhood measurements;  top: microphone  locations  labeled A00  – A09,  middle: view toward south runways from position A05, bottom: view away from south runways from  position A01 .......................................................................................................................................... 40 Figure 3‐24. Kittyhawk Ave neighborhood measurements; top: microphone locations labeled B00 – B03,  middle: view toward flight path from position B02, bottom: view away from flight path from position  B02 ........................................................................................................................................................ 42 Figure 3‐25. Playa Del Oro neighborhood measurements; top: microphone  locations  labeled E00 – E06,  middle: view toward N runways from position E02, bottom: view away from N runways from position  E02 ........................................................................................................................................................ 44 Figure 3‐26. Measurement locations during measurement campaign at Long Beach Airport .................. 45 Figure 3‐27.  LGB measurements;  top/middle: view  toward and away  from  runway  from position G09,  bottom: in front and behind end‐of‐runway berm (from G01 and G02, respectively) ........................ 47 Figure 3‐28. Processed LiDAR data for El Segundo; buildings are displayed in orange, terrain in brown .. 49 Figure 3‐29. 3D visualization of process LiDAR data ................................................................................... 50 Figure 3‐30. Digitized SoundPLAN model of LGB; building footprints and elevation obtained via satellite  imagery and Google Earth 3D buildings ............................................................................................... 51 Figure 3‐31. Digitized SoundPLAN model of Kittyhawk; building footprints & elevations obtained via LiDAR  .............................................................................................................................................................. 51 Figure 3‐32. Results at LGB computed using existing AEDT calculations. .................................................. 58 Figure 3‐33. Calculated GLBM factors associated with manmade structures for an arrival at LGB. ............ 58 Figure 3‐34. Blended noise estimate with the existing AEDT aircraft noise and the acoustic effect  from  manmade structures. ........................................................................................................................... 59 Figure 3‐35. Comparison of altitude profiles for arrivals and departures .................................................. 61 Figure 3‐36. TNM insertion loss for a ground‐based (0 m AGL) noise source at an offset distance of 2,000 m  .............................................................................................................................................................. 62 Figure 3‐37. TNM insertion loss for a 100 m AGL noise source at an offset distance of 2,000 m .............. 63 Figure 3‐38. TNM reflection gain for a ground‐based noise source at an offset distance of 2,000 m ....... 64 Figure 3‐39. Illustration of regions of application and transition for the blended method building effects  .............................................................................................................................................................. 65 Figure 3‐40. AAM geometric terrain models (Bradley et al. 2016) ............................................................. 67 Figure D‐1. Conceptual schematic of segmentation and manmade structures ....................................... 111 Figure D‐2. AEDT schematic for a departure at LGB relative to a community receiver location ............. 111 Figure D‐3. Uncertainty introduced in noise fraction calculations due to reduced segment length ....... 112 Figure D‐4. Results at LGB computed using existing AEDT calculations ................................................... 113 Figure D‐5. Acoustic effect associated with manmade structures at LGB according to ISO 9613‐2 ........ 114 Figure D‐6. Combination of existing AEDT calculations and acoustic effect from manmade structures . 114  

ACRP Web‐Only Document 43: Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures    List of Tables  Table 3‐1. Summary of preliminary measured acoustic datasets ............................................................... 21 Table 3‐2. NYC Urban Helicopter: measured and modeled data comparisons for level flight ................... 23 Table 3‐3. NYC Urban Helicopter: measured and modeled data comparisons for departure flight .......... 23 Table 3‐4.Comparison of measured and modeled results for Narvik, Norway Terrain Measurements .... 24 Table 3‐5. TNM Validation sites and attributes .......................................................................................... 28 Table 3‐6. LAX, El Segundo neighborhood measurement positions and site descriptions ........................ 39 Table 3‐7. LAX, Kittyhawk Ave neighborhood measurement positions and site descriptions ................... 41 Table 3‐8. LAX, Playa Del Oro neighborhood measurement positions and site descriptions .................... 43 Table 3‐9. LGB measurement positions and site descriptions .................................................................... 46 Table 3‐10. Distribution of individual measured events ............................................................................. 53 Table 3‐11. Comparison of overall pooled events ...................................................................................... 54 Table 3‐12. SEL grouped results by operational type compared to overall results .................................... 55 Table 3‐13. SEL grouped results by manmade structural effect (re: TNM) compared to overall results ... 55 Table 3‐14. SEL combined grouping results ................................................................................................ 56 Table 3‐15. Example of manmade structural effect calculation values for Site G11 at LGB ...................... 60 Table C‐1‐1. LAX, Hotel district measurement positions and site descriptions ........................................ 102 Table C‐1‐2. LAX, LAWA administration building area measurement positions and site descriptions .... 106

Next: Summary »
Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures Get This Book
×
 Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Barriers, berms, buildings, and natural terrain may affect the propagation of aircraft noise by shielding or reflecting sound energy. If terrain and manmade structures obstruct the line‐of‐sight between the source and the receiver, then sound energy will be attenuated at the receiver. This attenuation increases with the terrain and structures’ size and proximity to either the source or the receiver. If gaps exist in the terrain or structures, then the potential benefits of acoustical shielding will be substantially reduced. Even when the line‐of‐sight is not obstructed, terrain can reflect the sound and create multiple pathways affecting the sound arriving at the receiver.

The TRB Airport Cooperative Research Program's ACRP Web-Only Document 43: Improving AEDT Modeling for Aircraft Noise Reflection and Diffraction from Terrain and Manmade Structures seeks to develop and evaluate noise propagation methods that account for aircraft noise reflection and diffraction from terrain and manmade structures. It also recommends methods for inclusion into the AEDT (Aviation Environmental Design Tool) integrated noise modeling framework and provides updated AEDT user guidance on the influence terrain and man-made structures have on aircraft noise and the applications these new methods have for airport noise analyses.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!