National Academies Press: OpenBook
« Previous: Appendix E: Bumble Bee Recognition and Photography
Page 130
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 130
Page 131
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 131
Page 132
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 132
Page 133
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 133
Page 134
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 134
Page 135
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 135
Page 136
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 136
Page 137
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 137
Page 138
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 138
Page 139
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 139
Page 140
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 140
Page 141
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 141
Page 142
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 142
Page 143
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 143
Page 144
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 144
Page 145
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 145
Page 146
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 146
Page 147
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 147
Page 148
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 148
Page 149
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 149
Page 150
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 150
Page 151
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 151
Page 152
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 152
Page 153
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 153
Page 154
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 154
Page 155
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 155
Page 156
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 156
Page 157
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 157
Page 158
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 158
Page 159
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 159
Page 160
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 160
Page 161
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 161
Page 162
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 162
Page 163
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 163
Page 164
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 164
Page 165
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 165
Page 166
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 166
Page 167
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 167
Page 168
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 168
Page 169
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 169
Page 170
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 170
Page 171
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 171
Page 172
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 172
Page 173
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 173
Page 174
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 174
Page 175
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 175
Page 176
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 176
Page 177
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 177
Page 178
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 178
Page 179
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 179
Page 180
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 180
Page 181
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 181
Page 182
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 182
Page 183
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 183
Page 184
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 184
Page 185
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 185
Page 186
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 186
Page 187
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 187
Page 188
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 188
Page 189
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 189
Page 190
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 190
Page 191
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 191
Page 192
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 192
Page 193
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 193
Page 194
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 194
Page 195
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 195
Page 196
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 196
Page 197
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 197
Page 198
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 198
Page 199
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 199
Page 200
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 200
Page 201
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 201
Page 202
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 202
Page 203
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 203
Page 204
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 204
Page 205
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 205
Page 206
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 206
Page 207
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 207
Page 208
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 208
Page 209
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 209
Page 210
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 210
Page 211
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 211
Page 212
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 212
Page 213
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 213
Page 214
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 214
Page 215
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 215
Page 216
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 216
Page 217
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 217
Page 218
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 218
Page 219
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 219
Page 220
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 220
Page 221
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 221
Page 222
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 222
Page 223
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 223
Page 224
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 224
Page 225
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 225
Page 226
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 226
Page 227
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 227
Page 228
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 228
Page 229
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 229
Page 230
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 230
Page 231
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 231
Page 232
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 232
Page 233
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 233
Page 234
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 234
Page 235
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 235
Page 236
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 236
Page 237
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 237
Page 238
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 238
Page 239
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 239
Page 240
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 240
Page 241
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 241
Page 242
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 242
Page 243
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 243
Page 244
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 244
Page 245
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 245
Page 246
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 246
Page 247
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 247
Page 248
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 248
Page 249
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 249
Page 250
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 250
Page 251
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 251
Page 252
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 252
Page 253
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 253
Page 254
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 254
Page 255
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 255
Page 256
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 256
Page 257
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 257
Page 258
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 258
Page 259
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 259
Page 260
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 260
Page 261
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 261
Page 262
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 262
Page 263
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 263
Page 264
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 264
Page 265
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 265
Page 266
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 266
Page 267
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 267
Page 268
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 268
Page 269
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 269
Page 270
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 270
Page 271
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 271
Page 272
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 272
Page 273
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 273
Page 274
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 274
Page 275
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 275
Page 276
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 276
Page 277
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 277
Page 278
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 278
Page 279
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 279
Page 280
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 280
Page 281
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 281
Page 282
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 282
Page 283
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 283
Page 284
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 284
Page 285
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 285
Page 286
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 286
Page 287
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 287
Page 288
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 288
Page 289
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 289
Page 290
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 290
Page 291
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 291
Page 292
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 292
Page 293
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 293
Page 294
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 294
Page 295
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 295
Page 296
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 296
Page 297
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 297
Page 298
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 298
Page 299
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 299
Page 300
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 300
Page 301
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 301
Page 302
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 302
Page 303
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 303
Page 304
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 304
Page 305
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 305
Page 306
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 306
Page 307
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 307
Page 308
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 308
Page 309
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 309
Page 310
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 310
Page 311
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 311
Page 312
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 312
Page 313
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 313
Page 314
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 314
Page 315
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 315
Page 316
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 316
Page 317
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 317
Page 318
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 318
Page 319
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 319
Page 320
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 320
Page 321
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 321
Page 322
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 322
Page 323
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 323
Page 324
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 324
Page 325
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 325
Page 326
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 326
Page 327
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 327
Page 328
Suggested Citation:"Blank Page." National Academies of Sciences, Engineering, and Medicine. 2023. Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin. Washington, DC: The National Academies Press. doi: 10.17226/27061.
×
Page 328

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

7-1 Chapter 7 Revegetation and Pollinators: Design and Implementation 7.1 Introduction  Habitat loss is a leading factor in the decline of many pollinators (NRC 2007), and increasing pollinator habitat is an effective conservation strategy (e.g., Tonietto and Larkin 2018). Revegetation on roadsides involves replanting and reestablishing plant communities in areas where the vegetation and habitat have been disturbed or removed. In addition to providing a safe driving environment, common roadside revegetation objectives include erosion control, water quality protection, weed control, visual enhancement, carbon sequestration, and wildlife enhancement. Enhancing habitat for pollinators can be addressed while meeting these other objectives. Improving roadside habitat for imperiled pollinator species through revegetation can help to preclude the need to list new species under the U.S. Endangered Species Act (ESA) and can help to support listed and common pollinator species alike. Roadside revegetation projects that incorporate habitat needs of pollinators can result in habitat that can be used by a species for its whole life cycle (e.g., a ground-nesting bee nests in roadside soil and forages on roadside vegetation), or support a species for a portion of its life cycle (e.g., host plants support the caterpillar stage of a butterfly’s life). Roadsides with intact native plant communities can lessen the effects of habitat fragmentation by functioning as corridors and connecting larger habitat patches (Forman et al. 2003; Huijser and Clevenger 2006; Dániel-Ferreira et al. 2022a). Additionally, if roadside revegetation projects contain plenty of floral resources, pollinators will be less likely to seek habitat elsewhere, reducing the risk of being killed by vehicles (Ries et al. 2001; Skórka et al. 2013). The removal of noxious and invasive plant species increases pollinator abundance and diversity (Hanula and Horn 2011; Fiedler et al. 2012), and roadside revegetation projects that replace invasive plants with native vegetation improve pollinator habitat. It can be a challenge to recreate the exact habitat needs of some imperiled species; augmenting existing habitat through management or restoration is preferable whenever possible. If construction alters roadside habitat of a listed species, compliance commonly occurs using processes under Section 7 and Section 10 of the ESA. Permanent removal of habitat or delays in reestablishing habitat can result in population declines and losses of species from the site that may not be regained. Native plants on roadsides showcase regional beauty while also providing pollinators with habitat. Photo Credit: Luis Colon/Arizona DOT

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-2 7.2 Considering Imperiled Pollinators in Revegetation  Enhancing habitat for imperiled pollinators, or for pollinators in general, can be a specific objective for revegetation projects. Even if it is not a specific objective, elements that increase the value of the revegetation project to pollinators can be incorporated into other project objectives. To meet objectives such as water quality protection and erosion control, quick-growing native wildflowers and grasses can be used, including species that also provide resources for pollinators. Deep-rooted shrubs or trees might be used for visual enhancement, stabilization, snow retention, or carbon sequestration; selecting species that provide larval food or pollen and nectar will also enhance the project’s value to pollinators. Consideration of the needs of pollinators when planning a revegetation project can have significant benefits for pollinators. Pollinators have complex life cycles, with different needs at different stages of their lives. Table 7-1 provides an overview of habitat needs of pollinators and how revegetation projects can meet those needs. Chapter 3 of this guide includes profiles of listed and imperiled pollinators within this region, with natural history information, such as specific habitat needs. Table 7-1. Roadside revegetation goals for enhancing habitat for different groups of pollinators. Pollinators  Food for Larval  Stage  Food for  Adult  Shelter,  Overwintering  General  Revegetation Goals  Bumble bees  Provisions of  nectar and  pollen within  the nest.  Nectar.  Nest in small  underground  cavities in  abandoned  rodent nests,  under clumps of  grass, or in  hollow trees, bird  nests, or walls.   Increase density and diversity of native flowering plants.  Include species with sequential bloom periods; early season blooms are particularly important.  Plant native bunch grasses for bumble bee nesting habitat. Ground‐ nesting bees  Provisions of  nectar and  pollen within  the nest.  Nectar.  Excavate nest  tunnels in bare or  partially  vegetated, well‐ drained soil.   Increase density and diversity of native flowering plants.  Retain areas with bare or partially vegetated, well‐ drained soil.

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-3 Pollinators  Food for Larval  Stage  Food for  Adult  Shelter,  Overwintering  General  Revegetation Goals  Tunnel‐ nesting bees  Provisions of  nectar and  pollen within  the nest.  Nectar.  Nest in narrow  tunnels in dead  standing trees, or  excavate nests in  hollow stems or  pith of twigs.  Some construct  domed nests of  mud, plant  resins, saps, or  gums on the  surface of rocks  or trees.   Increase density and diversity of native flowering plants.  Retain or install woody plants and herbaceous plants with hollow or pithy stems.  Leave snags of non‐hazard trees outside of the recovery zone. Beetles  Some species  are herbivorous,  feeding on  plants; many are  carnivorous and  eat prey such as  aphids, slugs,  and insect eggs.  Pollen,  nectar, floral  parts; some  species are  also  carnivorous.  Overwinter in soil  or leaf litter,  under rocks, logs,  brush, or bark.   Increase density and diversity of native flowering plants.  Retain overwintering sites when feasible. Butterflies  Vegetation of  host plants.  Nectar; some  males obtain  nutrients,  minerals, and  salt from  rotting fruit,  tree sap,  animal dung  and urine,  carrion, clay  deposits, and  mud puddles.  Protected site  such as a tree,  bush, tall grass,  or a pile of  leaves, sticks, or  rocks.   Increase density and diversity of native flowering plants.  Include specific host plants.  Maintain vegetation structure. Flower‐ visiting  moths  Vegetation of  host plants.  Nectar.  Protected site  such as a tree,  bush, tall grass,  or a pile of  leaves, sticks, or  rocks.   Increase density and diversity of native flowering plants.  Include specific host plants.  Maintain vegetation structure.

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-4 Pollinators  Food for Larval  Stage  Food for  Adult  Shelter,  Overwintering  General  Revegetation Goals  Flies  Some species  are carnivorous,  consuming prey  such as aphids,  scales, or mites;  others are  decomposers in  the soil.  Nectar; some  species also  eat pollen.  Overwinter in soil  or leaf litter.   Increase density and diversity of native flowering plants.  Retain overwintering sites when feasible. Wasps  Provisions of  insect prey such  as caterpillars,  aphids,  grasshoppers,  planthoppers,  true bugs, and  more.  Nectar.  Many nest in the  ground; others  nest in tunnel  nests in wood or  cavities in mud or  resin.   Increase density and diversity of native flowering plants.  Retain areas with partially vegetated well‐drained soil.  Retain or install woody plants and herbaceous plants with hollow or pithy stems. Roadsides can provide pollinators with their key habitat needs—food for larvae and adults, and shelter and overwintering habitat. In particular, native plants are important for pollinators. Roadsides with native wildflowers support a greater number of individuals and species of butterflies and bees compared with those dominated by non-native grass and flowers (Ries et al. 2001; Hopwood 2008). Native plants are more attractive as sources of pollen and nectar for pollinators than non-native plants and support more species and more individuals seeking pollen or nectar, even when both plant types are present on the same site (Williams et al. 2011; Morandin and Kremen 2013). Native plants also support more caterpillars than do non-native plants (Narango et al. 2017); native woody plants used as ornamentals in the eastern United States support fifteen times more native butterflies and moths than do introduced species of ornamental plants (Tallamy and Shropshire 2009). Adding non-native plants to landscapes does not increase butterfly and moth diversity or abundance (Burghardt et al. 2010), and non-native plants can reduce bird populations as a consequence of reduced insect availability (Narango et al. 2018). 7.2.1 Use of Native Plants in Revegetation Establishing native plant communities on roadsides provides economic benefits as well as ecological advantages (Berger 2005). Native plants can support safety objectives by reducing headlight glare, serving as crash barriers, reducing wind speed across roads, and reducing snow drifts across roads (Forman et al. 2003). Additionally, wildflowers and other flowering plants on the roadside improve driver performance by breaking up driver

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-5 monotony, contributing to clearer thinking, and reducing driver stress (Topp 1990; Cackowsky and Nasar 2003; Mok et al. 2006; Macdonald et al. 2008). Native grasses and flowers are best adapted to local growing conditions, require minimal inputs for establishment, and are able to tolerate drought or heat, which will become more common in many regions.  Some native species are particularly able to tolerate the poor growing conditions found on roadsides (Harper-Lore and Wilson 2000; O’Dell et al. 2007).  Under some conditions, native plants have a competitive advantage over non-natives (Tinsley et al. 2006).  An established diverse native plant community provides the most stable cover for reducing erosion and keeping out weeds (Quales 2003; Blumenthal et al. 2005; Falk et al. 2013).  Improved weed and erosion control can reduce the need to spray herbicides and to mow, thereby reducing long-term maintenance costs (Berger 2005; O’Dell et al. 2007; Harper-Lore et al. 2013).  The root systems of native plants can increase water infiltration, which reduces runoff and water pollution and helps to replenish groundwater (Cramer 1991; Bugg et al. 1997; Harrison 2014). Native plants are less likely to encroach on land bordering roadsides and rarely become weed issues (Harper-Lore and Wilson 2000). In contrast, a number of introduced species used for roadside revegetation have become weed problems elsewhere, including crown vetch (Securigera varia), sweet clover (Melilotus spp.), sericea lespedeza (Lespedeza cuneata), reed canary grass (Phalaris arundinacea), and smooth brome (Bromus inermis) (Harper-Lore and Wilson 2000). Finally, native revegetation plantings are aesthetically pleasing and can support tourism. The Texas Department of Transportation (DOT) has several designated wildflower routes, for example, that showcase native wildflowers; when bluebonnets (six species of Lupinus that are collectively considered the state flower of Texas) are in bloom, some towns along these routes hold bluebonnet festivals. Travelers form perceptions about regions based on their views of the highway landscape, and drivers prefer “natural-looking roadsides with native grasses, wildflowers, and butterflies,” to turf roadsides (Guyton et al. 2014). Roadsides with native plants can showcase a region’s natural beauty and provide a sense of place, natural heritage, and opportunities for education. Natural beauty may also align with driver preferences. One study conducted in Minnesota on driver perception of Native plants are species that  originated in or occur naturally in a  particular geographic area. Grasses,  wildflowers, shrubs, and trees that  existed before European settlement  of North America are native plants.  Native plants are best suited to local  conditions, generally require less  maintenance, and persist longer that  non‐local species. They can form plant  communities that are robust, self‐ sustaining, and resilient.   Native plants are central to healthy,  functional ecosystems. They support  soil health and water quality,  sequester carbon, and are habitat for  wildlife. Native plants are at the heart  of food webs, as they are food  sources for animals such as  caterpillars or grasshoppers that in  turn feed birds, frogs, and other  animals. Native plants also support  more pollinators and more wildlife  than do non‐native plants (Narango et  al. 2017; Williams et al. 2011).  Native plant root systems can be extensive and support resilience to drought, fires, and weeds. Photo Credit: Heidi Natura, Conservation Research Institute

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-6 roadside landscapes found that prairie plantings were ranked as most attractive, and a mix of trees, shrubs, and prairie also ranked highly. Mown turf, along with brome grass with a mowed turf edge, were ranked the least attractive by drivers (Nassauer et al. 2006). Similarly, a majority of Iowa drivers preferred the appearance of managed roadside prairie plantings (Nemec et al. 2021). In a Georgia study of rest area plantings, the traveling public found block plantings of a single species most attractive but preferred overall a matrix of species due to the environmental benefits. Additionally, 87 percent of those surveyed preferred native plants over non-native for roadside plantings (Tania et al. 2020). Native Plants and Safety Concerns During roadside revegetation design, a roadside planting and maintenance plan can be used to contribute to the reduction of animal browsing within the right-of-way (ROW). If designated or safe crossing points (e.g., crossing structures) exist, native vegetation can be used to provide conditions that will attract wildlife to those points. In areas that have high wildlife–vehicle collision rates, it is important to focus on planting species that have low palatability close to the roadway (Huijser et al. 2008). Arizona DOT’s approach has been to exclude plant species from its seed mixes that “green up” early or are otherwise known to attract deer and other large wildlife species. It has worked with partners on some projects to plant palatable species in areas leading to designated bridged wildlife crossings or habitat adjacent to roadside ROWs (Brown et al. 1999). In areas with known high wildlife–vehicle collision rates, prioritizing shorter plant material (3 feet tall or less; this should not include flowers or seed head stalks) will provide less cover for large mammals and will allow drivers to potentially see and respond to animals in the ROW. When palatability is known, it is included in the plant lists in this chapter (Table 7-3). It is also important to consider the frequency and timing of cutting and mowing maintenance. Maintaining a regularly mown recovery zone can increase driver visibility and reduce deer–vehicle collisions (Mastro et al. 2008). However, cutting and mowing can attract browsing activity because large hoofed mammals (such as white-tailed deer or moose) prefer to browse on fresh growth. Consideration of nutritional value of key forage plants for large mammals as it relates to cutting is important in areas with high rates of wildlife–vehicle collisions (e.g., Rea 2003). Reduced mowing beyond the safety zone may decrease deer foraging because mowing can increase the palatability of some plants (Mastro et al. 2008). 7.3 Design Considerations for  Revegetation Projects  7.3.1 Roadside Plants as Food for Pollinators Flowering plants in roadsides are important sources of nectar and pollen for pollinators that reside within the roadside habitat (e.g., Blooming bluebonnets are colorful sight on Texas roadsides between March and May. Photo Credit: Texas DOT A green sweat bee collecting pollen. Photo Credit: Barbara Driscoll

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-7 Munguira and Thomas 1992), as well as those that use the roadside as a partial habitat for foraging but reproduce or overwinter elsewhere (e.g., Ouin et al. 2004). The availability of pollen and nectar influences the abundance and diversity of pollinators found on roadsides (Saarinen et al. 2005; Hopwood 2008). Different pollinators have different floral needs and preferences, so including a diversity of plant species with different flower shapes, sizes, colors, and growth habits helps support a variety of pollinators (Ghazoul 2006; Ponisio et al. 2015). It is important to have flowers available to pollinators throughout the growing season. While pulses of bloom can provide critical resources to pollinators, sustained resources without temporal gaps create functional habitat throughout the growing season to best support robust populations and communities. Bees that emerge early in the growing season can begin to forage in February in the Great Basin region, with late-season bees foraging through October. Within that period, different species will be active at different times. Solitary bees have distinct flight seasons that last 4 to 6 weeks. Bumble bees are social, with an annual colony that expands gradually and requires forage throughout the growing season. Similarly, different species of butterflies and moths may have distinct emergence periods with one generation a year, or multiple generations a year. For an example of a phenology chart that illustrates overlapping bloom periods, see Table 7-2. Table 7-2. Bloom calendar for several wildflower species found in the Great Basin. Plant Species  Feb  March  April  May  June  July  Aug  Sept   Oct   Baccharis salicifolia  Prunus virginiana   Heliotropium curassavicum   Potentilla gracilis  Asclepias speciosa   Eriogonum umbellatum  Monardella odoratissima  Chrysothamnus viscidiflorus   Symphyotrichum ascendens 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-8 It can be helpful to emulate the species diversity found on reference sites in nearby natural plant communities. Diverse plantings that resemble natural communities are the most self- sustaining and longest lasting because they better resist weed invasions and pest outbreaks. When possible, prioritize the use of plant materials that are sourced from local ecotype providers. Plant materials that originated in geographic proximity to the project site are best adapted for local growing conditions and for pollinators. The bloom times of non-locally sourced plants have the potential to be out of sync with pollinators (Norcini et al. 2001), especially specialist bees that are reliant on the pollen from a small subset of plants and time their emergence annually with the bloom time of their host plants, or butterflies seeking to lay eggs on their host plants before the plants senesce. However, there is an emerging school of thought about the potential importance of including genetic diversity in plantings to increase the likelihood of adaptations to changes in the climate. Using multiple local sources within the region may be one way to address this concern. See Chapter 8 for discussion of strategies to address climate change through seed provenance. 7.3.2 Roadside Plants as Shelter for Pollinators Woody vegetation such as trees and shrubs can provide shelter for pollinators during the growing season, and can also provide niches for overwintering. Some pollinators will overwinter under bark or in the soil just under shallow roots, or in piles of brush. Grasses can provide shelter for a variety of pollinators, but notably for butterflies on roadsides (Saarinen et al. 2005). The root systems and grass thatch can also serve as overwintering habitat for a variety of pollinators. Nesting is a critical factor affecting the ability of bees to persist within a site (Winfree 2010; Menz et al. 2011; Morandin and Kremen 2013). Ground-nesting bees need access to soil surfaces between vegetation to excavate and access their nests (Michener 2007). Some species will nest in a variety of soils, while others have very specific requirements for the soil type, moisture, alkalinity, slope, and aspect (Cane 1991). Bunch grasses tend to provide better nesting habitat than sod-forming grasses. Roadsides with native bunch grasses have more nesting opportunities for ground-nesting bees and, consequently, a greater abundance of ground-nesting bees (Hopwood 2008). A number of aboveground nesting bees nest in hollow stems or excavate pithy stems (e.g., elderberry or cane fruits), while other native bees nest in tunnels in wood, such as abandoned beetle tunnels in logs, stumps, and snags (Michener 2007). Plant lists included in this chapter provide information about known plants that provide nesting resources for bees. Maintaining dead wood, snags, or wood with holes in it (e.g., fence posts) where safe and appropriate within the project site will also benefit tunnel-nesting bees. Bumble bee colonies require an insulated cavity in which to nest, such as underneath grass clumps (Svennson et al. 2000), under the thatch of bunch grasses, or under rocks (Hatfield et al. 2012). Some bee species create nests in plant stems. Roadside plants can provide shelter and nesting resources for bees and other pollinators. Photo Credit: Sara Morris

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-9 7.3.3 Roadsides and Connectivity Landscape connectivity is increasingly important for the populations of many species, including pollinators (Haddad 1999; Haddad and Baum 1999). Roadsides have the potential to help pollinators move between habitat fragments by acting as corridors or stepping stones to connect to larger patches of habitat (Soderstrom and Hedblom 2007; Dániel-Ferreira et al. 2022). Pollinators may use roadsides as corridors to facilitate movement through the landscape in search of food or in pursuit of new habitat (Lövei et al. 1998; Ries et al. 2001; Valtonen and Saarinen 2005; Hopwood et al. 2010), or they may expand their ranges along roadsides (Dirig and Cryan 1991; Brunzel et al. 2004). Corridors like roadsides and other linear strips of vegetation such as utility ROWs may provide habitat resilience as changes in climate drive species range contractions or expansions. 7.3.4 Designs and Conservation Practices There are a number of conservation practices to consider when designing revegetation plans. The following revegetation design practices benefit pollinators broadly:  Prioritize native plants in designs. Roadsides with native plants support more species of pollinators and larger populations (Ries et al. 2001; Hopwood 2008). Native flowering trees, shrubs, and wildflowers provide nectar and pollen or are host plants. Native grasses are also host plants and provide shelter.  Prioritize sourcing native plants locally. Plant materials that are sourced locally or within the ecoregion are best for pollinators because the phenology (flowering period) can also differ with the provenance of the plant material (Norcini et al. 2001; Houseal and Smith 2000; Gustafson et al. 2005). Bloom times of non-locally sourced plants have the potential to be out of sync with pollinators. This may be particularly problematic for bee species that are pollen specialists (e.g., the thistle longhorn bee [Melissodes desponsa] is a pollen specialist on thistles) because they are reliant on the pollen from a small subset of plants and time their emergence from overwintering with the bloom time of their host plants. Locally sourced ecotypes are also adapted to local conditions.  Increase flowering plant diversity and abundance. High flowering plant diversity provides sustained resources throughout the growing season to best support robust pollinator populations and communities. Higher plant diversity can also reduce pollinator exposure to heavy metals and salts, as different plant species uptake pollutants at different rates. Floral abundance is also important. Sparse resources will not sustain pollinator populations, whereas high densities of blooms are more attractive and can support higher numbers of pollinators (Herrera 1989). A diverse combination of grasses and wildflowers can also effectively resist weed colonization and provide soil stabilization. Having 45 percent cover of flowering Highway overpasses with habitat plantings and structures—such as the I-90 Snoqualmie Pass East Restoration Project that connects habitat on either side of I-90—benefit large wildlife as well as small wildlife like pollinators. Photo Credit: Kelly Evans / Washington DOT A roadside in Arkansas with a variety of  flowering plants. Incorporating diversity into  revegetation projects has many benefits,  including supporting a larger number of  pollinators and increased climate resilience.  Photo Credit: Ray Moranz, The Xerces Society 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-10 plant vegetation across a growing season in seed mixes should be the goal in order to prevent grasses from outcompeting wildflowers. Flowering plant cover could be spread out throughout the growing season, with 15 percent cover of species that flower in spring, 15 percent in summer, and 15 percent in autumn.  Include species with overlapping and sequential bloom periods. Providing a diversity of flowering plants throughout the growing season supports species with multiple generations as well as those that time their emergence and flight period with the bloom of certain plant species. This approach also provides a more resilient plant community that can better support a diversity of pollinators. Early-season pollen and nectar sources are important for those species that have flight seasons in the late winter or spring, as well as those with season-long flights, and will lead to greater reproduction of those species. Increasing the diversity of flowering plants in seed mixes and planting plans can help to prevent gaps in bloom. Revegetation design practices for imperiled pollinator species include:  Include key host plants for target pollinator species. Imperiled butterflies and moths may rely on plants of a single species or genus as host plants for their caterpillars. Providing caterpillar host plants is a well-established way to sustain butterfly and moth populations (Croxton et al. 2005; Feber et al. 1996). Roadsides with host plants can support habitat generalist butterflies as well as habitat specialists and migrant species, such as the monarch butterfly (e.g., Ries et al. 2001). Many native plants commonly used in revegetation projects serve as butterfly and moth host plants (e.g., little bluestem [Schizachyrium scoparium]). However, it is necessary to include specific native host plant species matched to support the particular butterfly or moth species that are adapted to feeding on them. For example, planting milkweeds (Asclepias spp.) will contribute to the recovery of the monarch butterfly. Plant lists included in this guide include specific host plants for butterflies and moths that are imperiled (Table 7-3).  Consider the bloom time of flowering plants within the project area. Include a number of different species of flowering plants during the flight time of focal pollinators. Adults of butterflies and moths of most imperiled and listed species have limited flight times; therefore, make sure that in addition to host plants, a site has plenty of flowering plants during the flight time of the adults (see Chapter 3 or 6 for flight times of adults).  Include key nectar and/or pollen plants for target pollinator species. Some pollinator species have dietary restrictions and need the floral resources from certain flowering plants to survive. For example, bees that are pollen specialists can only rear their young on pollen from a certain species or groups of closely related plants. Bumble bee species have different tongue lengths that allow them to preferentially feed on certain flowers. Adult butterflies are often generalist foragers of nectar, but some species may exhibit preferences for nectar from certain plants. For example, grass skippers in the Midwest and Great Plains prefer to drink nectar from purple coneflowers (Echinacea spp.) and blazing stars (Liatris spp.) (Moranz 2010; Dana 1991). Plant lists included in this guide include known nectar plants for imperiled and listed species (Table 7-3). Many butterflies use specific plant species as  host plants for their caterpillars. Including  hostplants of butterflies that occur in the area  will contribute to pollinator conservation.  Photo Credit: Anne Stine, The Xerces Society 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-11  Consider additional specific habitat needs, such as nesting or overwintering habitat. Some imperiled species have very specific habitat needs. For instance, a bumble bee species may prefer nesting aboveground in a particular type of insulated cavity, and a tunnel-nesting yellow-faced bee needs a particular place to tunnel. Consult the profiles of listed and imperiled pollinators in Chapter 3 to learn more about any specific habitat needs. In general, including a diversity of types of plants in revegetation plans can help to ensure that vegetation structure that can act as shelter and overwintering habitat is present. Trees and shrubs may not be appropriate for every revegetation project; in those situations, including a diversity of grasses (both cool and warm season grasses) can increase vegetation structure.  Consider the connectivity of planned revegetation sites to existing habitat within the landscape. Developing a landscape connectivity map of the project area and adjacent lands—using information collected during the vegetation assessment that locates areas of high, medium, and low pollinator habitat qualities—can be a base for designing a revegetation plan that improves pollinator habitat within the context of larger landscape connectivity. Corridors with high-quality habitat support more butterfly species, including specialist species, and population persistence (Habel et al. 2020; Dániel-Ferreira et al. 2022a). It is also important to prioritize those projects that can increase the connectivity of existing roadside habitat. If remnant roadside habitat exists, for example, it would be very beneficial if revegetation projects with high plant diversity were installed adjacent to or nearby.  Consider timing of revegetation projects. While high-quality revegetation is ultimately beneficial to pollinators, it can lead to a temporary decrease in the availability of food and nesting resources for pollinators. If a revegetation project is being conducted in an area with an imperiled pollinator, ideally the project should be timed to avoid adult flight times or other sensitive times in the species’ life cycle (Chapter 3). 7.3.5 Developing a Plant Species List To improve pollinator habitat as a revegetation objective, select a mix of plant species and site improvements that encourage foraging, breeding, nesting, and overwintering of a variety of pollinator species. Revegetation efforts for pollinators should use diverse, stable communities of plants that include key plant species that support local pollinators, including imperiled and state- or federally listed pollinator species. Plant diversity in a revegetation plan is important from several angles. Diverse plant communities are better able to prevent erosion and resist weed invasions, and they are more persistent over time and more resilient as climates shift (see Chapter 8 for more information). Roadsides are variable in soil type and moisture, fertility, land-use history, solar radiation, and more. With such a range of microsites, diverse plantings help ensure that there are a number of species that could fill in the various niches; if one or more species does not do well at the site, there are others that will, creating a resilient system. Diverse plantings also best support pollinators, providing flowers that have sequential bloom periods, host plants for breeding, nest sites, grasses that provide vegetative structure for shelter and overwintering, and more. Different plant groups provide different functional roles and benefits, and they can occupy different niches. Cool-season rhizomatous grasses green up early in the spring and can provide erosion control from late winter into early summer, while warm-season grasses

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-12 provide erosion control as they grow through the summer months and into the fall. Legumes can fix nitrogen and improve soil health. Annual or biennial wildflowers can establish quickly and provide attractive vegetative cover, erosion control, and food for pollinators and birds while slower-growing, but deeper-rooted, perennial species establish. Shrubs and trees also play important roles in revegetation projects, where appropriate, and are ecologically valuable to pollinators as well. Guidelines for developing a species list that supports pollinators and other revegetation objectives are presented below:  Select species adapted for the sunlight and soil conditions present at the roadside site (e.g., use moisture-tolerant species for wet ditches). Projects that contain special microclimates or soils may require a unique mix of species. If seed mixes cannot be context-specific, include species adapted to a wide range of growing conditions.  Prioritize the use of native plants. Avoid using introduced (non-native) species in high- quality mixes, as these species may outcompete native plants during establishment, diminishing the quality of habitat over time and supporting fewer species of pollinators.  Include key plant species that support imperiled pollinators, such as host plants for caterpillars or plants that are known to provide nectar or pollen to adults.  Ensure that non-aggressive species are able to establish by limiting the abundance of aggressive species as needed.  Avoid temporal gaps in bloom periods. To ensure that there are always flowers in bloom, include multiple species that bloom in the spring, species that bloom in summer, and those that bloom in the fall. Some mixes fall short on spring blooms in particular (Havens and Vitt 2016).  Design plantings with plant communities in mind, and include species that will grow well together.  Include layers of plants. For example, include an understory of shrubs, wildflowers, grasses, or sedges with tree plantings. Layers help to shade out weeds, reduce moisture loss, provide layers of habitat for wildlife, and reduce maintenance requirements.  If installing vegetation via seeding, balance the proportion of grass seeds to wildflower seeds. If grass density is too high, grasses will outcompete wildflowers over time, reducing plant diversity. At minimum, 25 percent of the seed mix should be wildflowers, but a mix that is 50 percent wildflowers results in a considerably more diverse and stable planting (Dickson and Busby 2009). In highly visible areas, consider increasing the wildflower component to create more showy plantings, if that is an objective for the revegetation site.  Check erosion control mulches or straw, seed laboratory reports, and legal seed labels of the planting stock. Mulches, seed, and other planting stock should be free of noxious weeds, invasive or introduced species, and other crop components. This planting, made as part of a bridge  replacement and interchange reconfiguration,  includes layers of native trees like oaks and  hawthorn; shrubs such as viburnum,  chokeberry, and bayberry; and perennial  grasses.   Photo Credit: Tara Mitchell, Massachusetts DOT 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-13  Where available and economical, native plants and seed should be procured from local ecotype providers. Local ecotype plant materials are adapted to the local climatic conditions, will generally establish well, and will have bloom times in sync with the presence of monarchs and other pollinators. Some cultivars have been bred for a particular trait such as showiness and may have little to no pollen and nectar and therefore little value to pollinators.  Avoid taller herbaceous plants in areas where lines of sight could be blocked, such as intersections and other safety zones.  In areas with snow and ice, species to be planted close to the road should have some level of salt tolerance to reduce damage from road salt applications.  When possible, salvage native plants, particularly those that are more difficult to establish or are longer lived, from the site prior to construction and disturbance for use in the revegetation project. Enlist the help of other agencies or volunteers to temporarily relocate the salvaged vegetation for installation at the site after construction or for installation at another appropriate site. 7.3.6 Plants for Imperiled Pollinators in the Great Basin Region This plant list includes wildflowers and flowering shrubs and trees that are sources for pollen and/or nectar for a diversity of pollinators, plants that serve as host plants for caterpillars of butterflies and moths, and grasses, sedges, and woody species that provide nesting or materials for nesting for bees and wasps. • All species in this list are native to this region. Many have been commercially available (White et al. 2018). Contact local or regional native plant producers to check on their current availability or to inquire about species that may require collecting plant materials for propagation. • Many of the species in this list are “workhorse” species that broadly support pollinators, are found in a number of ecological settings in abundance, and are relatively easy to propagate. Workhorse species also tend to survive well once they are installed. • This list also includes plant species that are important for imperiled pollinators listed in Chapter 3. Some of these plant species do not meet the workhorse criteria, and may be more challenging to establish. They may also be less widely available commercially or more expensive because they take more time to propagate. • This plant list is available as an Excel file on the National Academies Press website (www.nap.nationalacademies.org). These saguaro cacti, which are very slow  growing and long‐lived plants, are relocated  temporarily during a construction project.  Photo Credit: Arizona DOT 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-14 Table 7-3. Native Plants with value to pollinators for use on roadsides in the Great Basin. Scientific Name  Common  Name  Bloom  Period  Life Cycle  Form (Forb,  Shrub, Tree,  Sedge,  Grass)  Sun  Soil (Dry,  Moist,  Wet)  Imperiled  Butterfly  or Moth  Larval  Host  Nectar/ Pollen for  Imperiled  Pollinators  Bumble  Bee  Plant  Nest Site  or nest  materials  Deer  Resistant  Agastache urticifolia  Nettleleaf  giant hyssop  May–Oct  Perennial  Shrub, forb  Sun/part  shade  Moist      X  Stems  X  Amelanchier alnifolia  (alternate sp.  utahensis)  Saskatoon  serviceberry  May–Jul  Perennial  Tree, shrub  Sun/part  shade  Dry  X  Stems  Artemisia tridentata  Big sagebrush  May–Jul  Perennial  Shrub  Sun  Dry  Materials  X  Asclepias asperula  Spider  milkweed  Apr–Jul  Perennial  Forb  Sun  Dry  X  X  X Asclepias speciosa   Showy  milkweed  May–Jul  Perennial  Forb  Sun/part  shade  Moist  X  X  X  Stems  X  Atriplex canescens  Fourwing  saltbush  Feb–Jul  Perennial  Shrub  Sun/part  shade  Dry  X  Baccharis salicifolia  Mulefat  Feb–Oct  Perennial  Shrub  Sun/part  shade  Moist ‐  wet  X  Balsamorhiza  sagittata  Arrowleaf  balsamroot  Feb–Jul  Perennial  Forb  Sun  Dry  X  Berberis aquifolium  repens  Creeping  barberry  Feb–Apr  Perennial  Shrub  Part  shade/ shade  Dry  X  Chamaebatiaria  millefolium  Fernbush  May–Oct  Perennial  Shrub  Sun/part  shade  Dry  X  Chamerion  angustifolium  Fireweed  Aug–Oct  Perennial  Forb  Sun  Wet  x 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-15 Scientific Name  Common  Name  Bloom  Period  Life Cycle  Form (Forb,  Shrub, Tree,  Sedge,  Grass)  Sun  Soil (Dry,  Moist,  Wet)  Imperiled  Butterfly  or Moth  Larval  Host  Nectar/ Pollen for  Imperiled  Pollinators  Bumble  Bee  Plant  Nest Site  or nest  materials  Deer  Resistant  Cirsium  neomexicanum  Desert thistle  Mar–Sep  Perennial  Forb  Sun  Dry X Chrysothamnus  viscidiflorus  Yellow  rabbitbrush  Jul–Oct  Perennial  Forb  Sun/part  shade  Dry  X  Clematis ligusticifolia  Western  white  clematis  Feb–Oct  Perennial  Forb  Sun/part  shade  Moist ‐  wet  Cleomella spp. (e.g., C.  obtusifolia)  Cleomella  Mar–Oct  Annual  Forb  Sun  Dry X Distichlis spicata var.  stricta  Saltgrass  Jun–Aug  Perennial  Grass  Sun/part  shade  Moist ‐  wet  X Elymus elymoides  Bottlebrush  squirreltail  NA  Perennial  Grass  Sun/part  shade  Dry  Thatch  Ericameria nauseosa  Rubber  rabbitbrush  Aug–Oct  Perennial  Shrub  Sun  Dry  X  Erigeron compositus /  sp.  Cutleaf daisy/ any avail  native sp.  Feb–Jul  Perennial  Forb  Part shade  Dry  Eriogonum  heermannii  Heerman’s  buckwheat  May–Sep  Perennial  Shrub  Sun  Moist,  Dry  X Eriogonum  racemosum  Redroot  buckwheat  Jun–Oct  Perennial  Shrub/forb  Sun  Dry  X Eriogonum  umbellatum  Sulphur‐ flower  buckwheat  May–Jul  Perennial  Shrub  Sun  Dry  X  X  X  X  Eriogonum wrightii  Bastardsage  Jun–Aug  Perennial  Shrub/forb  Part shade  Dry  X

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-16 Scientific Name  Common  Name  Bloom  Period  Life Cycle  Form (Forb,  Shrub, Tree,  Sedge,  Grass)  Sun  Soil (Dry,  Moist,  Wet)  Imperiled  Butterfly  or Moth  Larval  Host  Nectar/ Pollen for  Imperiled  Pollinators  Bumble  Bee  Plant  Nest Site  or nest  materials  Deer  Resistant  Eriophyllum lanatum  Wooly  sunflower  May–Oct  Perennial  Forb  Sun  Dry    X  X    X  Erysimum capitatum  Sanddune  wallflower  Feb–Jul  Perennial  Forb  Sun  Moist  X  Grindelia squarrosa  Curlycup  gumweed  Aug–Oct  Perennial  Forb  Sun  Dry  X  Stems  Hedysarum boreale  Utah  sweetvetch  May–Jun  Perennial  Forb  Sun,  part  shade  Dry X  X Helenium autumnale  Sneezeweed  Aug–Oct  Perennial  Forb  Sun, part  shade  Wet  X  Helianthus spp. (e.g.,  H. nuttallii) Sunflower   May–Oct  Perennial  Forb  Sun, part  shade  Wet  X  X  Stems  X  Heliomeris multiflora  Showy  goldeneye  Aug–Oct  Perennial  Forb  Sun  Wet  X  Stems  Heliotropium  curassavicum  Salt  heliotrope  Feb–Jul  Perennial  Forb  Sun  Moist  X  Ipomopsis aggregata  ssp.  aggregata   Scarlet gilia  May–Oct  Perennial  Forb  Part shade  Dry  Leymus cinereus  Basin wildrye  NA  Perennial  Grass  Sun/part  shade  Moist  Thatch  Linum lewisii  Lewis flax   May–Oct  Perennial  Forb  Sun  Moist  Lomatium spp. (e.g., L.  dissectum)  Biscuitroot   May–Jul  Perennial  Forb  Sun  Dry 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-17 Scientific Name  Common  Name  Bloom  Period  Life Cycle  Form (Forb,  Shrub, Tree,  Sedge,  Grass)  Sun  Soil (Dry,  Moist,  Wet)  Imperiled  Butterfly  or Moth  Larval  Host  Nectar/ Pollen for  Imperiled  Pollinators  Bumble  Bee  Plant  Nest Site  or nest  materials  Deer  Resistant  Lupinus argenteus  Mountain  lupine  May–Oct  Perennial  Shrub  Sun  Dry/ moist    X  X    X  Machaeranthera  canescens  Hoary  tansyaster  Aug–Oct  Perennial  Forb  Sun  Moist  Mertensia ciliata  Tall fringed  bluebells  May–Jul  Perennial  Forb  Part shade  Wet  X  Monardella  odoratissima  Mountain  mint  May–Oct  Perennial  Forb  Part shade  Moist  X  X  Oenothera elata  Evening  primrose  Aug–Oct  Biennial  Forb  Sun  Wet  Materials  Penstemon speciosus  Royal  penstemon  May–Oct  Perennial  Forb  Sun  Dry  X  Stems  X  Peritoma lutea/ serrulata  Yellow  beeflower/ Rocky  mountain  beeplant  May–Jul  Annual  Forb  Sun  Dry  Phacelia hastata  Silverleaf  phacelia  May–Jul  Perennial  Forb  Part shade  Dry  X  X  Poa secunda  Sandburg  bluegrass  NA  Perennial  Grass  Sun/part  shade  Dry  Thatch  Potentilla gracilis  Slender  cinquefoil  May–Jul  Perennial  Forb  Sun/part  shade  Moist  X  X  Materials  Prunella vulgaris ssp.  lanceolata  Self‐heal  Jun–Aug  Perennial  Forb  Sun, part  shade  Dry,  moist  X  X

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-18 Scientific Name  Common  Name  Bloom  Period  Life Cycle  Form (Forb,  Shrub, Tree,  Sedge,  Grass)  Sun  Soil (Dry,  Moist,  Wet)  Imperiled  Butterfly  or Moth  Larval  Host  Nectar/ Pollen for  Imperiled  Pollinators  Bumble  Bee  Plant  Nest Site  or nest  materials  Deer  Resistant  Prunus virginiana  Chokecherry  Feb–Apr  Perennial  Tree, shrub  Sun/part  shade  Moist      X      Purshia tridentata  Antelope  bitterbrush  Feb–Apr  Perennial  Shrub  Sun  Dry  X  Pyrrocoma racemosa  Clustered  goldenweed  Jul–Sept  Perennial  Fort  Sun, part  shade  Moist,  wet  X Ribes aureum  Golden  currant  Feb–Apr  Perennial  Shrub  Sun/part  shade  Moist  X  Ribes cereum  Wax currant  Feb–Jul  Perennial  Shrub  Sun/part  shade  Dry  X  Rosa woodsii   Woods’ rose  May–July  Perennial  Shrub  Part shade  Moist  X  Nests  and  materials  Salix spp. (e.g., S.  lasiandra)  Willow  Feb–Apr  Perennial  Tree  Sun/part  shade  Wet  X  Salvia dorrii  Desert sage  May–Jul  Perennial  Shrub  Sun  Dry ‐  moist  X  x  Sambucus nigra  Black  elderberry  May–Jul  Perennial  Tree, shrub  Sun/part  shade  Moist  X  Stems  X  Sesuvium verrucosum  Verrucose  seapurslane  Apr–Nov  Annual,  perennial  Forb  Sun  Moist,  Wet  X Solidago canadensis  Canada  goldenrod  Jul–Sep  Perennial  Forb  Sun/part  shade  Dry ‐  moist  X  X  X Solidago spectabilis  Nevada  goldenrod  Aug–Oct  Perennial  Forb  Sun  Moist  X  X  Stems 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-19 Scientific Name  Common  Name  Bloom  Period  Life Cycle  Form (Forb,  Shrub, Tree,  Sedge,  Grass)  Sun  Soil (Dry,  Moist,  Wet)  Imperiled  Butterfly  or Moth  Larval  Host  Nectar/ Pollen for  Imperiled  Pollinators  Bumble  Bee  Plant  Nest Site  or nest  materials  Deer  Resistant  Sphaeralcea spp. (e.g.,  S. grossulariifolia) Globemallow   May–Jul  Perennial  Forb  Sun  Moist    X  X  Materials    Sporobolus airoides  Alkali sacaton  NA  Perennial  Grass  Sun/part  shade  Dry  Thatch  Symphyotrichum  ascendens  Long leaved  aster  Aug–Oct  Perennial  Forb  Sun  Moist  X  Stems  X  Symphyotrichum laeve  Smooth blue  aster  Aug–Sep  Perennial  Forb  Sun  Dry X X Thelypodium crispum  Crisped  thelypody  Jun–Aug  Annual,  perennial  Forb  Sun/part  shade  Dry ‐  moist  X

7-20 Chapter 7. Revegetation and Pollinators: Design and Implementation  To identify additional species appropriate to this region and valuable to pollinators, use the Ecoregional Revegetation Assistant Tool, a map-based online tool to aid practitioners when selecting native plants for restoration and pollinator habitat enhancement. The map can be used to find a state or US Environmental Protection Agency Level III Ecoregion, and the tool will produce a list of plants and plant attributes suitable for that area. The database includes plant attributes such as soil type, moisture needs, palatability, salt tolerance, value to pollinators, and workhorse plant species. Data can be downloaded by county, state, or ecoregion, and plant species can be filtered by attributes. The tool is available at http://www.nativerevegetation.org/era. When designing revegetation projects, it is important to consult with the site’s maintenance department. Maintenance departments have processes and practices in place for reasons that may not be known to habitat designers, and coordination with maintenance can improve revegetation outcomes. Discussions with maintenance departments can help to build willingness to adapt maintenance practices to facilitate pollinator habitat establishment and persistence. Consider if the agency could create a staff position that focuses on ecological roadside revegetation and is shared by both the maintenance and design teams. This role could ensure that what is designed gets implemented across the state and can be maintained effectively by maintenance crews. Box 7‐1. Rest areas, welcome centers, and pollinator habitat  Welcome centers and rest areas are places  where the traveling public can relax and take  a break. DOTs also provide learning  opportunities at these stopping points,  where signs and brochures are frequently  used to inform the public. DOTs can also use  these spaces to create demonstration  gardens or plantings, including pollinator  habitat. These plantings help DOTs inform  the public about pollinators and habitat that  support them, and showcase conservation  efforts.   Signage for this Ohio DOT planting describes  why pollinators are important and plants that  support them.   Photo Credit: Joel Thrash, Ohio DOT 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-21 Plantings for pollinators at rest areas or welcome centers can also be opportunities for  experimentation, places where DOTs can trial particular seed mixes or planting methods on a  smaller scale before implementing them on a larger area. Wisconsin DOT, for example, is  currently restoring prairie at two of its busiest rest areas, removing invasive species and  interseeding additional prairie species. There  are also opportunities for collaborations and  partnerships in these spaces. Georgia DOT is  in the process of installing pollinator habitats  at some of rest areas and welcome centers,  in partnership with the Georgia Association  of Conservation Districts. Kansas DOT worked  with partners to trial prescribed burning to  manage plantings at several of their rest  areas.  7.4 Installation Considerations for Revegetation   7.4.1 Sourcing Plant Materials Obtaining locally or regionally sourced native plant materials in sufficient quality and quantities for a project involves advance planning. Coordination with native plant providers early in the planning process is important. If a special plant species is needed for a site, the agency or plant vendors can collect wild plant material and amplify seeds, cuttings, or plants with enough lead time. Guidance for collecting and propagating wild-type plant materials can be found in Roadside Revegetation: An Integrated Approach to Establishing Native Plants and Pollinator Habitat (FHWA 2017): http://www.nativerevegetation.org/learn/manual_2017/chpt5_implementation/5_3_obta in_plant_mat.aspx. If there are not enough abundance and diversity of locally sourced species available for a project, prioritize regionally sourced native plant materials. These might include species that do not naturally occur in the local ecosystem but are present within the region. If regional plant materials cannot be found, consult restoration experts and seed producers to determine if cultivars may be appropriate to use for the site. Commercial cultivars are less preferable because some do not provide sufficient pollen or nectar to support pollinators, and some may either not establish effectively in the area or may become too aggressive at the expense of other valuable plants. However, cultivars might be appropriate in some locations for certain revegetation objectives (e.g., landscape planting in an urban setting). When obtaining seed, it is recommended to require vendors to provide a seed testing certificate for each species in the seed mix. Commercially procured seed is certified to guarantee a number of quality standards, including proper species, germination rate, and Invasive brush and a dead tree are removed  from a prairie restoration at a Wisconsin rest  area before additional wildflower seeds are  added.   Photo Credit: Wisconsin DOT 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-22 any amount of weed seed or inert material. Review the certificate before purchase of the seed lot and reject seed lots that contain undesirable species as contaminants that might pose a risk to the planting. Native Plants and Costs of Revegetation Although the initial costs of establishing native plant material may be more significant than using widely available introduced species, particularly for projects that include a higher density and diversity of flowering plants or specialized species, native plants are often more cost effective in the long term. Once established, the native plants persist well over time and often require less mowing, herbicides, and other weed control measures, decreasing long-term maintenance efforts and cost (Berger 2005). For more information about costs and benefits of native plants, see Chapter 10. Legislation Supporting Native Plants on Roadsides Federal Legislation In 2014, the White House issued a Presidential Memorandum, “Creating a Federal Strategy to Promote the Health of Honey Bees and Other Pollinators.” This memo directed the U.S. Department of Transportation to evaluate guidance and identify opportunities to increase pollinator habitat along roadways, and to work with state DOTs and transportation associations to promote practices that support pollinators, including increasing native plantings. In 2015, the Fixing America’s Surface Transportation (FAST) Act was signed into law and included language on efforts to support pollinators. Section 1415 of the FAST Act authorizes that activities to establish and improve pollinator habitat may be eligible for federal funding if they are related to transportation projects funded under Title 23, U.S.C. Additionally, Section 1415 of the FAST Act directs the Federal Highway Administration (FHWA), in conjunction with willing states, to encourage: 1. Integrated vegetation management practices on roadsides and other transportation rights-of-way, including reduced mowing; and 2. The development of habitat and forage for Monarch butterflies, other native pollinators, and honey bees through plantings of native forbs and grasses, including noninvasive, native milkweed species that can serve as migratory way stations for butterflies and facilitate migrations of other pollinators. In 2021, the Infrastructure Investment and Jobs Act included language to establish two funding programs that could be used to support pollinator habitat for agencies that manage roadsides. Section 11522 established the Invasive Plant Elimination Program to provide grants to states to control invasive species, up to $50 million per year (for fiscal years 2022– 2026). Priority is given to projects that utilize revegetation with native plants that support pollinators. Section 11528 established the Pollinator-Friendly Practices on Roadsides and Highway Rights-of-Way grant program to provide grants of up to $150,000 for use in the development, implementation, or improvement of a pollinator-friendly practices plan, with up to $2 million available per year ((for fiscal years 2022–2026). Examples of pollinator- friendly practices include:  mowing strategies that limit disturbance during periods of highest use by target species;

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-23  an integrated vegetation management plan to address weed issues;  the planting of native species to enhance pollinator habitat;  removal of non-native species from species mixes; and  obtaining expert training or assistance on pollinators-friendly practices. Funding was not appropriated by Congress as part of the FY 2022 budget for either the Invasive Plant Elimination Program or the Pollinator-Friendly Practices grant program but will hopefully be included in future budgets. Beyond FHWA, many other land management agencies in the United States have policies mandating the prioritization of native plants in revegetation projects, including the U.S. Forest Service and the Bureau of Land Management. State Legislation At the state level, there have been several approaches to encouraging native plants as the first choice in revegetation efforts. In Iowa, the state legislature passed Integrated Roadside Vegetation Management (IRVM) legislation in 1987 to promote an ecologically integrated approach to roadside management, while maintaining a safe travel environment (Code of Iowa, Section 314, available here: https://www.legis.iowa.gov/docs/ico/code/314.pdf). The legislation emphasized the establishment and protection of native vegetation as well as judicious use of herbicides, mowing, prescribed burning, and other management tools. The bill also established the Living Roadway Trust Fund, an annual competitive grant program administered by the Iowa DOT that provides funding for school, city, county, and state projects, as well as research projects involving IRVM. Iowa’s road use tax, along with several other sources, funds the Living Roadway Trust Fund. County roadside managers can submit applications to obtain resources to help them implement IRVM, including vegetation inventories, native seeds, equipment for burns or plant establishment, GPS units, signage, workshops, and more. Roadsides are seeded with mixes of species that are appropriate for a particular site, including many wildflowers that are attractive to pollinators. Seed mixes also contain species that bloom at different times throughout the growing season, which helps support pollinators all season long. Research projects have also been supported by the Living Roadway Trust Fund, including studies of restoration techniques. Since the bill passed, more than 100,000 acres of Iowa’s nearly 600,000 acres of state and county roadsides have been planted with native vegetation (Brandt et al. 2011). In the process, Iowa has fostered the development of experienced roadside managers who are equipped to collaborate with other land managers around the state and bring habitat, and wildlife such as pollinators, back to Iowa’s much-altered landscape. In 2017, New Jersey passed a bill that requires New Jersey DOT, New Jersey Turnpike Authority, and the South Jersey Transportation Authority to use only native vegetation for landscaping, land management, reforestation, or habitat restoration. The legislation also directed the Department of Environmental Protection and Department of Agriculture to identify plants native to the state in hardiness zones within the state. Proponents of the bill pointed to saving taxpayers expenses due to replanting, and to benefits for wildlife and clean water. The text of the bill can be found here:

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-24 https://legiscan.com/NJ/text/S227/2016. North Carolina passed an act to prioritize the use of native plants on roadsides in 2019. Recognizing that native plants are part of North Carolina’s natural heritage and are well adapted to North Carolina’s landscapes, the bill directs North Carolina to give precedence to the use of native trees, shrubs, vines, grasses, and wildflowers in erosion control and landscaping projects, as well as in roadside parks, scenic overlooks, and picnic areas. The bill can be found here: https://webservices.ncleg.gov/ViewBillDocument/2019/2522/0/DRS35248-MW-38. 7.4.2 Prioritizing Sites for Revegetation Efforts to Benefit Imperiled Pollinators It can be helpful to prioritize sites for roadside revegetation projects that support imperiled pollinators in order to maximize conservation value and use resources effectively. Considerations to guide decisions about prioritization of sites to improve pollinator habitat include:  Presence of target pollinator species. Prioritize locations where a listed or imperiled pollinator species is known to be in the vicinity or was previously found at the site.  Landscape connectivity. Prioritize sites that improve connectivity of existing habitat within the landscape.  Landscape diversity. Prioritize sites that exist in an area important to the target pollinator species and is in a landscape in which habitat is scarce, and therefore roadside habitat would be particularly valuable to pollinators.  Roadside width. Prioritize wider sites because they appear to support greater numbers and diversity of pollinator species. Medians are lower priorities because they are often narrow and, due to their placement between roads, may pose a higher risk from vehicle mortality to pollinators.  Traffic density. Prioritize sites with lower roadway traffic density.  Road density. Prioritize sites that are not isolated within areas of high road density in which there are multiple barriers to pollinator movement (e.g., cloverleaf median off an interstate interchange in an urban area).  Visibility to the public. Consider prioritizing sites that are more visible to the public if public awareness and education is a goal. Use the scorecard in Box 7-2 to determine a site’s attributes and its relative suitability for prioritizing enhancement for pollinators.

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-25 Box 7‐2. Scorecard for prioritizing sites for revegetation to support imperiled pollinators  Resources  to  install  high‐quality,  diverse  native  plant  material  may  be  limited.  Limited  resources can be leveraged by prioritizing some roadside sites for revegetation that involves  habitat restoration for imperiled or at‐risk pollinators. Use this tool to help determine a score  for a site that can be helpful in site prioritization. Select all the options that apply to the site:  ⌧  Presence of focal pollinator species. A listed or imperiled pollinator species is known to be  in the vicinity or was previously found at the site. (2pts)  ⌧  Landscape  connectivity.  The  site  improves  connectivity  of  existing  habitat within  the  landscape. For example, the site  is near or connected to a natural area (e.g., state park,  national  forest,  nature  preserve)  or  connects  with  existing  high‐quality  roadside  vegetation. (2pts)  ⌧  Landscape diversity. The site exists in an area important to the focal pollinator species and  is  in  a  landscape  in  which  habitat  is  scarce;  therefore,  roadside  habitat  would  be  particularly valuable to pollinators. (2pts)  ⌧  Project scale. The planned project is large in scale; the size of a habitat patch influences  the number of individuals and species that use it. (1pt)  ⌧  Roadside  width.  Wider  sites  are  preferred  because  they  appear  to  support  greater  numbers and diversity of pollinator species. (1pt)  ⌧  Traffic density. Sites with higher traffic density (more than four lanes of traffic) on adjacent  roads may be less desirable for pollinators. (1pt)  ⌧  Road density. Site  is not  isolated within areas of high  road density  in which  there are  multiple  barriers  to  pollinator  movement  (e.g.,  cloverleaf  median  off  an  interstate  interchange in an urban area). (1pt)  ⌧  Visibility to the public. Sites that are more visible to the public may be important for DOT  goals, including public awareness and education. (1pt)  ⌧  Weed pressure: The site has low weed pressure from noxious and invasive weeds. (1pt)  ⌧ Benefits to adjacent land. The existing or future road network is in lands largely dominated  by agricultural activities that could benefit from pollinators. (1pt)  Final score: ______________   Scale:  Scores of 7 or more points: This site is a high priority for revegetation with pollinators in mind.  Scores of 4–6 points: This site is a medium priority for revegetation with pollinators in mind.  Scores of 3 and lower: This site is a lower priority for revegetation with pollinators in mind. 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-26 Chapter 9 includes a tool to help evaluate sites for their conservation value to pollinators: the Pollinator Habitat Assessment Guide for Roadsides. The tool includes a rapid assessment and a comprehensive assessment of roadside pollinator habitat. The comprehensive assessment includes 1) a category to determine the priority of the roadside site within the context of the larger landscape and 2) a category that evaluates possible threats to pollinators from the adjacent road and surrounding land. The scores from those categories can help to guide choices about prioritizing projects that emphasize an objective to improve habitat for imperiled pollinators. The Roadside Pollinator Habitat Assessment Guide is available on the National Academies Press website (www.nap.nationalacademies.org). 7.4.3 Plant Establishment After disturbance or construction, roadside sites may be in poor condition for plant growth. Mitigation measures may be needed, such as reconstructing soils (note: if new soils are brought to a location, they should be free of invasive seeds, to the extent possible) or making amendments through composts or fertilizers or the introduction of beneficial microorganisms that play crucial roles in soil and plant health. Topographic enhancements to improve the plant establishment can also be made. These include modifying topography to capture runoff water for use by plants or creating terraces on slopes to support seedling establishment. Installing Plant Materials Installing diverse native plant materials, including diverse seed mixes, requires consideration of timing of installation and matching installation method to the site characteristics. Generally, diverse seed mixes have the best establishment when planted in the fall or during the dormant season, allowing the many species that require cycles of cold moisture to germinate. Transplants generally do best when installed in winter or early spring when soil moisture is high, or sometimes in the fall for dormant plants. In this region, the optimal timing to install native plant materials is presented in Table 7-4. Table 7-4. Timing windows for installing native plants in the Great Basin. When to Seed  When to Install Container  Plants  When to Install Bare Roots  Dormant season  Apr–May or Sept   Apr–May or Sept  Although these time windows are optimal for plant establishment, it may be especially difficult to time seeding accordingly because of time constraints from construction schedules. Seeding should take place as needed (e.g., year-round) for erosion control after repairs or construction, as long as the seed is protected in place (e.g., under a layer of hydrostraw tackifier or compost blanket) until the conditions for germination occur. The Monarch Joint Venture and  partners (funded through the  National Academy of Sciences  Transportation Research Board’s  National Cooperative Highway  Research Program) developed a  habitat prioritization model for  roadsides as monarch butterfly  habitat for DOTs. The model can  help managers assess potential  areas of habitat along roads in  their state or identify where  habitat could be developed. More  information about the model can  be found here:  https://monarchjointventure.org/ mjvprograms/science/roadsideha bitat/habitat‐prioritization‐model.  

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-27 When installing seeds, select the method of seeding that is most appropriate for the site. See Table 7-5 for an overview of the advantages, disadvantages, and tips on seeding techniques, using the three main seeding methods used in roadside revegetation. General guidance on installing native seeds to achieve optimal establishment includes:  Place seed in direct contact with soil, and do not bury the seed more than ¼ inch deep, which will affect establishment. If broadcasting seed, tamp or press down the seed lightly into the soil using a tractor or cultipacker after planting. If hydroseeding, apply the seed, mixed with fertilizer and a small amount of fiber or straw and tackifier first, then follow up with a second pass of hydromulch mixed with tackifier to hold it in place. This ensures seeds are covered by the hydromulch.  If the site requires rapid plant establishment, include nurse or cover crops in seed mixes to help hold the soil while native species establish. Suitable nurse crops include sterile hybrids or annuals such as oats (Avena sativa), winter wheat (Triticum aestivum), or rye (Lolium multiflorum).  Coordinate with maintenance staff about conducting weed control during the establishment phase. Weed control to reduce weed competition while allowing native seedlings to grow is critical in the first and second years after planting. Weeds should also be prevented from going to seed. Use spot-sprays of herbicides as needed or mowing where appropriate. (See “Short-Term Management: Before and During Establishment” below.)  Because roadsides planted with seed can take time to establish, it may be helpful to install a sign to indicate the site is a planting that is underway. Table 7-5. Seeding methods for planting seed and the techniques involved. Seeding  Method  Where to Use  Site  Preparation  Needed  Seeding  Techniques  Following  Seeding  Broadcast  seeders or  hand  broadcasting   (Throwing  seed)   This method is inexpensive and easy to use. It is particularly useful for sites that cannot be reached by mechanical equipment.  Spreading seed evenly over site is difficult, and the seed bed must be smooth.  Remove as much stubble as possible prior to planting, creating a smooth lightly packed seedbed.  Seed before a rain.  Bulk up seed using an inert carrier, such as sand or clay‐based cat litter.  Make multiple passes, scattering seed over the site.  Pack the seed into the soil using a tractor or cultipacker.

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-28 Seeding  Method  Where to Use  Site  Preparation  Needed  Seeding  Techniques  Following  Seeding   Greater quantities of seed (up to 50% more) are required.  Additional step of pressing seed into soil after seeding to help germination is required. Drill seeding  (Using a  native seed  drill)   Drill seeding is convenient for planting large, level areas, but it does not work well on slopes.  Seed can be planted into areas with light stubble and seed does not need to be pressed into the soil.  Depth at which seeds are planted can be controlled.  An experienced operator is required.  Seed can be planted into stubble.  Plant when the soil is dry enough to prevent sticking to the parts of the drill.  Set depth controls to plant no deeper than 1/4 inch.  Make multiple passes with the drill to pack the seed in well. Hydroseeding  (Spraying the  area with a  mix of water,  mulch, and  seed)   Hydroseeding is useful for slopes, culverts, bridge approaches, and wet areas because it reduces soil erosion.  Bare ground is needed, but the seedbed does not need to be smooth.  Apply the seed first, mixed with fertilizer and a small amount of fiber or straw and tackifier. Then follow up with a  No action is required following seeding.

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-29 Seeding  Method  Where to Use  Site  Preparation  Needed  Seeding  Techniques  Following  Seeding   The project can be seeded from the shoulder.  Hydroseeding is good for visible sites; hydromulch can hold the seed in place until there is enough moisture for germination and protect it from seed predators.  Hydromulch can be expensive, and the seeding rate is harder to control; well‐ trained applicators are needed.  Seed after a rain if possible. second pass  of  hydromulch  mixed with  tackifier to  hold the  seed in  place.   Seed the area furthest from the road first. General installation guidelines for optimizing establishment of transplants include the following:  Determine the equipment needed for the installation of transplants. Shovels are often adequate for excavating holes for many transplants, but power augers are a particularly efficient way to create a hole for large container stock. Steep or rocky slopes may require specialized planting equipment such as expandable stingers.  Stage the planting before digging holes. The objectives of the project will determine the planting patterns, whether transplants will be spaced out evenly, in clumps, or at random. Remember to consider the size of each species at maturity when spacing out plants. For example, most woody shrubs should be spaced on 4- to 10-foot centers to give them ample room to grow.  In areas where soil is compacted or degraded, add compost to holes prior to planting. Use clean compost (no manure or biosolids) to reduce the introduction of unwanted weeds during planting. The use of sphagnum peat moss should be avoided because of the impact on wetlands and the associated release of greenhouse gases.

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-30  Spread weed-free straw, bark, or wood chip mulch around the plants to reduce weed competition and to hold in moisture.  Irrigate the transplants thoroughly immediately after planting. Depending on weather, region, and site conditions, regular follow-up irrigation may be needed in the first year or two after planting but can be discontinued after establishment. Some non-native plants may require longer periods of irrigation.  Install netting or other plant guards where needed to protect transplants from browsing animals that can cause significant damage. Detailed guidelines for installing plant materials are found in Roadside Revegetation: An Integrated Approach to Establishing Native Plants and Pollinator Habitat (FHWA 2017). If plant installation is conducted by contractors, it can be useful to include language in contracts that outlines specifications for best practices. Arizona has an example of language for seeding specifications for contractors available at: https://apps.azdot.gov/files/roadway-engineering/roadside-dev/sample-class-ii-seeding- special-provisions_reference-only_adot-ido-roadway-roadside-development.pdf, and their best practices are outlined here: https://azdot.gov/node/5372. 7.4.4 Short-Term Management: Before and During Establishment Before installing plants, reduce competition with invasive, noxious, or undesirable plants that would otherwise pose a threat to the establishment of desired vegetation. Some DOTs, for example, include noxious and invasive species control in construction specifications so that those weeds are controlled before, during, and after construction. Remove weeds through herbicide applications or by repeated mowing. Focus on removing perennial weeds, which are harder to control after planting. Following planting, the site may require some management to keep annual weeds from seeding or to control any perennial weeds that were not eliminated before construction or planting. Additionally, in the first year of establishment, new seedlings require light and are greatly affected by weed canopies that stunt their growth. However, in this region, shade from weeds may not limit native plant establishment. While east of the 100th meridian establishment mowing (mowing once or more to suppress weed growth) is beneficial (Williams et al. 2007; Meissen et al. 2019), in drier regions where weeds or grasses may not excessively shade seedlings, mowing may not be necessary during establishment or even may be undesirable. For long-term success, weeds should be prevented from going to seed in the first 2 or 3 years. Care should be taken to properly identify weeds before removal; some young wildflower seedlings and weed seedlings may look alike. Common weed management strategies include:  targeted herbicide applications (e.g., spot-spraying or rope-wick treatments),  use of selective herbicides (e.g., grass-selective herbicides for grass weeds), and Weeds can limit native plant establishment by  limiting the light that reaches the new  seedlings, which grow more slowly than the  weeds in the first year after planting.  Photo Credit: Dave Williams 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-31  strategic mowing (e.g., using a carefully timed high mow to target weeds). 7.4.5 Long-Term Management: After Establishment Plant communities need management over time to maintain species diversity and reduce encroachment by weeds or woody plants that may shade out plants in their understory. Practitioners generally follow these best practices in long-term management of plantings: 1. Assess the conditions on the ground. 2. Implement maintenance practices that help maintain wildflower diversity. 3. Consider flight and breeding periods of the listed and imperiled pollinators that are in the area when planning timing of maintenance activities. (See Chapter 6 for table of activity windows.) 4. Evaluate the effects of maintenance activities in order to adapt and modify future activities based on experience. Within the framework of these practices, a combination of maintenance strategies can be used to maintain wildflower diversity. Practitioners agree that varying management activities is critical to encouraging wildflower diversity, but there is little agreement on how to vary practices, even within a region. Some managers are strong proponents of mowing mid-season to suppress warm-season grasses and stimulate wildflowers, while others suggest limiting mowing during the growing season so that wildflowers can reseed. This discordance underscores the value of adaptive management approaches that are tailored to address the conditions of a particular revegetation project. Table 7-6 provides an overview of common issues related to managing a diverse plant community, along with options that can be used to address these issues. (Note that more than one of these management options can be relevant to any site.) Table 7-6. Common long-term management issues for maintaining plant diversity. Issues / Concerns  Management Options  Cool‐season grasses  dominate in planting  Grass‐selective herbicide, mowing, or haying (or less commonly,  prescribed burning or grazing) at vulnerable grass growth stage (boot  stage, when the shoot is elongating and the seed head is developing  inside the shoot).  Warm‐season grasses  dominate over  wildflowers  Mid‐ to late‐summer grass‐selective herbicide or haying (or less  commonly, prescribed burning or grazing) at vulnerable grass growth  stage (boot stage).  Woody encroachment  Spot mow or cut brush in the spring or fall, apply an appropriate  herbicide to the cut stump, and follow up with prescribed fire if  woody plants resprout or sucker.   Maintaining  wildflower abundance  and diversity  Periodically hay or mow (at different times of growing season) or use  grass‐selective herbicides. (Less commonly, use prescribed fire in the  dormant season or graze rotationally, targeting active growth periods  of dominant grasses.) 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-32 Issues / Concerns  Management Options  Invasive weed  management  Use mowing or herbicides (or less commonly, prescribed burning or  grazing) to control invasives, timing management for when target  species are most vulnerable.  7.5 Case Studies  7.5.1 Adapting Design and Management in Washington Washington DOT is working to restore corridors of ROWs to design roadsides so that they look seamless with the surrounding landscape, as if no construction has taken place. To learn more about restoration of grasslands, Washington DOT is using the Scatter Creek Rest Area as a testing ground. Experiments are being conducted at the rest area to help inform seed mix designs and installation practices. By experimenting with drilling seed, broadcasting seed, and broadcasting with a furrow, Washington DOT is learning more about installation techniques that lead to the most successful native plant establishment. Washington DOT is also experimenting with timing of management to control invasive species that are present, such as scotch broom (Cytisus scoparius). Scotch broom is an introduced shrub that forms dense stands that can crowd out native plants and wildlife and is a difficult weed to control. In fact, scotch broom management can take decades because of the long-lived seeds that can germinate many years after falling from the plant. Washington DOT has also experimented with different management techniques, such as timing targeted herbicide sprays to scotch broom stems after mowing, or using prescribed burning to flush out the scotch broom seed bank. By monitoring pollinators and counting bumble bees, beetles, and other species, Washington DOT is gathering data that informs their design and maintenance practices regularly over time. 7.5.2 Roadside Plantings in New York for Monarchs along Their Migration Route As monarch butterflies in the Northeast fly thousands of miles south to their overwintering grounds in Mexico each fall, they often travel along the coastlines. In New York State, monarchs are frequently seen along the Ocean Parkway in autumn. As part of a coastal greenway project to develop a 10-mile shared use path along the shore between Captree State Park and Tobay Beach, New York DOT installed plants to support monarch butterflies in the median of the Ocean Parkway. In wide, open center medians, a layered planting system of native plant materials was developed. The interior section of the median was planted with a seed mix of wildflowers and grasses appropriate for the coastal region. The mix included species known Camas (Camassia quamash) and other native  plants are filling in as invasive scotch broom  plants grow fewer with yearly treatments.  Photo Credit: Washington DOT  This layered planting along Ocean Parkway in  New York was designed to support monarch  butterflies, and it includes special mowing  markers to help maintenance know when to  mow.  Photo Credit: Crystal Peritz, New York DOT 

Chapter 7. Revegetation and Pollinators: Design and Implementation  7-33 to provide nectar for monarchs, including purple coneflower (Echinacea purpurea), smooth aster (Symphyotrichum laeve), and seaside goldenrod (Solidago sempervirens). Bayberry shrubs were planted around the perimeter of the planting. Landscape designers worked with New York DOT’s maintenance staff to determine when and where mowing should be avoided. Additionally, vertical mowing markers were placed along the edge of the plantings, with words clearly marked, “Wildflower Area – Only Mow after 2nd Week of October.” 7.5.3 Revegetation focusing on Layers, Density, and Diversity Aesthetics is an important component of revegetation designs, but is secondary to creating a functional planting and healthy ecosystem. Massachusetts DOT Landscape Designer Tara Mitchell recommends focusing on ecological factors in order to create long- term, self-sustaining vegetation. Tara designs her plantings for resilience. For example, by selecting a diversity of species and plant types (ever-green, deciduous, herbaceous), plantings are more resilient to plant loss – both ecologically and visually. Tara selects species that are rapid colonizers so there is early plant cover, species like evergreens that provide winter habitat and aesthetic interest, and shrubs and understory trees to create layers. Layers of plant species of different heights and different rates of growth provide an attractive visual effect and more habitat. Tara also spaces plants relatively close together to create dense cover once established and to maintain coverage if some plants or species die. Along with layers, dense plantings provide better soil protection and helps shade out undesirable weeds. Tara has found that such plantings require less water and mulch during establishment, and that the survival rate of plants is very high, much higher than in trees or shrubs planted individually. 7.6 Resources   Roadside Revegetation: An Integrated Approach to Establishing Native Plants and Pollinator Habitat: http://www.nativerevegetation.org/learn/manual_2017/  Ecoregional revegetation application tool: http://www.nativerevegetation.org/era/  Revegetation resource library: http://resources.nativerevegetation.org/  Plant lists for pollinators: https://xerces.org/publications/plant-lists In its fourth year of growth here, that same  planting has filled out so that plants are layered  effectively.   Photo Credit: Tara Mitchell, Massachusetts DOT  This planting, located between a main corridor  and a ramp, is in its second year of growth.  Photo Credit: Tara Mitchell, Massachusetts DOT 

8-1 Chapter 8 Creating Climate- Smart Pollinator Habitat Along Roadsides 8.1 Introduction  More than 98 percent of climate scientists agree that climate change is occurring and that human activities, primarily the burning of fossil fuels and deforestation, are the cause. The effects are already being felt across the country in rising temperatures and increased frequency of extreme weather events. Climate change presents challenges for department of transportation (DOT) managers—extreme events, heatwaves, and sea level rise can all significantly affect transportation infrastructure. Climate change also affects pollinators and the plants that rely on them. This chapter presents an overview of the effects that climate change can have on pollinators, the components of climate-smart pollinator roadside habitat, and additional benefits of such habitat for mitigating the climate crisis. 8.2 Climate Change Projections  Climate change will have a variety of effects on climate, many of which are already occurring (see Box 8-1). Increases in average temperatures will continue nationwide, with increased frequency of extreme temperature events, including heatwaves. Weather variability will increase in most regions, with extreme weather events becoming more frequent and intense. Drought will become more common in many regions, which can play a role in increased wildfire frequency. Flooding will also become more common as a result of more frequent extreme weather events and sea level rise. Sea level rise will increase flood risk in coastal areas, while extreme weather events may increase flooding in both coastal areas (such as with increased number and intensity of hurricanes) and inland, especially near rivers and floodplains. Climate change will also have many impacts on the nation’s infrastructure, and create additional challenges for DOT staff who manage and maintain safe roadways. In many areas, increases in temperature will reduce the amount of time that employees can safely spend working outdoors, especially during heatwaves. However, the need to update and/or repair infrastructure in response to climate change will also create opportunities for revegetation projects that support pollinators and other wildlife. According to the Fourth National Climate Assessment (USGCRP 2018):  Increased temperatures, combined with more frequent extreme weather events (including flooding, drought, and fire) and sea level rise, will compromise infrastructure. Unprecedented rains and flooding in summer 2022 in Yellowstone National Park led to the destruction of roads and other infrastructure. Extreme weather events like this will become more common as a result of climate change. Photo Credit: AP via NPS

Chapter 8. Creating Climate‐Smart Pollinator Habitat along Roadsides  8-2  Increased temperatures can cause rutting, cracking, and buckling of roads.  Nationally, 60,000 miles of bridges and roads run through coastal floodplains, which are at increased risk from flooding and storms.  Increases in inland flooding will threaten 2,500 to 4,600 bridges nationwide by 2050 and 5,000 to 6,000 bridges by 2090. Box 8-1. Climate projections for the Great Basin Region Climate projections for this region include:  Increased temperatures, including increases in average daytime and nighttime temperatures.  Increased frequency and intensity of heatwaves.  Increased frequency and intensity of drought.  Decreased snowpack, especially at lower elevations.  Increased wildfire frequency.  Projections of changes to precipitation patterns are unclear, but national models indicate small increases in precipitation in the northern part of the region and small decreases in precipitation in the southern part of the region. References: Runkle et al. 2017. 8.2.1 Where Do These Numbers Come From? Scientists use models to project the effects of climate change in the future (usually up to 100 years). Predicting how climate change will affect future climate requires information about how greenhouse gas emissions and human population size will change over time. The Intergovernmental Panel on Climate Change (IPCC) has developed a set of scenarios that describe a range of possible future greenhouse gas emissions levels and human population sizes for use in climate models. In addition to using multiple IPCC scenarios, scientists typically use multiple climate models that differ in their sensitivity to different parameters. By using multiple models and multiple IPCC scenarios, scientists can bracket the potential effects of climate change to provide a range of likely expected conditions. A recent analysis shows that such models have been successful in predicting changes in climate over time (Hausfather et al. 2020). 8.3 How Will Climate Change Affect Pollinators?  Creating climate-resilient pollinator habitat first requires an understanding of the variety of ways that climate change can affect pollinators. Below is a list of effects of climate change on pollinators. These are not mutually exclusive, as pollinators are likely to experience multiple effects of climate change simultaneously. While some pollinator species may fare better under climate change, many species will be negatively affected.

Chapter 8. Creating Climate‐Smart Pollinator Habitat along Roadsides  8-3  Range shifts. Species may change their distributions to track more optimal climate. In general, species are expected to shift poleward or to higher elevations, but not all species will respond the same way. Differences in future distributions of pollinators and host/nectar plants may lead to spatial mismatches. Range shifts require habitat corridors for species to move through.  Altered phenology. Phenology is the timing of biological events such as flowering time in plants and adult flight time in butterflies. Shifts in phenology in response to climate change may be especially problematic if pollinators and their host plants respond differently, leading to phenological mismatches. For example, a bee that specializes on the pollen of a particular group of plants may emerge after its host plants have begun to bloom, missing out on resources they need to provide for their young.  Physiological responses. Temperature is extremely important in influencing a variety of physiological processes in insects, including metabolism, growth rate, and digestion. But temperature can also affect behaviors, such as foraging rates and the amount of time each day that pollinators are active. Therefore, changes in temperature can affect many aspects of pollinator performance (e.g., survival, reproduction, size at maturity).  Altered species interactions. The outcome of species interactions, such as competition, predation, or disease can be affected by changing climate, especially temperature change.  Changes to the diversity, quantity, and quality of floral resources. Plants will also respond to climate change. Changes in plant diversity or community composition will affect competitive relationships among pollinators. Specialist pollinators may be especially sensitive to such changes in plant communities. Drought, heatwaves, and increases in temperature, as well as increasing atmospheric carbon dioxide (CO2) concentrations can all affect the quantity and quality of pollen and nectar, as well as floral attractiveness to pollinators.  Combined stressors. Climate change may exacerbate the effects of other stressors, such as habitat loss, pesticide use, and pathogen exposure, magnifying effects on pollinators. 8.4 What Species Are Most Vulnerable to Climate  Change?   Species most likely to be negatively affected by climate change include resource specialists (e.g., species that use only a narrow subset of plants as larval host plants or for pollen), species that are already declining, species that occur at high latitudes or high elevations, and species with limited distributions or narrow habitat requirements. Many of the species featured in Chapter 3, Imperiled Pollinator Profiles, fit into several of these categories and will be at increased risk as the effects of climate change continue to become apparent.

Chapter 8. Creating Climate‐Smart Pollinator Habitat along Roadsides  8-4 8.5 Increasing Climate Resiliency for  Pollinators   Increasing climate resilience for pollinators requires a multifaceted approach. Creating and restoring habitat, increasing habitat connectivity, and reducing other stressors are all key components for increasing pollinator climate resilience. Roadside habitat has an especially important role to play in increasing habitat connectivity. 8.5.1 Habitat Enhancing and restoring pollinator habitat is crucial for improving climate resilience of pollinator communities. Habitat with abundant pollinator-attractive floral resources that bloom from spring through fall is required to support large, stable, and diverse pollinator communities. Larger populations, in general, will better withstand bad years and extreme weather events that become more frequent with climate change. Maintaining a diverse pollinator community will also be key to ensuring that the valuable ecosystem service performed by these animals remains resilient in the future. Habitat with a diversity of plant species helps to buffer pollinators from extreme weather events by creating important refugia—spaces where they can be protected from heat waves or other extreme weather events—for pollinators. Habitat with a diversity of plant species also provides important pollinator nesting sites and larval host plants that may be less abundant in developed areas. 8.5.2 Habitat Connectivity Improving habitat connectivity is another key aspect of creating a climate-resilient environment. Habitat corridors act as pathways, connecting larger natural areas that act as reservoirs of pollinator diversity. Because roads and other rights-of-way create vast networks crisscrossing the landscape, linear habitats created or maintained alongside them are ideal for improving habitat connectivity for pollinators. This is an area where DOTs and other managers of roadsides can make especially meaningful contributions to climate resilience of wild pollinators. Habitat corridors and stepping-stones (patches of habitat that are close enough to allow movement among them) are important because they allow bees, butterflies, and other insect pollinators to move around the landscape. This increases gene flow and helps prevent pollinator populations from becoming too small by enabling individuals to move among patches. Habitat corridors and stepping-stones also enable species to migrate, facilitating range shifts in response to climate change. While not all species will change distributions in response to climate change, increasing habitat connectivity provides the opportunity for those that will. Specialist pollinators that use a narrow range of plants for food—such as the Hermes copper, which only feeds on spiny redberry—are generally expected to be more vulnerable to climate change than generalist pollinators. Photo Credit: Michael Klein SR/USFWS

Chapter 8. Creating Climate‐Smart Pollinator Habitat along Roadsides  8-5 8.5.3 Reducing Additional Stressors Reducing stressors (i.e., drivers of pollinator declines; see Chapter 3) to pollinators such as pesticide exposure, habitat loss, and invasive species is important because these different stressors can interact with each other and with climate change to magnify negative effects on pollinators. For example, exposure to a particular pesticide may be non-lethal in ordinary circumstances, but exposure to that same pesticide may become lethal during a heatwave or drought. Therefore, it is important to reduce other stressors as much as possible to increase climate resilience of pollinators. 8.5.4 Building Climate-Smart Roadside Pollinator Habitat The most important steps to increasing climate resilience of pollinators are protecting and enhancing pollinator habitat, increasing habitat connectivity, and reducing other stressors. Creating pollinator habitat along roadsides and other DOT land holdings can contribute significantly to this effort. When creating roadside habitat for pollinators, following a few basic principles can help make that habitat more resilient to climate change. Resilient habitat will help to foster resilient pollinator communities. Pay Attention to Flowering Phenology Ensure that a minimum of three species of nectar plants bloom at all times during the season of activity for bees and butterflies (generally from spring through fall; see Chapter 7, Revegetation and Pollinators: Design and Implementation, for a plant list, example bloom time charts, and other information on revegetation). This practice will ensure that important food resources are always available for pollinators. This practice may also help reduce effects of phenological mismatches between hosts and pollinators by ensuring that some floral resources will be available (Olliff‐Yang et al. 2020). For example, early warm springs may lead to truncated bloom periods for some plant species, meaning spring-emerging pollinators will have fewer resources and less time to find food. More pollinators can be supported in habitat with abundant, diverse blooms compared to habitat with few flowering plants. However, this may be more effective for generalist pollinators than for specialists that need specific plant species. If possible, work to better understand what specialist pollinators might be found on the property in question, including imperiled pollinators (Chapter 3), and include specific flowering resources for those species if possible. Whenever possible, include more than three species per bloom period; plantings that are more diverse can support more species of pollinators and have greater resilience. Provide Nesting Habitat for Native Bees When many people think about bees they think about honey bee hives or bumble bee nests; however, the vast majority of bees are solitary—nesting in narrow tunnels in the ground or in wood. About 70 percent of native bees nest in the ground, and installing vegetation like bunch grasses that can provide access to small patches of earth will provide areas for these species to build nests (Chapter 2, Pollinator Biology and Roadsides). About 30 percent of Incorporating biodiversity into revegetation projects is key to increasing carbon sequestration services as well as for increasing climate resilience of the planting. Photo Credit: Dianne Kahal-Berman

Chapter 8. Creating Climate‐Smart Pollinator Habitat along Roadsides  8-6 native bees nest in wood or pithy-stemmed plants. Retaining downed logs and snags where possible will provide nesting habitat for some of these species, while planting native, pithy- stemmed plants like goldenrod or wild rose will provide nesting habitat for others (see Chapter 7 for a plant list that includes species used for nesting by cavity-nesting bees). In general, a diverse plant community is more likely to provide necessary nest sites and nesting materials for a diverse community of pollinators. Biodiversity Is Key—Include a Variety of Native Plants Biodiversity is the variety and variability of life on earth. This concept includes not only the number of species in a given location, but the amount of genetic variation within each species or population at that location. Adapting to climate change and conserving biodiversity go hand-in-hand. Indeed, people’s ability to adapt to climate change and retain important ecosystem services such as pollination will depend on their ability to protect biodiversity. When creating climate-smart pollinator habitat, incorporating biodiversity in the planting is key to creating sustainable habitat that will support a variety of pollinators. Incorporate as many native plant species as possible into habitat projects. Habitat with a diverse native plant community can support more species of pollinators than habitat with only a few plant species. Many species of insects, including pollinators, exhibit some degree of resource specialization during their lives. For example, the monarch butterfly feeds only on species of milkweed during its larval stage (Chapter 3). Incorporating a diversity of native plants into habitat projects means the habitat will be more likely to support some of the many specialist pollinators in this region. Finally, a diverse native plant community will have greater habitat heterogeneity that can provide an array of microclimates, which serve as important refugia for pollinators during heatwaves and other extreme weather events. A biodiverse habitat (both in terms of species richness and genetic variation) has many additional benefits for climate resilience. First, generally speaking, more-diverse ecological communities are better able to provide ecosystem services such as erosion control, carbon sequestration, and pollination over time than species-poor ecological communities (Tilman et al. 2006). Second, genetically diverse populations are generally more likely to contain the traits that will enable them to adapt to climate change than populations with low genetic diversity. Third, diverse communities will be better able to withstand bad years and extreme weather events than species-poor communities. For example, a roadside habitat with a variety of plant species is more likely to include plants that can persist during both drought and flooding than a habitat with only a few plant species. Given that climate change will lead to more extreme weather events and more variability in weather, having a diverse plant community will better ensure that some plants will be able to persist and thrive, supporting the pollinators that depend on them. This may be especially important in regions where opposing conditions will both become more common. For example, in many regions both flooding and drought will become more common. It can be difficult to find plant species that can thrive in the range of expected conditions, so including a variety of plant species will help to ensure that at least some will do well in any given year or season. For similar reasons, diverse plant communities may be more resistant to pressure from invasive species or diseases. Climate change is likely to also affect the quantity and quality of floral resources for pollinators. For example, increased drought frequency is projected for this region, and drought-stressed plants produce fewer flowers with less nectar, lowering pollinator carrying

Chapter 8. Creating Climate‐Smart Pollinator Habitat along Roadsides  8-7 capacity (the number of pollinators that can be supported by the habitat). Abiotic factors associated with climate change, such as increased temperature or increased atmospheric CO2 concentrations, may also affect the quantity and quality of nectar and pollen as well as floral attractiveness to pollinators (Rusetrholz and Erhardt 1998; Burkle and Runyon 2016; Ziska et al. 2016; Glenny et al. 2018; Russo et al. 2019). Because the effects of climate change on these plant traits are likely to be species specific, having a diverse array of flowering plants will help ensure pollinators have the resources they need. Choosing Climate-Smart Plants An additional challenge for creating pollinator habitat is trying to anticipate what plant materials will be resilient to future climate scenarios. As stated above, incorporating biodiversity, both in terms of genetic diversity within species and in terms of species richness within plantings is a good strategy for creating plantings that will persist over time as climate changes (Wilsey 2020). Using local ecotypes (Chapter 7) can help ensure the plants used will be adapted to local conditions. However, as local conditions change, incorporating as much genetic diversity as possible may be beneficial. Therefore, try to get local ecotypes from several different source populations when possible (St. Clair et al. 2020) and consider working with the local native plant industry to increase genetic diversity of important pollinator plants used in revegetation projects. Another possibility is to incorporate a small percentage of seed from lower elevation or lower latitude populations that more closely mimic future climate conditions for the area (Sgrò et al. 2011; Ramalho et al. 2017; Camarretta et al. 2020). This may be more important for long-lived shrubs and trees than for annuals. It can be difficult to predict what plant species will be most successful in the future. Plants will also respond to climate change, and plant characteristics such as phenology and nutritional value of pollen and nectar may vary with climate change. Additional research is needed to understand what traits or characteristics make plants more resilient to extreme weather events and to increases in weather variability. Research is also needed to understand how competitive relationships between key invasive plants and native plants will be altered by climate change. However, choosing native plants that are adapted to future climate projections for this region is vital (Box 8-1). For example, many regions will experience increased drought, so choosing drought-tolerant plants is a wise choice. Table 8-1 lists some plant traits that are generally associated with adaptations to different climatic conditions. Use this list to select plant species for revegetation projects, along with the list of workhorse pollinator plants in Chapter 7, as well as any plants that support imperiled pollinators occurring in the revegetation project area (Chapter 3). As discussed above, the best approach for creating resilient, sustainable roadside habitat is to harness the benefits of biodiversity, planting a diverse assemblage of plant species.

Chapter 8. Creating Climate‐Smart Pollinator Habitat along Roadsides  8-8 Table 8-1. Plant traits that will generally be beneficial for adapting to different conditions associated with climate change. Plant trait  Climate variable  Taller grasses  Increased temperatures  Shorter trees  Increased temperatures  Thicker leaves  Drought, increased temperatures  Greater belowground biomass  Drought  High water‐use efficiency  Drought  Deeper roots  Drought  Higher wood density  Drought  Thicker bark  Fire  Ability to resprout  Fire  Source: Willis 2017. This region is projected to experience increased drought frequency and severity, so using drought-tolerant plants is recommended. Recommended plants include: prairie Junegrass (Koeleria macrantha), blue grama grass (Bouteloua gracilis), balsam arrowroot (Balsamorhiza sagittata), prairie smoke (Geum triflorum), winterfat (Krascheninnikovia lanata), and rubber rabbitbrush (Ericameria nauseosa). 8.5.5 Additional Benefits of Climate-Smart Pollinator Habitat Creating climate-smart pollinator habitat along roadsides has many additional benefits beyond pollinator conservation. Pollinator habitat also provides benefits such as erosion control and reduced runoff. This helps reduce the impacts of flooding, which will be critical in many areas where increased flooding is projected, and in coastal areas where sea level rise will increase the frequency of coastal flooding. Pollinator habitat can also help to mitigate the climate crisis. Creating diverse plantings along roadsides will increase soil health, which in turn increases carbon sequestration. Studies of grassland soils show that increasing plant diversity increases the amount of carbon stored by the soils (Lange et al. 2015; Chen et al. 2018; Yang et al. 2019). A recent study estimated the value of carbon sequestration services of roadside habitat in Florida at $39 million/year, and this number could increase with the sale of carbon credits

Chapter 8. Creating Climate‐Smart Pollinator Habitat along Roadsides  8-9 (Harrison 2014). Thus, diverse plantings created for pollinator conservation also help to mitigate climate change by increasing carbon sequestration services of those habitats (Ament et al. 2014). This is the idea behind “nature-based climate solutions,” which encourages the restoration and protection of natural habitats as a means of combating the climate crisis. Recent studies suggest that nature-based climate solutions alone could provide one-third of the climate mitigation required to keep warming below 2°C (warming of 2°C causes extreme heat and droughts, as well as increased water stress and sea levels, altering the livability of millions of acres of land and escalating risks to millions of lives) (Griscom et al. 2017; Fargione et al. 2018; IPCC 2018). DOTs are in a position to make real contributions to nature-based climate solutions through the creation of roadside pollinator habitat. 8.6 Additional Resources   Engineering with Nature website: https://ewn.el.erdc.dren.mil/.  U.S. Forest Service Transportation Resiliency Guidebook: Addressing Climate Change Impacts on U.S. Forest Service Transportation Assets: https://www.volpe.dot.gov/FS- Transportation-Resiliency-Guidebook.  Federal Highway Administration’s Climate Change Adaptation Guide for Transportation Systems Management, Operations, and Maintenance: https://ops.fhwa.dot.gov/publications/fhwahop15026/fhwahop15026.pdf.  National Oceanic and Atmospheric Administration’s State Climate Summaries: https://statesummaries.ncics.org/.  U.S. Global Change Research Program’s Fourth National Climate Assessment, Volume II: Impacts, Risks, and Adaptation in the United States (includes regional information as well as a chapter on transportation and infrastructure): https://nca2018.globalchange.gov/.  The Seedlot Selection Tool (matches seedlots with climatic parameters using a map- based program): https://seedlotselectiontool.org/sst/.  The Transportation Research Board’s Critical Issues in Transportation 2019: http://www.trb.org/Main/Blurbs/178402.aspx.

9-1 Chapter 9 Surveys, Monitoring Strategies, and Habitat Assessments 9.1 Introduction Assessments of pollinator communities and metrics for roadside pollinator habitat can provide valuable information for departments of transportation (DOTs) looking to implement voluntary pollinator conservation goals. Surveys for listed and imperiled species in project areas can help guide revegetation choices and federal Endangered Species Act (ESA) compliance options. Monitoring over time can be used to determine if conservation goals are being met. Measuring the response of vegetation or a pollinator community will help determine whether changes implemented to improve roadside vegetation for pollinators have been effective and met the objectives. Monitoring is also a key component of adaptive management; monitoring data can be used to determine if and what corrective actions may be needed. In addition to helping to effectively manage and maintain a current project, monitoring also can inform the implementation of future projects or management activities. The term monitoring is used here to specifically describe data from repeated sampling that can be used to detect changes, such as to evaluate the effectiveness of revegetation or maintenance practices over time (e.g., Elzinga and Salzer 1998). Monitoring is also sometimes used as a general term to describe other data collecting activities, such as surveys or inventories. An inventory aims to catalog all species or a subset of species within an area, whereas surveys are samples of a particular species or a representative portion of an area (e.g., Pokorny et al. 2006). In this document, the term survey describes sampling to determine the presence or absence of a particular imperiled pollinator species at a given site. Surveys are important for DOTs seeking to determine if a listed or imperiled species occurs on a particular right-of-way in order to take appropriate action for ESA compliance. This chapter includes protocols that can be used to survey for and detect imperiled species of pollinators, specifically a protocol for imperiled butterflies and a protocol for bumble bees, as well as a monitoring protocol that can be used to measure general bee and butterfly community responses to changes. A rapid and comprehensive roadside habitat assessment guide is also included, along with guidance for monitoring roadside vegetation as pollinator habitat. It may take some time and familiarity with these different protocols to determine which data collection method is best for a project’s objectives. 9.2 Pollinator Surveys and Monitoring The protocols presented in this section provide instructions for monitoring the general pollinator community (bees and butterflies), as well as ways to survey and monitor bumble bees and imperiled butterflies. The monitoring protocols involve collecting data on abundance, which can be useful to detect changes over time. However, if your target species is difficult to detect or occurs in low densities, it may be preferable to survey for occupancy

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-2 rather than measure abundance (Taron and Ries 2015). The monitoring protocols can be used to assess roadside habitat in a number of ways, such as determining the following. 1. Whether revegetation efforts have increased pollinator richness and abundance (by including nearby non-revegetated roadsides in samples as reference sites) 2. If pollinator richness and abundance change over time 3. Habitat quality 4. The effects of different roadside management strategies or seed mixes on pollinators 5. Survival rates for specific imperiled species The survey protocols can be used to determine the presence or absence of a target species, also known as occupancy, which is a procedure used to understand if a species is present at a particular site. Whether surveying to determine if a species occurs on a right-of-way or monitoring a population or community of pollinators to assess change over time (e.g., before and after a construction project), there are several important considerations: • Know the life history and habitat needs of your target species. Understanding host plant needs, known habitat, and flight windows of adults will help you have the best chances to find your target species (see Chapter 3, Imperiled Pollinator Profiles, to find this information for some at-risk pollinators in your region). For example, it is very helpful to be able to narrow down where the Uncompahgre fritillary might be found by knowing that it only feeds on snow willow that has a lot of water throughout the summer (to make it more palatable) and so only lives under year-round snow fields on the north side of peaks above 13,000 feet in southern Colorado. • Surveying for adult pollinators is most practical. It may be impractical to find and/or difficult to recognize other life stages of pollinators and it may be harmful to them (e.g., searching for a bumble bee nest or butterfly eggs laid singly within a grass clump). Adult flight periods are also more well-known than activity of other stages. • It can be challenging to identify pollinators. For example, most native bees can only be identified to species by examining pinned specimens under a microscope and obtaining confirmation from experts. Standard pollinator monitoring techniques typically employ destructive sampling, with specimens collected using nets or traps, pinned, and then identified by a taxonomist. While these collection techniques provide the most robust data, they can be labor intensive, time consuming, and expensive—and result in loss of pollinators. Using non-lethal methods when possible should be a priority (Tepedino and Portman 2021). Collecting observational data on pollinators is an economical and effective alternative to monitoring pollinators. However, training and practice are needed to recognize members of different groups of pollinators, commonly occurring local species, and imperiled species. Oklahoma State University operates research areas on ODOT rights-of-way to study the effects of mowing and other maintenance practices on roadside vegetation and on monarch butterflies. The survey and monitoring methods outlined in this chapter can be used on roadsides to provide information on how practices are affecting pollinator communities. Photo Credit: Vonceil Harmon

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-3 • If your target species is listed under the ESA, you may need to obtain a recovery permit if working in zones where the species may occur. Check with the U.S. Fish and Wildlife Service (USFWS) for specific information on the permit required. Details on how to apply for a permit are provided online at “Obtaining a Recovery Permit under the ESA and FAQs” (https://www.fws.gov/midwest/Endangered/insects/rpbb/surveys.html). Having species experts assist with the surveys whenever possible is recommended to assist with identification. 9.2.1 Monitoring for Bee and Butterfly Diversity Overview of Protocol What the protocol will measure: Abundance and richness of bees and butterflies in a community Sampling design: Transects within the project area Sampling time of year: Three visits per growing season, at a minimum—late-spring, mid-summer, late-summer Sampling weather and time of day: Warm, sunny, and calm days (15.6˚C [60˚F] or greater, wind speeds less than 10 miles per hour, and skies mostly clear), between 10 a.m. and 4 p.m. Level of identification needed: Morphological groups (groups of species with similar body size, shape, and structure) of bees and butterflies; expertise in insect identification not required Equipment needed: Stopwatch or clock, data sheets, clipboard and pencils, long measuring tape (100 meters [100 yards]), flags/stakes to mark transects, global positioning system (GPS) device, this procedure and pollinator identification guides, and plant lists and plant identification guide Personnel needed: Two people: one person to identify pollinators; one to keep time and record data Data Sheets: Bee and Butterfly Diversity Data Sheet (available on the National Academies Press website https://nap.nationalacademies.org/) This protocol can be used to collect consistent observational data on bee and butterfly richness and abundance over time or to identify specific associations between pollinators and their habitat. The procedure is based on a standardized method designed by researchers and practitioners (Kremen et al. 2011; Minnerath et al. 2016). Bee and butterfly communities vary depending on the quality of the immediate and surrounding habitat. This protocol can be used to document changes in bee and butterfly communities and to assess the efficacy of any changes made to roadside vegetation through revegetation or maintenance. Monitoring takes place along set transects, which are located within sampling units that have relatively uniform vegetation and site characteristics. If the project is large or composed of several different plant communities, then several sampling units may be

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-4 delineated and sampled separately. The number of transects placed in a sampling unit depends on the size of the unit and topographic relief: • <0.8 hectare (<2 acres) – no relief: establish one 120-meter (400-foot) transect through the middle of the area outside of the mowed strip in the recovery area, running parallel to the road • ≤0.8 hectare (≤2 acres) – with relief: orient multiple transects of equal length that add up to a total of 120 meters (400 feet) running perpendicular to road (for ease of walking the transect) and spaced apart evenly (e.g., 3 meters [10 feet]) • ≥0.8 hectare (≥2 acres) – no relief: establish three 120-meter (400-foot) transects through the middle of the area outside of the mowed strip in the recovery area, running parallel to the road separated evenly • ≥0.8 hectare (≥2 acres) – with relief: orient multiple transects of equal length that add up to a total of 365 meters (1,200 feet) running perpendicular to road (for ease of walking the transect) and spaced apart evenly If making comparisons between sites, it is best to keep the individual transect length and the distances between transects constant. For sites that are greater than 0.8 hectare (2 acres) in size, three 120-meter-long (400-foot-long) transects are used that are spaced evenly throughout the site. Transects are located in full sun where possible (or notations are made on data sheets when in shade) because pollinator activity declines in shade. Record GPS coordinates to allow others to monitor the area in the future. Monitoring is conducted at least three times a growing season, ideally monthly. This is because many bee and butterfly species fly for a limited number of weeks each growing season, and the communities may differ greatly between samplings. It is important to be consistent from year to year in the frequency and approximate timing of monitoring so that comparisons between years can be made. Weather conditions strongly influence bee and butterfly behavior. Bees avoid activity on cold, windy, or overcast days, so monitoring is optimal when sampling on days with air temperatures over 15.6˚C [60˚F], wind speeds less than 10 miles per hour, and skies mostly clear. Standardizing the time of day that sampling occurs is also important. Pollinators are most active between 10 a.m. and 4 p.m. These procedures can be implemented by observers working on their own, but it is easier when working in pairs, with one person to act as an observer and the other to record observations and data. It is also easiest to conduct observations of bees and butterflies on separate walks of the transects to help focus identification. This monitoring approach is geared toward users who are not experts in insect identification; however, training and practice with identifying bee and butterfly groups used in this protocol will provide more accurate monitoring. The Bee and Butterfly Diversity Data Sheet is available on the National Academies Press website (https://nap.nationalacademies.org/). When making observations of floral visitors within a transect: • Insects should be observed carefully and only identified to a level at which the surveyor is confident.

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-5 • Insects visiting flowers should not be disturbed before an observation can be made. The surveyor should walk slowly and avoid sudden movements. Insects will respond to shadows passing overhead, so the surveyor should walk so as not to cast a shadow where observations are to be made. Bee Monitoring The transect is walked at a steady pace, such as 3 meters (10 feet) per minute; expect each 120-meter (400-foot) transect to take about 40 minutes. The surveyor walks slowly, looking for flower visitors within 1 meter (3.3 feet) to each side of the transect. Surveyors do not need to spend more than a couple of observational minutes at any flower or group of flowers. The time spent walking transects should be consistent so that the data is collected with the same level of effort to allow for comparisons between samples over time. For each flower visitor observed, the surveyor should record: the identification of the bee to the level the observer is comfortable, the number of times an individual of this bee was seen during the monitoring period, and the flower species on which the bee was observed. If using a two-person team, one can dictate the bees and flowers, while the other records the data. Only bees that are on the reproductive parts of the flower are identified and recorded. Bees sitting on petals, leaves, or in flight are not recorded. When a bee is visiting a flower, the bee is observed and identified using the recognition guide. See Appendix C, Bee and Bee Group Recognition, for the bee recognition guide. Note that honey bee abundance cannot provide a measure of the value of habitat because the number of individual honey bees visiting habitat is determined by the number of managed hives in the vicinity. The recorder reports these observations on a data sheet, which will be available here (this will link to a data sheet available on Web Resources project webpage). It can also be helpful to note other floral visitors beyond bees, and the species of the flower on which the bees are observed. If more than one floral visitor is observed on a single flower, the number of visitors is noted first and then they are identified. After the bee data is collected, each additional flower species that is in bloom but did not have floral visitors during the survey is noted. At the end of each transect, the recorder tallies the number of pollinators, the travel time, time of day, the length of transect, transect number, and weather conditions. If other monitoring procedures (e.g., Soil Cover, Species Cover, and Species Presence) are to be conducted, the team returns to the beginning of the transect and conducts these procedures. Records of roadside sampling areas also include the site name, sampling area designation, date, name of the sampler, weather conditions, time of visit to the site, and any pertinent notes about the site. It is also valuable to record the plants that are blooming along the transect at the time of the survey, as well as to collect data on the floral associations of the bees at the site. Bees are recorded when they are observed visiting flowers along the transect. Photo Credit: Sara Morris/The Xerces Society

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-6 If multiple roadside sampling areas are surveyed, the differences observed in native bee abundance reflect differences in habitat quality among sites. Native bee counts can be used to rank the quality of sites or the quality of seed mixes, or can be used over time to assess changes at a site. Butterfly Monitoring This monitoring procedure is based on the standardized Pollard Walk (Pollard et al. 1975) and can be used to collect observational data on the abundance and richness of butterflies. The objective of this procedure is not to count all butterflies present at the entire site or within the habitat being monitored, but to count those individuals that occur in, or move through, the transect’s sampling area while the surveyor is walking at a steady pace of 3 meters (10 feet) per minute. The surveyor identifies and counts butterflies on flowers or in flight if they occur within approximately 4.5 meters (15 feet) on each side of the transect or overhead of the surveyor. Butterflies that fly in from behind the surveyor are not counted to avoid counting the same individual twice. Butterflies are identified to the level most comfortable to the surveyor (refer to butterfly identification guide) and recorded as whether the butterfly was observed in flight or nectaring on a flower. If the butterfly is nectaring, it can be helpful to record the species of the plant on which the butterfly was feeding. Considerations include the following: • It is important to be consistent, using the same level of effort with each time transect. • The time spent walking the transect is recorded each time. • Records of observations should include the site name, date, name of the sampler, weather conditions, time of visit to the site, and any pertinent notes about the site. • It is also valuable to record the plants that are blooming along the transect at the time of the survey, as well as to collect data on the floral associations of the pollinators at the site. See Appendix D, Butterfly and Butterfly Group Recognition, for guidance on recognizing groups of butterflies. Data Analysis for Community Monitoring To draw meaningful conclusions about the effects of roadside habitat on bees and butterflies, data needs to be collected consistently over time in the same areas. To determine changes in abundance over time, the number of individuals observed during each monitoring event is tallied (transects can be combined if multiple transects are sampled). These numbers can be averaged for each year (e.g., the results from late-spring, mid-summer, and late-summer can be averaged) and plotted on a graph or table to show changes between years. The numbers of individuals can also be totaled for each monitoring event and evaluated separately. Honey bee counts may be excluded in many analyses because the placement of hives and human intervention influences their abundance. Butterflies can be monitored using Pollard Walks, where butterflies are counted along a transect. Photo Credit: Angela Laws/The Xerces Society

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-7 To calculate species richness for each sampling period or each year, the total number of bee groups and butterfly groups observed is tallied. Richness can then be plotted to record changes over time, whether comparing the average or total number of groups observed across all sample periods for each year, or comparing the total number of groups observed during a certain sampling period from year to year. As noted before, pollinator populations vary over the course of the growing season and from year to year, so it is important to schedule monitoring accordingly. Pollinator populations also vary annually, increasing as plants become established and mature, which may take several years after seeding or planting. For this reason, monitoring is conducted for several years after the project has been completed, ideally 3–5 years. The longer the period over which sites are surveyed, the more meaningful the results. 9.2.2 Imperiled Butterfly and Moth Protocol Overview of Procedure What the procedure will measure: Butterfly and/or moth presence or absence; can be used over time to estimate population size Sampling design: Transects within the project area Sampling time of year: Survey once or more within the window of the documented flight period of your target species (see species-specific details in Chapter 3) Sampling weather and time of day: Warm, sunny, and calm days (15.6˚C [60˚F] or greater, wind speeds less than 10 miles per hour, and skies mostly clear), between 10 a.m. and 4 p.m. Level of identification needed: Identify species of butterflies or moths Equipment recommended: Stopwatch or clock, data sheets, clipboard and pencils, aerial insect net, binoculars (if applicable), GPS device, field identification guides, glassine envelopes, long measuring tape (100 meters [110 yards]), flags/stakes to mark transects, and federal or state permits (if applicable) Personnel needed: Can be conducted by a single person, but easier with two Data Sheets: Imperiled Butterfly Data Sheet (available on the National Academies Press website [https://nap.nationalacademies.org/]). Begin by identifying areas of potentially suitable habitat for your target species, areas with adequate larval food plants, nectar sources, and habitat to sustain a population. Many species have highly specific larval feeding preferences (e.g., limited to one or a few related plant species whose defenses they have evolved to overcome), while other species exhibit more general feeding patterns, with representatives from multiple plant families in their diet. For species-specific dietary preferences and habitat information, see the species profiles in Chapter 3. Survey areas of suitable habitat or known occupied sites for your target species during adult flight periods (also in the species profiles in Chapter 3). Be aware that flight times may vary due to weather conditions in the spring and early summer,

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-8 and will vary with elevation when planning the survey period. If there are local species experts in the region, consult them on the optimal survey timing. Surveys need to be conducted with at least one butterfly expert present; an expert is someone who can definitively identify the target species. Non-expert surveyors can be paired with experts, but limit the number of surveyors to three in total at small sites (<1.2 hectares [<3 acres]) to reduce trampling of vegetation. Upon arriving at each potential site, the following survey protocol can be used to determine the presence or absence of species: 1. Approach the site and scan for any butterfly activity, as well as suitable habitat. Butterflies are predominantly encountered nectaring at flowers, in flight, basking on a warm rock or the ground, visiting host plants, or puddling (sipping water rich in mineral salts from a puddle, moist ground, or dung). Walk through the site slowly (about 100 meters [110 yards] per 5 minutes), looking back and forth on either side, approximately 6–9 meters (20–30 feet) out. Try to walk in a path such that you cover the entire site with this visual field—your route can twist and turn—or at least all of the areas of suitable habitat. If you must leave the transect path (e.g., to look at a particular butterfly), do your best to return to the specific place where you left your path when you resume walking/searching through the site. 2. When a suspected target species is encountered, the optimum method is to net the butterfly to confirm its identification. Adults are collected using a long-handled aerial sweep net with mesh light enough to see the specimen through the net. When stalking perched individuals, approach slowly from behind. When chasing, swing from behind and be prepared to pursue the insect. A good method is to stand to the side of a butterfly’s flight path and swing out as it passes. After capture, quickly flip the top of the net bag over to close the mouth and prevent the butterfly from escaping. Once netted, most insects tend to fly upward, so hold the narrow end of the net bag up (with the mouth downward) and reach in from below when retrieving the butterfly. You will need permits to catch listed butterflies. Having experts assist with the surveys is recommended to aid identification and with collection, to minimize potential injuries to the butterflies. 3. Binoculars and cameras may also be used to view wing patterns of perched butterflies, in lieu of catching the butterfly. Because most butterflies can be identified by macroscopic characters, high-quality photographs will likely provide sufficient evidence of species occurrences at a site, and those of lesser quality may at least be valuable in directing further study to an area. Use a camera with a good zoom or macro lens and focus on the aspects of the body that are the most critical to species determination (i.e., dorsal [upper] and ventral [lower] patterns of the wings) (Pyle 2002). When possible, take several photographs of potential target species showing a clear view of the ventral and dorsal sides of the wings at each survey area where they are observed. This method may be preferred to catching the butterflies, especially for listed species. 4. If needed, collect and chill individual butterflies within a vial or envelope, placing the container in a cooler with ice, buffering the specimen from the ice with a towel. After 5–10 minutes of chilling, place the butterfly on a flat surface with high contrast to photograph it from several angles, making sure to get photos of the dorsal view (back

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-9 side) forewings and hindwings, the ventral view (the underside of the wings), and the head and antennae. After photographing, move the butterfly to a sunny spot and allow it to warm up and fly away. 5. Fill out all of the site information on the datasheet, including site name, survey date and time, elevation, aspect, legal location, latitude and longitude coordinates of the site, weather conditions, and a thorough description of habitat, including vegetation types, vegetation canopy cover, suspected or documented host plant species, landscape contours (including direction and angle of slopes), and insect behavior (e.g., “puddling”). Record the number of target species observed, as well as butterfly behavior, plant species used for nectaring or egg-laying, and survey notes. Photographs of habitat are also useful. If looking to estimate population size and monitor changes over time, abundance can be measured by using either the Pollard Walk method (see the butterfly monitoring protocol above for details on applying a Pollard Walk to roadsides), in which the recorder walks only along a precisely marked transect, or the checklist method, in which the recorder is free to wander at will in active search of productive habitats and nectar sites (Royer et al. 1998). A test of differences in effectiveness between these two methods at seven sites found that checklist searching produced significantly more butterfly detections per hour than Pollard Walks at all sites, but the overall number of species detected per hour did not differ significantly between methods (Royer et al. 1998). Checklist surveys are a more efficient means for initial surveys and generating species lists at a site, whereas the Pollard Walk is more practical and statistically manageable for long-term monitoring. Recorded information needs to include start and end times, weather, species, sex, and behavior (e.g., “female nectaring on flowers of Lathyrus nevadensis”). For detailed summaries of approaches to butterfly monitoring, see Taron and Ries (2015) and Haddad et al. (2008).

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-10 9.2.3 Bumble Bee Protocol Overview of Procedure What the procedure will measure: Bumble bee presence or absence, species diversity Sampling design: Transects within the project area Sampling time of year: Survey once or more within the window of the documented flight period of your target species (see species-specific details in Chapter 3); early June to early August often is the best chance to detect most species and reduce impacts to queens (which typically fly earlier in the season) Sampling weather and time of day: Warm, sunny, and calm days (15.6˚C [60˚F] or greater, wind speeds less than 10 miles per hour, and skies partly cloudy to clear), between 10 a.m. and 4 p.m. Level of identification needed: Distinguish bumble bees from other flower visitors; distinguish species of bumble bees to the best of your ability Equipment recommended: Stopwatch or clock, data sheets, clipboard and pencils, aerial insect net, clear vials or small Ziploc plastic bags, camera, cooler with ice, long measuring tape (100 meters [110 yards]), flags/stakes to mark transects, GPS device, field identification guide or Bumble Bee Watch phone app, and federal or state permits (if applicable) Personnel needed: Can be conducted by a single person, but easier with two Data Sheets: Bumble Bee Data Sheet (available on the National Academies Press website [https://nap.nationalacademies.org/]) Begin by identifying areas of potentially suitable habitat for your target species—areas with adequate flowering plants and potential nesting habitat to sustain a population. See the species profiles in Chapter 3 for nesting habits of your target bumble bee species and known sources of pollen and nectar. Survey areas of suitable habitat or known occupied sites for your target species during adult flight periods (see species profiles in Chapter 3). Be aware that flight times may vary due to weather conditions in the spring and early summer when planning the survey period, and that the phenology of queens, workers, and male bumble bees change throughout the growing season. Take in-field habitat assessments, collecting the basic habitat information included on the bumble bee data sheet (available on the National Academies Press website [https://nap.nationalacademies.org/].) and taking representative photographs of the survey area, including high- and low-quality habitat. Record the coordinates of the corners of the surveyed area using a GPS device and estimate the size of the area surveyed. Note the flowers on which any bumble bees are Bumble bees should be sampled in the summer on sunny, warm days with low wind. Photo Credit: Rich Hatfield/The Xerces Society

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-11 captured or photographed. If unsure of the plant species when in the field, make sure to take photos of the flower, stem, and leaves for identification later. Survey Protocol to Detect a Species Protocol Set-up Conduct surveys during three evenly spaced sampling periods across the flight period of your target species. Early June to early August often is the best chance to detect most species and also reduces impacts on queens, which typically fly earlier in the season (negative impacts on queens are more likely to affect populations than impacts on workers). Identify your survey area, and spend 1 hour sampling within the highest quality habitat of that area; if sampling a large area (>0.8 hectare [>2 acres]), sample 1 hour per 0.8 hectare (2 acres) or have multiple people sampling simultaneously. Preferentially capture the bumble bees that match or are similar to the description of your target species, capturing individuals one at a time using a net. Bumble Bee Sampling To survey bumble bees, you will net bumble bees off of flowers or catch them in a vial, capturing all bumble bees observed, one at a time. If the target species is listed, obtain the proper permit to be able to handle the bees, or you can opt to photograph the bees as they forage rather than handling them (if photographing, take a series of photos for each individual to properly document the bee’s characteristics, including the face, side, and back; see Appendix E, Bumble Bee Recognition and Photography, for more tips). Identify and record the species and number of individuals if an expert is present (one who can definitively identify the target species). Otherwise, chill the bees within their bag or vial in an ice-filled cooler in order to take photographs of each individual. Assign a number to each vial and write the same number on your data sheet to keep each bee connected to its flowering plant (or you can place a petal from the flower within the vial to help you later connect the flower to the bee). Continue searching for bees until you have reached the end of your transect, when you should stop the timer, note the end of your survey, and begin to photograph your chilled bees. Placing the bees in a cooler will slow them down (bees are ectothermic), making photographs from multiple angles much easier to take. Take care not to leave bees in the cooler longer than 1 hour or to leave bees within vials in direct sunlight for longer than a few minutes. Bees may take a few minutes to warm up enough to fly away after being released from their vial. To photograph a chilled bee, remove it from the vial and place it on a flat surface with a solid background of high contrast (e.g., pale colored paper). Use a digital camera or a smartphone to capture different angles of the bee useful in identification. See Appendix E for more details on photographing bumble bees that have been chilled or that are foraging on flowers. Link each photograph to a particular individual for tracking. Photographs can be submitted to Bumble Bee Watch for confirmation of identifications by experts. See https://www.bumblebeewatch.org/ or download the app (e.g., https://apps.apple.com/us/app/bumble-bee-watch/id1112626392).

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-12 Monitoring Protocol This protocol can be used to detect trends in known populations by using the following protocol multiple times per year for multiple years. This protocol is similar to the survey protocol, except that sampling is conducted along permanent transects. Monitoring needs to have a standard level of effort across sampling sessions. Protocol Set-up Establish at least one transect of 120 meters (400 feet) (meandering transects are fine) that covers the highest quality habitat of the site; establish multiple transects as needed to adequately cover the site’s habitat. Use a GPS unit to track transects, or flag the transects so you can easily revisit them over the course of the season (or multiple years). Plan to spend about 15 minutes surveying per 30 meters (100 feet), capturing bees within 1 meter (3.3 feet) of each side of the transect. Use more time if needed, and record the time spent per transect each visit. Sample transects three separate times across the growing season. Follow protocols described in the Bumble Bee Sampling section above to document bumble bees observed along established transects. 9.3 Habitat Assessment and Vegetation Monitoring 9.3.1 Roadside Pollinator Habitat Assessment Existing roadside vegetation can be evaluated using a pollinator habitat evaluation guide. The Roadside Pollinator Habitat Assessment Tools, available on the National Academies Press website [nap.nationalacademies.org], that accompany this guide include a rapid assessment that can be used to determine the general condition of the habitat (Figure 9- 1), and a more comprehensive assessment, used to identify existing components of pollinator habitat and places for improvement (Figure 9-2). This assessment process can help in determining components that should be included when considering changes to maintenance strategies or when developing revegetation plans. This assessment can also help planners evaluate sites for connectivity or may help when prioritizing sites for high- quality pollinator habitat.

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-13 Figure 9 -1. P ollinator H abitat A ssessment Guide for R oadsides: R apid A ssessment.

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-14 Figure 9 -2. P ollinator H abitat A ssessment Guide for R oadsides: C omprehensive A ssessment ( 1 of 2) .

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-15 Figure 9 -2. P ollinator H abitat A ssessment Guide for R oadsides: C omprehensive A ssessment ( 2 of 2) .

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-16 These habitat assessment guides are included as a separate document and can be found on the National Academies Press website (https://nap.nationalacademies.org/). These habitat assessment guides are designed for evaluating roadside conditions. Prior to conducting an in-field assessment, it may be helpful to consult or print aerial photos to help with site and landscape questions. Ideally, this assessment should be conducted twice—once during the habitat evaluation process (before undertaking construction, to inform the planning and design phase) and once after maintenance changes have been made or after revegetation has taken place. Instructions for Habitat Assessment Guide Use: 1. Each category in the comprehensive assessment should be given the appropriate value from the “Score” column. 2. An overall habitat suitability index score will be automatically generated based upon the scores from each category. 3. The scores for each category can be used to identify resource concerns. For example, if the score for spring blooming flowering plants is low, take actions to increase spring blooming species in revegetation plans. Factors that improve pollinator habitat can be considered in design plans. 4. The site needs to be reevaluated after revegetation to measure increased benefits to pollinators. Ideally, each site should strive to achieve a score of at least 0.65. If working at a particular site with positive identification of an imperiled species, consider using a more detailed habitat assessment for a particular species if it is available. Currently, detailed habitat assessments are limited, but examples include: • Rusty Patched Bumble Bee Habitat Assessment Form and Guide: https://www.fws.gov/midwest/endangered/insects/rpbb/pdf/HabitatAssessmentFor mGuideByXercesForRPBB.pdf • Monarch Breeding Habitat Assessment: https://www.fws.gov/southwest/es/ Documents/R2ES/Pollinators/9-Monarch_Habitat_Assessment_Tool_Monarch_Joint_ Venture_2014.pdf • Roadside Habitat for Monarchs Evaluator Tool: https://monarchjointventure.org/ mjvprograms/science/roadsidehabitat/habitat-evaluator-tool • Rights-of-Way as Habitat Working Group Pollinator Scorecard, the Monitoring Tool for the Monarch Candidate Conservation Agreement with Assurances: http://rightofway.erc.uic.edu/pollinator-habitat-scorecard/ These assessments can help planners prioritize conservation actions and quantify habitat or management improvements for a particular species. 9.3.2 Pollinator Plant Monitoring Monitoring plant species found on a project site is a method of assessing existing or potential pollinator habitat, or assessing survival and evaluating plant establishment in revegetation projects. Data can be collected using plant monitoring procedures such as those found in Chapter 6 of the Federal Highway Administration’s Roadside Revegetation:

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-17 An Integrated Approach to Establishing Native Plants and Pollinator Habitat (2017). Measuring & Monitoring Plant Populations by Elzinga and Salzer (1998) also provide guidance on measuring and monitoring plants. Plant species recorded during surveys can be categorized as sources of pollen or nectar, host plants, whether they provide nesting structure, or other characteristics important for pollinator habitat. A species list can also be used to determine if there is overlapping bloom time throughout the growing season so that flowering species are available sequentially for pollinators. Photo point monitoring is a method of recording landscape changes in vegetation over time and showing the success or failure of a revegetation project. Photo monitoring can be established for long-term monitoring where a permanent point has not been established and subsequent photographs are taken, or where permanent locations have not been located from historic photographs; or photo monitoring can be reconstructed from historic photographs (see, for example, Sections 6.5.1 and 6.5.2 in FHWA 2017). Landscape images from photo point monitoring, in conjunction with data collected from other monitoring methods, can be a powerful way to describe the results of a revegetation project. The U.S. Forest Service’s Photo Point Monitoring Handbook (Hall 2002) provides a thorough coverage of this subject. 9.4 Resources for Identification of Pollinators Borror, D. J., R. E. White, and R. T. Peterson. 1970. A Field Guide to Insects: America North of Mexico (Vol. 19). Houghton Mifflin Harcourt. Brock, J. P. and K. Kaufman. 2006. Kaufman Field Guide to Butterflies of North America. Houghton Mifflin Harcourt. Eaton, E. R., and K. Kaufman. 2007. Kaufman Field Guide to Insects of North America. 392 pp. New York, NY: HarperCollins Publishers. Williams, P. H., R. W. Thorp, L. L. Richardson, and S. R. Colla. 2014. Bumble Bees of North America. 208 pp. Princeton, NJ: Princeton University Press. Wilson, J. S., and O. Messinger Carril. 2016. The Bees in Your Backyard: A Guide to North America’s Bees. 288 pp. Princeton, NJ: Princeton University Press. 9.5 Resources for Monitoring Plant Populations Elzinga, C. L., and D. W. Salzer. 1998. Measuring & Monitoring Plant Populations. U.S. Department of the Interior, Bureau of Land Management. Available: https://digitalcommons.unl.edu/usblmpub/41/. Federal Highway Administration (FHWA) 2017. Roadside Revegetation: An Integrated Approach to Establishing Native Plants and Pollinator Habitat. Available: http://www.nativerevegetation.org/learn/manual_2017/. Hall, F. C. 2002. Photo Point Monitoring Handbook. Gen. Tech. Rep. PNW-GTR-526. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR. Available: https://www.fs.usda.gov/pnw/pubs/pnw_gtr526.pdf.

Chapter 9. Surveys, Monitoring Strategies, and Habitat Assessments 9-18 Hamilton, Randy. Photo Point Monitoring. A Weed Manager’s Guide to Remote Sensing and GIS -Mapping & Monitoring. Available: https://deq.nd.gov/publications/WQ/ 3_WM/NPS/SWCBinder/Riparian/Photopoint_monitoringUSFS.pdf.

10-1 Chapter 10 Cost-Benefit Considerations for Pollinator Management on Roadsides 10.1 Introduction   The relative costs and benefits of maintaining existing or establishing new pollinator habitat along roadsides are important considerations when incorporating Endangered Species Act (ESA) compliance, species conservation, and habitat management into transportation planning, design, construction, and maintenance. As has been demonstrated throughout this guide, there are many opportunities to benefit pollinators and contribute to the recovery of listed and imperiled species through changes in roadside management. Many of these changes may have a relatively minor effect on costs, and those that are more costly can often lead to long-term cost savings, while having important substantial benefits for imperiled pollinators and the pollinator community in general. Furthermore, the benefits can extend well beyond the pollinator community. For example, roadsides managed for pollinators by planting beneficial plants and reducing mowing can broadly benefit wildlife and ecosystem health, and are also an opportunity to showcase natural beauty and promote tourism, reduce maintenance (a cost savings to departments of transportation [DOTs]), and support a wide range of important ecosystem services such as carbon sequestration and erosion control. Roadsides are an integral part of the highway system and are valued by the general public as important natural and scenic resources. Therefore, it is important to consider all types of potential benefits when considering investing in pollinator-friendly roadsides. 10.2 Cost‐Benefit Analysis for Sustainability  A cost-benefit analysis is an approach to decision-making weighing the various costs of a particular action with the value of the benefits expected as an outcome of the action. Cost-benefit analyses have been used in project decision-making for many decades (Elkington 2018) and have traditionally only focused on the quantitative economic costs and benefits. More recently cost-benefit analyses have been approached from the perspective of long-term sustainability and include other non-economic factors such as societal and environmental costs and benefits. When cost and benefit considerations include environmental, societal, and economic factors they are often referred to as the triple bottom line (Figure 10-1). There are environmental, societal, and  economic benefits to managing roadsides for  pollinators. Photo Credit: Luis Colon/Arizona DOT 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-2 Figure 10-1. Objectives of a triple bottom line. The triple bottom line approach is a cornerstone of the Federal Highway Administration (FHWA) Sustainable Highways Initiative (sustainablehighways.dot.gov), which supports the U.S. Department of Transportation Strategic Plan for FY2022–2026 (USDOT 2022). The triple bottom line considers long-term sustainability and therefore long-term costs and benefits, including the full range of factors important to human quality of life. Considering the importance of pollinators to human sustenance, the triple bottom line approach is particularly relevant to cost-benefit consideration of pollinator-friendly measures. While cost-benefit analyses can be useful in the decision-making process, they can be difficult to complete. In a 2016 report to Congress, the FHWA noted that only about 10 percent of state DOTs regularly use any form of formal cost-benefit analyses (FHWA 2016), and mostly only for relatively large projects. Some of the greatest hurdles to conducting a cost-benefit analysis include the inconsistency and difficulty of obtaining quantitative cost information, lack of institutional support, and difficulty quantifying societal and environmental costs and benefits (FHWA 2016). These difficulties still hold true today.

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-3 Case Study: Arizona DOT Sustainable Transportation Program: INVEST Case Studies Arizona DOT recognizes the importance of sustainability in the long-term success of the state’s transportation network, and has embraced the triple bottom line approach systematically through its administrative, planning, design, construction, operations, and maintenance activities. To achieve its ambitious sustainability goals, Arizona DOT has applied the sustainability tools of the FHWA INVEST program to a wide variety of case studies. Application of the performance measures and metrics to the three INVEST modules of system planning, project development, and operations and maintenance has helped Arizona DOT undertake cost-benefit analyses, life cycle cost analyses, and return on investment evaluations across the environmental, societal, and economic factors essential for sustainable operations and project implementation. The environmental, social, and economic benefits of this approach are carried forward into Arizona DOT projects through its Sustainable Project Development checklist, which guides project design and construction to consider project elements to optimize all three areas of sustainability, including habitat protection, and wildlife connectivity. While pollinators are not mentioned explicitly, they are an important element of the environmental and societal factors considered by the checklist. Source: Arizona DOT 2020. Given the challenges DOTs have faced in obtaining information for quantitative cost-benefit analyses, this guide proposes the application of a simple, qualitative cost-benefit tool using the triple bottom line approach that considers the environmental, societal, and economic costs, as well as benefits of, pollinator-friendly habitat. This approach can be used when making decisions about pollinator habitat during the planning, design, construction, and maintenance phases of a project. Costs are evaluated from the point of view of a state DOT. Benefits are evaluated in terms of environmental benefits (e.g., to habitat diversity and endangered species recovery), societal benefits (e.g., to crop pollination services), and operational benefits to a state DOT (e.g., operational flexibility through ESA compliance, or reduction of future risk of regulation by contributing to species recovery and avoidance of future listing). 10.2.1 Land Use Context and Variability of Costs and Benefits Not only are quantitative costs and benefits of roadside management for pollinators difficult to obtain (as mentioned above), they vary regionally and may depend on the surrounding land use, ecological context, and pollinator species of interest. It might cost more to adjust mowing schedules to accommodate a particular species of butterfly that breeds during a time when mowing is most cost efficient for a DOT, for example, or the costs of plant materials used in revegetation to support one imperiled species might be higher than the cost of plant materials to support another imperiled species. Although the upfront costs associated with the conservation of a particular species might be higher, the benefits of taking those conservation actions might also be greater. Investments made to proactively conserve a rare species, for example, can prevent state or federal listings and may reduce costs DOTs might otherwise incur in the future.

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-4 The costs and benefits could also be considered in the context of the adjacent urban, agricultural, or natural land uses. For example, improving pollinator habitat on roadsides surrounded by natural habitat may seem unnecessary (providing little additional relative conservation value) if the target pollinator species has all its needs met in the adjacent habitat. On the other hand, revegetation projects in such areas may bring value by helping to reduce the spread of invasive plants to sensitive areas as well as increasing habitat connectivity. Or consider, for example, that improving pollinator habitat on roadsides adjacent to agricultural lands can provide additional pollination services, but that the particular economic benefit might be lower for roadsides adjacent to urban landscapes. However, habitat improvement actions on urban roadsides may provide the only suitable habitat for miles and can create vital connectivity between distant areas of natural habitat, bringing broader benefit and greater overall value. The relative costs and benefits of pollinator-friendly actions can also vary by region. Modification of mowing regimes in the Southeast can have substantial benefits but may not be relevant in the driest areas of the Southwest where mowing is rarely needed. A cost- benefit analysis in one region may not directly apply to another. Given the high variability of costs and benefits across species and regions and within differing land use contexts, it is difficult to provide definitive cost-benefit rules and relationships. Instead, this guide provides simple cost and benefit tools and concepts that can be applied and adapted by each DOT for the evaluation of pollinator-friendly actions being considered in project planning, design, construction, and maintenance. 10.3 Types of Costs and Benefits  10.3.1 Regulatory Costs and Benefits The primary federal regulation addressing pollinators is the ESA (see Chapter 4, Native Pollinators and the Federal Endangered Species Act: Compliance Strategies for State Departments of Transportation). Many states have similar endangered species protection acts that can also regulate pollinator species. The growing awareness of the importance of pollinators and the evidence of dramatic declines in the health and diversity of pollinator species have also led to additional state and federal regulations protecting pollinators (e.g., Maryland Pollinator Protection Act of 2016, Save Oregon’s Pollinators Act of 2014, Connecticut Pollinator Health Act of 2017). Many of these regulations focus on restricting the use of certain pesticides, some encourage or require inclusion of pollinator habitat on public lands and rights-of-way (ROWs), many require improved public and agency education of the importance of pollinators, and some provide funding incentives when pollinator-friendly measures are included in projects. The reality is that pollinators and their habitat will be more tightly regulated in the coming years, which brings potential increased costs and potential benefits. As of June 2022, there are 48 invertebrate pollinator species listed as endangered or threatened under the ESA (USFWS 2022). It is worth noting that insects are disproportionately underrepresented under the ESA; although they make up 72 percent of animal diversity, only 10.3 percent of listed species are insects (Black 2012). Figure 10-2 shows the trend in the number of all species listings over time. The number of pollinator species listed under the ESA has increased in recent years and this trend for pollinators,

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-5 and species overall, is unlikely to slow down because of ongoing factors such as loss of habitat, impacts from pesticides, and the effects of climate change. Source: USFWS 2018.   Note: Includes Threatened and Endangered listings under the 1973 ESA and its precursors.   Figure 10-2. Listings of all species under the ESA by year. As noted in Chapter 4, 75 percent of transportation planners and managers surveyed recognize the possibility that if an imperiled pollinator species in their project area became listed, it could cause barriers, such as altered project timelines, increased workloads, and higher costs to their agencies. Implementing actions to benefit unlisted pollinators and prevent them from being listed under the ESA will provide substantial long-term regulatory cost savings. Upfront planning by DOTs can result in substantial future time and cost savings as workflow is improved and the number of project redesigns and modifications to operations are reduced across their larger road network. A total of 81 percent of the surveyed transportation professionals confirmed that the risk of an imperiled pollinator species becoming listed would motivate their DOT to proactively protect pollinators in order to reduce the risk of listing. These same transportation professionals also recognized that early adoption of regulatory compliance strategies was good for public relations and consistent with identified sustainability goals for their transportation agencies. Once a species is listed, the only options are to avoid impacting the species or seeking an incidental take permit under Section 7 or 10 of the ESA, either of which can cause project delays and increase costs. However, strategic planning to comply with the ESA and other laws and regulations can reduce DOT regulatory Voluntary conservation measures to support  imperiled pollinators like the American bumble  bee (Bombus pensylvanicus) may help to  recover the species and avert a listing under  the ESA, potentially saving transportation  agencies time and money.  Photo Credit: Ray Moranz/Xerces Society 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-6 costs. Developing long-term Habitat Conservation Plans (Section 10 of the ESA) for non- federal actions or “programmatic” Section 7 permits for federal actions can provide long- term cost and time savings through increased regulatory certainty and project streamlining for large and small road projects as well as maintenance activities. Case Study: Programmatic Section 7 ESA Permits for Colorado DOT Colorado DOT developed a conservation strategy as a part of a 20-year programmatic Section 7 permitting agreement to cover 38 species, including 4 pollinators (butterflies), in the Central Shortgrass Prairie ecoregion of Colorado. The programmatic agreement and conservation strategy has three goals: 1. Proactive conservation of the declining and listed species in this ecoregion; 2. Providing mitigation for potential impacts of Colorado DOT projects within the existing transportation corridor; and 3. Improved efficiencies and cost savings for the environmental compliance of Colorado DOT project. The conservation strategy includes a range of actions to offset impacts on the covered species from Colorado DOT transportation improvement and routine maintenance, including recommended practices and land protection projects. Source: Grunau et al. 2003. Case Study: Economy of Scale: Major Improvements in Transportation Project Delivery Cost and Schedule with Long-Term Multi-Species Habitat Conservation Plan (MSHCP) In Riverside County, California, the Western Riverside MSHCP has provided substantial economic benefits to regional transportation projects. Approved in 2004, the MSHCP covers 146 species, including 2 endangered pollinators: the Delhi sands flower-loving fly (Rhaphiomidas terminatus abdominalis) and the Quino checkerspot butterfly (Euphydryas editha quino). As of March 2019, the implementing entity of the plan, the Western Riverside County Regional Conservation Authority (RCA), has compiled the following economic benefits of their plan to transportation projects, based in part on a comprehensive cost-benefit study prepared in 2008 by the Rand Corporation (Dixon et al. 2008) and 15 years of plan implementation:  The Western Riverside County MSHCP has accelerated $4 billion in transportation and infrastructure projects by 1 to 5 years or more. This includes a new rail line, two new freeways, five major freeway-widening projects, a dozen freeway and highway interchange projects, a major dam rehabilitation, a new Metrolink line, major water projects, and major regional power transmission lines.  The Western Riverside County RCA estimates $312 million savings in transportation costs due to early delivery (Based on the National Highway Construction Cost Index Average of 3.9 percent per year and an average time savings).

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-7  Every transportation project proposed in the plan area has been built; none have been stopped or stalled due to ESA or California ESA issues. With the MSHCP in place, ESA compliance no longer impedes the path of project environmental compliance.  Projects with an ESA Section 7 consultation received their biological opinions from U.S. Fish and Wildlife Service in an average of 2 months, versus over 2 years without the MSHCP. 10.3.2 Management and Maintenance Costs and Benefits Mowing the many acres of roadside ROWs every year represents a substantial expenditure, and mowing a limited portion of the ROWs means potential cost savings as well as aesthetic and ecological benefits, without compromising safety. Data is limited, but includes these examples:  Delaware DOT spent over $3.4 million mowing roadsides in 2008. In 2009, budget restrictions forced Delaware DOT to reduce mowing by 25 percent. If Delaware DOT took 500 acres +of roadsides out of routine mowing, the state could save $1.3 million per year (Lucey and Barton 2010).  Florida DOT spent $13 million on roadside mowing in 2011– 2012. The University of Florida, Institute of Food and Agricultural Sciences report, Economic Impact of Ecosystem Services Provided by Ecologically Sustainable Roadside Right of Way Vegetation Management Practices, found that Florida DOT could reduce its costs by 30 percent by implementing sustainable management practices such as reduced mowing (Harrison 2014).  In Florida, Norcini (2014) found that limiting mowing to once a growing season, in the fall, along a stretch of Interstate 10 in Madison County reduced mowing costs by $1,000 per mile. (Typically, that highway is mowed up to seven times a growing season.) A 10- to 15-foot-wide mown strip in the recovery area adjacent to the pavement continued to be mowed seven times each growing season. Over time, more and more desirable plant species were found in the section of the ROW with the reduced mowing regime. As blooming wildflowers increased, the section of the road became more aesthetically appealing, particularly in the spring.  Indiana DOT found a cost savings of over 40 percent can be achieved with one application of herbicide instead of one cycle of mowing, and that there are cost savings associated with planting native vegetation (e.g., prairie plant community wildflowers had a greater initial cost, but that cost was offset in the analysis by lower long-term management costs) (Lucey and Barton 2010).  Mississippi DOT mows approximately 139,253 acres of roadsides four times per year at a cost per acre of greater than $250, or a total annual cost of around $35 million. Reducing mowing of roadsides by one mowing could save approximately $8.7 million; eliminating two mows per growing season could save over $17 million (Guyton et al. 2014). Mowing a highway once a year rather than  seven times allows wildflowers like tall false  foxglove (Agalinis aspera) to flourish in Florida.  Photo Credit: Eleanor Dietrich 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-8 Reduced Mowing, a Triple Bottom Line for DOTs Environmental Benefits  Reduced mowing can allow flowering plants to flower, providing pollinators with pollen and nectar and small wildlife with seeds and fruits. The transition from frequently mowed grass to more diverse grasslands or early successional habitat can increase wildlife habitat quality and reduce habitat fragmentation (AASHTO 2011). More birds use roadside habitat when vegetation is taller and more dense (McCleery et al. 2015) and when mowing does not interrupt grassland breeding season (Warner 1992).  Reduced mowing can mean reduced greenhouse gas emissions from mowing equipment and reduced amounts of carbon stored in plant tissues returned to the atmosphere after mowing. Emissions from mowing can result in up to 35 kilograms (kg) of carbon dioxide (CO2) emissions per shoulder and kilometer (Sonntag et al. 2011). If reduced mowing is implemented in just half of the roadsides associated with the National Highway System, CO2 emissions could be cut by approximately 2 million kg every year (FHWA 2011). Societal Benefits  Non-turf roadside vegetation provides aesthetic variety, breaks up monotony (Billings 1990), and can have a positive effect on human performance and improve driver safety (Topp 1990; Cackowsky and Nasar 2003; Mok et al. 2006; Macdonald et al. 2008).  Public perception surveys have found strong support for more wildflowers on roadsides and reduced mowing, with respondents also indicating they would tolerate a less manicured roadside if it made the roads safer (Guyton et al. 2014). Economic Benefits  Reducing routine mowing of the entire ROW can reduce costs. Other strategies to reduce costs include making only one pass with the mower next to the operational zone rather than mowing the entire ROW multiple times during the growing season.  Though in general reducing routine mowing is a straightforward method of reducing costs for many ROWs, altering the timing of mowing to encourage breeding of imperiled species (e.g., avoiding mowing during peak Karner blue butterfly [Lycaeides melissa samuelis] breeding) or blooming of wildflowers may be less straightforward because there may be other operational constraints to consider (e.g., such as mowing at a time of the year when maintenance staff are trying to prepare for winter). However, if these constraints translate to additional ongoing costs, those costs are likely to be offset by the value of proactive conservation to avert ESA listings.  Mowing can sometimes spread noxious and invasive weeds; switching from routine mowing to more targeted weed control can bring about cost savings.

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-9 10.3.3 Revegetation Costs and Benefits: Use of Native Plants Native plants can be used to meet goals for safe and efficient transportation, while supporting ecosystem health. Although the initial costs of establishing native plant material are higher—particularly where a higher density and diversity of flowering plants are required—than the costs of low diversity mixes that are heavy on introduced grasses, native plants are often more cost-effective in the long term. Once established, the plantings persist over time and require less mowing, herbicides, and other weed control measures, decreasing long-term maintenance efforts and cost (Berger 2005). In contrast, controlling the growth and spread of invasive plants along roadsides through repeated mowing and rigorous herbicide use is very expensive (Westbrooks 1998). Another advantage of using a diverse assemblage of native plants in revegetation projects is that it may be more resilient to climate change. For many regions, climate projections include an increase in extreme weather events. Many regions will experience both more frequent drought and more frequent flooding. Having a diverse plant community along roadsides means that the community is more likely to contain plants that will persist under different conditions and will continue to provide benefits like erosion control. Though data is limited, what does exist indicates that establishing native vegetation on roadsides can reduce maintenance costs. Consider these examples:  Texas DOT estimated an annual mowing cost savings of $20–$30 million through wildflower establishment (Guyton et al. 2014).  In 1987, Massachusetts Department of Public Works managed roadsides at a cost of about $1.1 million, or $330 per acre; if every acre was instead managed as wildflowers, nearly $280 per acre per year could be saved (Ahern et al. 1992).  In California’s Yolo County, Robins et al. (2001) estimated roadside native vegetation installation costs, which included earthwork, tillage, herbicide, and seeding, at $522 to $1,433 per acre of roadside. They estimated maintenance costs for each of the first 3 years of establishment at $52 to $153 per acre, with similar maintenance costs occurring subsequently every 2 to 3 years. Standard roadside management, for comparison, costs $140 to $490 per acre per year. Reducing Costs and Finding Funding to Support the Use of Native Plant Materials Obstacles encountered by transportation agencies seeking native plant materials can include the cost and, depending on region, the availability of locally or even regionally sourced native plant materials. Some solutions that transportation agencies have used to fund plant material purchases or increase the supply of native plant material include the following:  Committing to purchasing and planting seed or plant material that originates in the state or region. Coordinate with local or regional native plant vendors about plant material needs for projects 3–5 years in the future, so the vendors can plan ahead to have the plant material available. Such a sustained commitment fosters a stable market that will lead to greater production and reduced costs.  Partnering with private nurseries or state agencies in a cooperative effort to build up a local plant material industry.

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-10  Taking advantage of federal funding. Planting native vegetation is an eligible use of federal-aid highway funds. The cost of native plant materials purchased for revegetation projects can be reimbursed by the FHWA.  Finding alternative sources of funding to support the planting of roadside wildflowers. For example, a state might offer a specialty wildflower license plate, the sales of which support the purchase and installation of wildflowers on roadsides, or the state transportation agency could partner with a state or local organization that obtains funding from the FHWA’s Surface Transportation Block Grant Program to implement vegetation restoration. Native Plants in New Roadside Plantings, a Triple Bottom Line Win! In addition to their value to pollinators, there are many advantages of using native plants to providing triple bottom line benefits: Environmental Benefits  Native grasses and flowers are best adapted to local growing conditions, require minimal inputs for establishment, and are better able to tolerate extreme weather events such as drought.  Native plant communities also support more birds, pollinators, and other wildlife.  The use of native plants in roadsides can provide ecological benefits to the surrounding landscape. Societal Benefits  Native plants can be aesthetically pleasing during the growing season.  Native plants can act as snow fences in the winter, trapping and preventing snow from blowing across roads.  The root systems of native plants can increase water infiltration, which reduces runoff and water pollution and keeps waters cleaner. Economic Benefits  Although native plants may cost more upfront, they can provide cost savings over time.  A diverse native plant community can reduce soil erosion and resist weed invasions, which can reduce maintenance costs.

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-11 Case Study: Prairie Plants More Cost-Effective over Time on Indiana Roadsides A collaborative highway research project involving researchers from Purdue University, the Indiana DOT, and the FHWA evaluated plants for use on Indiana’s roadsides. Specifically, the project looked at establishment of three types of roadside plantings: turfgrass, garden wildflower mixes, and native wildflower mixes. The project team also calculated costs of establishment and maintenance of each approach (Dana et al. 1996). Turf plantings were a mix of introduced grasses installed as sod, while the garden wildflower seed mix included 11 species of short-lived annuals or biennials, primarily introduced species such as cosmos, California poppy, and rocket larkspur. The native prairie seed mix was 8 species—3 native grass species (20 percent of the mix) and 5 wildflower species (80 percent of the mix). Garden wildflowers were the least costly to establish, but maintenance was more costly over time, including reseeding repeatedly over time due to the short lifespan of the plants. Another downside of the garden wildflowers mix is that it was not appropriate for erosion control. The prairie plant mixes were more costly up front, but researchers found that the more permanent turfgrass and prairie plantings were cost competitive when long- term management costs were incorporated. This study, conducted in the mid-1990s, reflects the higher costs of native seed at the time. Native seed mixes are more affordable and available today, so the mix tested in this study would cost much less if purchased today. For example, a significantly more diverse native seed mix of 22 species could be purchased from a local Indiana native plant nursery in 2021 for about $400 per acre. That is considerably less than the $2,179.44 cost per acre for the mix included by Dana et al. in 1996. An updated analysis of the costs associated with revegetation of roadsides and roadside vegetation management would be highly beneficial. 10.4 Incorporating Costs and Benefits  into the Planning and Design Phases   During the planning and design process, it is important to consider actions to benefit pollinators early and often (such as revegetation or location considerations) so that they can be included in the project and costs can be incorporated into the project budget. Weighing the short-term vs. long-term costs and benefits of pollinator conservation actions and using the triple bottom line approach outlined below may aid in this process. 10.4.1 Short-Term vs. Long-Term Costs and Benefits Humans are notoriously bad at making long-term decisions (Ornstein and Ehrlich 1989). People have evolved to make decisions based on perceived risk (cost) and expected reward (benefit), and their brains are much better equipped to judge and react to near-term risks and rewards. However, to make better decisions people need to consider the full implications of the Native plants develop extensive root systems  over time that are important for erosion control,  water infiltration, weed resistance, carbon  sequestration, and more.  Photo Credit: Kirk Henderson 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-12 decision over time. This is especially true when considering decisions regarding sustainability and the triple bottom line (Waite 2013). When planning transportation projects, it is relatively easy to add up the short-term costs of planning, design, and construction, and relatively easy to understand conceptually long- term economic and societal gains of transportation system improvements. But when considering project elements to benefit pollinators (or any environmental resource) it is easy to be dissuaded by short-term costs if the long-term environmental and additional associated societal benefits are not carefully described and considered, or if the potential long-term cost savings are not considered. Most pollinator-friendly project elements include actions to change the species composition and distribution of the plant community. Plants take time to grow and become established, and the pollinator community will take time to discover and then disperse into the newly improved habitat conditions. Revegetation and habitat management projects typically require a larger initial investment of time and money until they become established and self-sustaining due to more intensive watering, weeding, and management needs, which are not required once the plants are established, leading to reduced long-term costs. Once the desired pollinator habitat is established a range of benefits that diverse habitat confers will start to emerge, such as ameliorating climate change through increased carbon sequestration, reduced soil erosion, increased water infiltration, and, in agricultural settings, crop pest control and crop pollination. These environmental and societal benefits increase over time; therefore, it is important to establish the proper time frame for analysis in a triple bottom line cost-benefit analysis. Table 10-1. Examples of the benefits of DOT pollinator conservation that could be considered when using the triple bottom line framework to evaluate the costs and benefits of conservation actions. Environmental Benefits  Societal Benefits  Economic Benefits   Supports local  pollinator communities   Supports imperiled  pollinators   Supports other wildlife   Diverse plantings are  more likely to be  resilient to climate  change   Controls erosion    Reduces runoff;  reduces flood risk    Suppresses weeds    Reduces mowing  frequency, which  reduces greenhouse  gas emissions   Protects pollinators  and imperiled species   Roadside habitat  preserves natural  heritage   Pollinator habitat is  aesthetically pleasing  and showcases  regional beauty   Pollinator habitat  increases interest for  drivers and can  improve driver safety  Increases carbon  sequestration in  roadsides through  diverse plantings   Potential for increased  pollination services to  surrounding landscape   Potential for increased pest  predation services to  surrounding landscape   Weed suppression, which can  reduce long‐term  maintenance costs   Reduced mowing frequency,  which reduces mowing costs   Reduced risk of new species  being listed under the ESA,  which reduces costs and  project delays   Increased tourism due to  scenic roads   Improved plant infrastructure,  which can protect roads 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-13 10.4.2 Triple Bottom Line Cost-Benefit Analysis Tool The purpose of this tool is to assist state DOTs in evaluating design features and maintenance actions that can be implemented to benefit pollinators. This tool will assist with organizing cost and benefit information, establishing the environmental and temporal contexts for evaluation, and providing the rationale and justification for selection of the preferred choice, considering the short- and long-term environmental, societal, and economic costs and benefits. As discussed previously, it is challenging to quantify the range of costs and benefits across all elements of the triple bottom line. Therefore, costs and benefits are evaluated qualitatively as a relative change compared to the status quo (e.g., costs are higher, the same, or lower to implement an action compared to current costs). Qualitative cost differences need to be evaluated relative to the overall project costs. For example, including native seed in a new interchange construction project may seem expensive because native seed costs more than nonnative seed. However, relative to the overall cost of the interchange construction, proportionally this is a very small additional cost. Therefore, this would be considered a low relative cost overall. In contrast, switching to native seed for interseeding (also known as overseeding) an existing ROW during ongoing operations and maintenance is proportionally a larger additional cost that would be considered a medium or higher relative cost as ROW maintenance is a much smaller total cost than new construction. The temporal context is important to consider as well. In the previous example the more expensive native seed may be a proportionally larger short-term cost, but if the long-term maintenance for native species is lower, then the investment in native seed leads to long-term savings. Finally, under the sustainability-centered framing of the triple bottom line model, in many cases the total long-term benefits to society and the environment can justify higher economic costs of actions that benefit pollinators compared to the status quo (which does not support a robust pollinator community). Use of this tool will help state DOTs develop pollinator-friendly practices and will them present the rationale for selected actions to decision-makers. This tool is available as a Word document on the National Academies Press website, https://nap.nationalacademies.org/. Steps to Conduct a Triple Bottom Line Cost-Benefit Analysis for Pollinators on Roadsides There are three basic steps to using this tool to evaluate pollinator-friendly measures for roadsides: define, evaluate, and decide. The process to implement each of these steps is described below. Prompts have been provided to help the user conduct a more complete analysis. 1. Define: Describe the project area where the action is to be implemented. a. Describe the landscape context for the project area, including adjacent land uses and distances between natural habitats where roadsides traverse urbanized or agricultural landscapes. b. Describe in detail the pollinator-friendly action or project element being considered.

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-14 c. Describe the intended outcome of the action using the pollinator cost-benefit cubes (refer to the Pollinator Cost-Benefit Cubes section below) to determine the potential benefits to the pollinator community in general, and to imperiled pollinators in the project area. d. Define and then describe the appropriate time frames for analysis (short-term project implementation and long-term operations to realize fulfillment of project results). 2. Evaluate: Consider the costs and benefits from an environmental, societal, and economic perspective. a. Environmental Evaluation: List all the potential environmental benefits (including pollinator benefits) that might result from the action and rate the likely strength of the benefit as high, medium, or low. Use the prompt questions to contribute to the evaluation. b. Societal Evaluation: List all the potential societal benefits that might result from the action and rate the likely strength of the benefit as high, medium, or low. Use the prompt questions to contribute to the evaluation. c. Economic Evaluation: Adjust the relative cost in the pollinator cost-benefit cube as needed for the region and landscape context. Consider how total costs change over time, from short-term initial investment costs to potential long-term cost savings. Rate the likely strength of the economic costs and benefits as high, medium, or low. Use the prompt questions to contribute to the evaluation. 3. Decide: Place the evaluation results in three columns (Environmental, Societal, and Economic) in descending order of rating (high, moderate, low). With the importance of long-term sustainability in mind, review the triple bottom line costs and benefits side by side and decide if the complete suite of benefits justify the potential costs. Describe the rationale for the decision. Prompts for DOT Staff to Apply Cost-Benefit Matrix to Their Pollinator Management Decisions Environmental Evaluation Prompts  Could the action provide medium to high benefits to native pollinators?  Could the action provide benefits to listed pollinators (state or federally regulated species)?  Is the action adjacent to or near agricultural lands where it could support beneficial crop pollination services?  Does the action have ecological benefits that extend beyond those to pollinators (e.g., does it increase habitat for birds or improve water infiltration)? Societal Evaluation Prompts  Does this action increase the aesthetics of the area where work is being done?

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-15  Is the project located on a stretch of road in which the landscape is monotonous, and increasing plant diversity could improve driver safety?  Does the action have landscape benefits that extend beyond benefits to pollinators (e.g., does it increase carbon sequestration)?  Is the general public engaged and interested in pollinator conservation, and will it respond supportively to actions the DOT may take?  Is the project good for public relations for the agency? Economic Evaluation Prompts  Does the action cost more or less in the short term than current practices?  Does the action cost more or less in the long term than current practices?  Are costs higher in the short term but the benefits are more long lasting?  Would the cost to implement this action prevent implementation of other essential operations?  Does the action help contribute to an agreement that provides compliance and regulatory assurances (e.g., a Candidate Conservation Agreement with Assurances)? Example: Application of Triple Bottom Line Cost-Benefit Tool This sample application of the cost-benefit tool uses the proposed pollinator-friendly management action “Limit mowing beyond the mown strip in the recovery area to once or less per year.” Cost-benefit cubes for other conservation actions are included in the Pollinator Cost-Benefit Cubes section below. Sample Pollinator Cost-Benefit Cube Mowing  Limit mowing beyond the clear zone to no more  than twice per year.  Benefit  High  Medium  Low  Co st   Low  I, G  Medium  High  I= Benefits to imperiled species; G= Benefits to general pollinator community 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-16 Pollinator Cost-Benefit Cubes Use these cubes to identify conservation actions for pollinators to consider in roadside projects and management. Integrate the selected cubes into the triple bottom line cost- benefit analysis as described in the Steps to Conduct a Triple Bottom Line Cost-Benefit Analysis for Pollinators on Roadsides section above. The actions are grouped into five different categories: mowing, herbicides, mechanical weed and brush removal, revegetation, and training/education. Table 10-2 lists the benefits to imperiled pollinators and the general pollinator community that are associated with conservation actions that might be implemented on roadsides. The benefits of each action are indicated across the top of the cube as High, Medium, or Low for the general pollinator community (indicated with a G) and imperiled pollinator species (indicated with an I). Similarly, relative cost to implement the action is indicated along the side as Low, Medium, or High. Costs are based on general assumptions for standard implementation of these actions. However, costs may vary by region, and the costs may be adjusted up or down to indicate expected relative costs for the action being considered in the specific project area. Mowing Mowing Mowing  Avoid mowing imperiled butterfly host plants  during butterfly breeding seasons.  Adjust mowing height to a minimum height of 8  to 10 inches in areas with target butterfly host  plants or bumble bee colonies in grass thatch if  mowing during the growing season.  Benefit Benefit High  Medium  Low  High  Medium  Low  Co st   Low  I  G  Co st   Low  I  G  Medium  I  G  Medium  High  High  I= Benefits to imperiled species; G= Benefits to general pollinator community 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-17 Mowing Mowing  Limit mowing beyond the clear zone to no more  than twice per year.  Aim to mow no more than one‐third to half of an  area beyond the clear zone per year (e.g., rotate  mowing sections of a roadside).  Benefit Benefit High  Medium  Low  High  Medium  Low  Co st   Low  G  I, G  Co st   Low  I, G  Medium  Medium  High  High  I= Benefits to imperiled species; G= Benefits to general pollinator community  Mowing Mowing  Limit mowing beyond the clear zone to once or  less per year.  Clean mowing equipment after use and between  sites to limit the spread of weeds.  Benefit Benefit High  Medium  Low  High  Medium  Low  Co st   Low  I, G  Co st   Low  I, G  Medium  Medium  High  High  I= Benefits to imperiled species; G= Benefits to general pollinator community 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-18 Mowing  Delay mowing as late as possible during the  growing season (e.g., mow in autumn) so  blooming plants are available throughout the  growing season.       Benefit         High  Medium  Low     Co st   Low           Medium  I, G  I, G       High                      I= Benefits to imperiled species; G= Benefits to general pollinator community  Herbicides Herbicides    Herbicides  Avoid use of products that have toxicity to  imperiled Lepidopteran species during breeding  seasons.    Train staff and contractors to recognize native  plants and noxious and invasive weeds to reduce  unintended damage to nontarget plants.        Benefit          Benefit         High  Medium  Low            High  Medium  Low    Co st   Low              Co st   Low          Medium  I, G  G          Medium  I, G        High  I, G  G        High                                    I= Benefits to imperiled species; G= Benefits to general pollinator community 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-19 Herbicides Herbicides  Direct herbicide applications to undesirable  plants to avoid harming nontarget species (e.g.,  spot‐treatment applications with a backpack  sprayer, targeted applications to cut stems).  Avoid herbicide sprays when weather conditions  increase drift (e.g., avoid wind speeds >15 mph;  avoid applications during a temperature  inversion).  Benefit Benefit High  Medium  Low  High  Medium  Low  Co st   Low  Co st   Low  Medium  I, G  Medium  I, G  High  I, G  High  I= Benefits to imperiled species; G= Benefits to general pollinator community  Herbicides Herbicides  Choose and operate equipment with drift  management in mind (e.g., calibrate equipment  regularly; choose spray nozzles to reduce drift;  on boom sprayers; use the lowest effective  pressure and largest droplet size possible).  Avoid broadcast applications of systemic  herbicides and herbicides with long residuals to  reduce exposure to butterfly and moth  caterpillars that can be exposed to residuals by  consuming contaminated vegetation.  Benefit Benefit High  Medium  Low  High  Medium  Low  Co st   Low  I, G  I, G  Co st   Low  Medium  Medium  I, G   G  High  High  I, G  G  I= Benefits to imperiled species; G= Benefits to general pollinator community 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-20 Herbicides    Herbicides  If necessary (e.g., if the seed bank was depleted  of desirable species), replant areas that have  been treated with herbicides to remove dense  infestations of undesirable vegetation with  desirable, competitive, low‐growing plant species  to reduce the need to re‐treat the area.    When feasible, hand pull or use another  mechanical control strategy if in an area where  herbicide use might result in impacts on  imperiled species.       Benefit          Benefit         High  Medium  Low            High  Medium  Low    Co st   Low              Co st   Low          Medium    I, G          Medium          High            High  I  G                                I= Benefits to imperiled species; G= Benefits to general pollinator community    Herbicides    Herbicides  Use selective herbicides whenever possible to  reduce damage to nontarget plants.    Apply herbicides during plant life stages when  weeds are most vulnerable (e.g., before blooming  or before going to seed).       Benefit          Benefit         High  Medium  Low            High  Medium  Low    Co st   Low              Co st   Low          Medium  I, G            Medium  I, G  I, G      High            High  I, G  I, G                                I= Benefits to imperiled species; G= Benefits to general pollinator community 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-21 Herbicides Herbicides  Whenever possible, prevent conditions that  would allow incompatible vegetation or noxious  and invasive species to establish or reestablish.  Train staff and contractors to recognize and avoid  applications to key host plants for target  imperiled butterflies and moths or key nectar  plants for bumble bees.  Benefit Benefit High  Medium  Low  High  Medium  Low  Co st   Low  Co st   Low  Medium  I, G  G  Medium  I  G  High  High  I= Benefits to imperiled species; G= Benefits to general pollinator community  Mechanical Weed and Brush Removal Mechanical Weed and Brush Removal Mechanical Weed and Brush Removal  Minimize soil disturbance (disking, tilling) during  brush removal activities to avoid spreading  invasive plants and destroying overwintering  sites or nests.  Time activities to avoid vulnerable times for focal  species.  Benefit Benefit High  Medium  Low  High  Medium  Low  Co st   Low  I, G  Co st   Low  Medium  Medium  High  High  I  G  I= Benefits to imperiled species; G= Benefits to general pollinator community 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-22 Mechanical Weed and Brush Removal Mechanical Weed and Brush Removal  Feather or soften forest edges adjacent to clear  zones to create a transitional area between the  forest and grass (e.g., thin portions of the forest  canopy along the edge next to grassy areas,  removing undesirable or unhealthy trees).  Leave snags or trees with cavities in areas where  they are set back from the road and pose no  safety risk.  Benefit Benefit High  Medium  Low  High  Medium  Low  Co st   Low  Co st   Low  I, G  Medium  I, G  Medium  High  High  I= Benefits to imperiled species; G= Benefits to general pollinator community  Revegetation Revegetation Revegetation  Increase flowering plant diversity in all plantings.    Prioritize native plants in all plantings   (revegetated and landscape).  Benefit Benefit High  Medium  Low  High  Medium  Low  Co st   Low  Co st   Low  Medium  Medium  I, G  High  I, G  High  I= Benefits to imperiled species; G= Benefits to general pollinator community 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-23 Revegetation Revegetation  Increase host plants in revegetation plantings. Interseed host plants into existing roadside  vegetation.  Benefit Benefit High  Medium  Low  High  Medium  Low  Co st   Low  I, G  Co st   Low  Medium  I, G  Medium  I, G  G  High  I  G  High  I, G  G   I= Benefits to imperiled species; G= Benefits to general pollinator community  Revegetation Revegetation  When possible, salvage native plants at  construction site for replanting.  Control weeds to reduce weed competition and  allow native seedlings to grow in the first and  second years after planting. Prevent weeds from  going to seed.  Benefit Benefit High  Medium  Low  High  Medium  Low  Co st   Low  Co st   Low  I, G  Medium  Medium  I, G  High  I  G  High  I= Benefits to imperiled species; G= Benefits to general pollinator community 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-24 Training/Education Training/Education  Provide training for staff for education about why  the transportation agency takes conservation  actions for pollinators.  Benefit High  Medium  Low  Co st   Low  I, G  I, G  Medium  I, G  I, G  High  I= Benefits to imperiled species; G= Benefits to general pollinator community 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-25 Table 10-2. Value of benefits to pollinators of potential conservation actions to be implemented by DOTs. Conservation actions  Benefits to  general  pollinator  community  Benefits to  imperiled  species  Mowing  Avoid mowing imperiled butterfly host plants during butterfly  breeding seasons  Medium  High  Adjust mowing height to a minimum height of 8–10 inches in  areas with target butterfly host plants or bumble bee colonies  in grass thatch if mowing during the growing season  Medium  High  Limit mowing beyond the mown strip in the recovery area to  once or less per year  High  High  Aim to mow no more than 1/3–1/2 of an area beyond  the mown strip in the recovery area per year (e.g., rotate  mowing sections of a roadside)  High  High  Limit mowing beyond the mown strip in the recovery area to  no more than twice per year  Medium/High  Medium  Delay mowing as late as possible during the growing season  (e.g., mow in autumn), so blooming plants are available  throughout the growing season  Medium/High  Medium/High  Clean mowing equipment after use and between sites to limit  the spread of invasive weeds  Medium  Medium  Herbicide Use  Train staff and contractors to recognize and avoid applications  to key host plants for target imperiled butterflies and moths or  key nectar plants for bumble bees  Medium  High  Avoid use of products that have toxicity to imperiled butterfly  and moth species during breeding seasons  Medium/High  High  Hand pull or use another mechanical control strategy if in an  area where herbicide use might impact imperiled species,  when feasible  Medium  High  Train staff and contractors to recognize native plants as well as  noxious and invasive weeds to reduce unintended damage to  nontarget plants  High  High  Use selective herbicides whenever possible to reduce damage  to nontarget plants  High  High 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-26 Conservation actions  Benefits to  general  pollinator  community  Benefits to  imperiled  species  Direct herbicide applications to undesirable plants to avoid  harming nontarget species (e.g., spot treatment applications  with a backpack sprayer, targeted applications to cut stems,  etc.)  High  High  Apply herbicides during plant life stages when weeds are most  vulnerable (e.g., before blooming or before going to seed)  Low/Medium  Low/Medium  Avoid herbicide sprays when weather conditions increase drift  (e.g., avoid wind speeds >15 miles per hour, avoid applications  during a temperature inversion)  High  High  Choose and operate equipment with drift management in  mind (e.g., choose spray nozzles to reduce drift; on boom  sprayers, use the lowest effective pressure and largest droplet  size possible)  Low/Medium  Low/Medium  Avoid broadcast applications of systemic herbicides and  herbicides with long residuals, thus reducing exposure to  butterfly and moth caterpillars that can be exposed to  residuals by consuming contaminated vegetation  Medium/High  High  Whenever possible, prevent conditions that would allow  incompatible vegetation or noxious and invasive species to  establish or reestablish  Medium/High  High  If necessary (e.g., if the seed bank was depleted of desirable  species), replant areas that have been treated with herbicides  to remove dense infestations of undesirable vegetation with  desirable, competitive, low‐growing plant species to reduce  the need to re‐treat the area  Medium  Medium  Mechanical Weed and Brush Removal  Time activities to avoid vulnerable times of focal species  Medium  High  Feather or soften forest edges adjacent to the mown strip in  the recovery area to create a transitional area between the  forest and grass (e.g., thin portions of the forest canopy along  the edge next to grassy areas, removing undesirable or  unhealthy trees)  Medium  Medium  Leave snags or trees with cavities in areas where they are set  back from the road and pose no safety risk  Medium  Medium  Minimize soil disturbance (disking, tilling) during brush  removal activities to avoid spreading invasive plants and  destroying overwintering sites or nests  Medium  Medium 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-27 Conservation actions  Benefits to  general  pollinator  community  Benefits to  imperiled  species  Revegetation  Prioritize native plants in all plantings (revegetation and urban  landscaping)  High  High  Increase flowering plant diversity in all plantings  High  High  Increase host plants in revegetation plantings  High  High  Control weeds to reduce competition while allowing native  seedlings to grow—this is critical in the first and second years  after planting—and weeds should also be prevented from  going to seed  High  High  Interseed host plants into existing roadside vegetation  Medium/High  High  Weed control prior to planting  High  High  When possible, salvage native plants at the construction site  for replanting  Medium  High  Training/Education  Provide training for staff for education about why  conservation actions are taken by the transportation agency  for pollinators  Medium/High  Medium/High 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-28 Worksheet for Triple Bottom Line Cost-Benefit Tool De fin e  Describe the project area  Describe the landscape context  Describe the intended outcome  Define and describe the timeframe for analysis 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-29 Ev al ua te   Strength of Factor  Environmental  High  Medium  Low  Societal  High  Medium  Low  Economic  High  Medium  Low 

Chapter 10. Cost‐Benefit Considerations for Pollinator Management on Roadsides  10-30 De cid e  Rationale for Decision:  List in order of strength of factors  Hi gh   Environmental  Societal  Economic  M ed iu m   Lo w  

11-1 Chapter 11 Communication Support 11.1 Introduction  Outreach and communication are important parts of the process when taking action for pollinator conservation. Many of the actions necessary to protect pollinators may involve increased up-front costs, such as using locally or regionally sourced native plants in revegetation projects, or require cultural changes in planning or maintenance activities, such as reduced mowing frequency. Outreach and communication with the public and within your agency are important for building support for such actions. It is important for people to understand why pollinators are important, why pollinator conservation efforts are needed, and how Departments of Transportation (DOTs) can contribute meaningfully to pollinator conservation. This outreach can help improve buy-in from the public as well as the DOT staff members who will carry out this important work. Sharing the story with the community and its leaders about the work your agency is doing to manage roadsides while also supporting pollinators will elevate awareness and build support for your agency and for pollinator conservation. Outreach to the public can:  build public support,  share accomplishments and progress over time,  educate decision-makers and partners about the impact and reach of your work,  demonstrate responsible use of resources and funding to the public,  share practices with other DOTs, and  attract new organizations and partners for collaboration and outreach. Internal communication can:  build internal support for actions that benefit pollinators,  improve understanding of why particular actions are important for pollinator conservation,  share accomplishments and progress over time, and  attract new organizations and partners for collaboration and outreach. This chapter was created to serve as a communications tool kit. It provides materials to help you communicate your pollinator-related projects, actions, and commitments to department or agency staff members as well as the general public. For guidance and inspiration, examples of what DOTs have already created are also included.

Chapter 11. Communication Support  11-2 11.1.1 What is in this Toolkit? This toolkit contains a variety of resources for communicating with the public and with DOT staff members. These tools include:  examples of signs, posters, brochures, and websites from many DOTs that can serve as inspiration for your own communications efforts;  sample social media posts and a calendar of relevant pollinator-related events that you can use in social media outreach with the public;  Frequently Asked Questions about pollinators and roadside habitat, which may be especially helpful for public outreach efforts;  Talking Points about pollinators and roadside habitat, which may be especially helpful for outreach within your DOT; and  a list of Top DOT Actions for Pollinators that can be used to highlight important conservation actions to DOT staff members and decision-makers. In addition, there are links to a variety of resources to aid in your communications efforts. These include:  photo libraries of pollinators,  graphics,  relevant video sites,  an editable PowerPoint presentation for use in educating DOT staff members about pollinators and roadside habitat,  a video for the public about the importance of pollinators and roadside habitat that can be used in public outreach, and  a video for DOT staff members about the importance of pollinators and roadside habitat that can be used for internal training or communications. The other chapters in this guide also contain background information that can be useful when responding to media requests for more details or answering questions within your agency or from the general public. For example, detailed information on pollinators and how pollinators use roadsides can be found in Chapter 2. 11.2 Communicating with a General Audience  Communicating with the public is important for building public support for DOTs and their conservation efforts. There are a variety of ways to tell the public about the important work your agency is doing, including signs, publications, and social media outreach. This section provides examples of outreach activities from DOTs around the country, along with additional resources that you can use in your own outreach efforts. 11.2.1 Signage Signs can be used to indicate to DOT staff members the roadsides with special maintenance instructions or designated areas of concern (Figure 11-1). Signs can also be used to

Chapter 11. Communication Support  11-3 showcase to the public an established planting along a roadside or at a highly visible area such as a rest area (Figure 11-2). Signs can also indicate habitat in progress, demonstrating a transportation agency's intentions for a new planting that is not yet fully established. Signs for the public can include project partners and background information regarding a project (Figure 11-3). Figure 11-1. Oregon DOT uses signs to indicate special management areas so the maintenance staff will know the specific vegetation management needed for that particular site.  Figure 11-2. A simple but effective roadside sign in Kansas indicates a stretch of roadside with native wildflowers. 

Chapter 11. Communication Support  11-4 Figure 11-3. This educational sign is next to a display garden created by the Missouri DOT at the Missouri State Fairgrounds.  11.2.2 Websites Some DOTs have created web pages on their websites that specifically address pollinators and pollinator-related issues. These websites can be very useful in educating the public about why pollinators are important and what DOT initiatives are in place to support pollinators. Many of these websites have general information about pollinators and pollinator biology as well as specific information about DOT work that supports pollinators. Such websites are an ideal place to include maps of pollinator habitat work, videos, brochures, or factsheets and other information. Three great examples are:  Florida DOT: https://www.flawildflowers.org/fdot-wildflower-program-pollinators/  Virginia DOT: https://www.virginiadot.org/programs/pollinator_habitat_program.asp  Washington DOT: https://wsdot.wa.gov/construction-planning/protecting- environment/maintaining-vegetation-along-our-highways/protecting-pollinators 11.2.3 License Plates Several states have specialty license plates that highlight pollinators or native wildflowers (Figure 11-4). The sales of these license plates often go toward supporting additional wildflower plantings or related research and education efforts. Depending on the state, transportation agencies may not be directly involved in license plate designs but can work with outside groups that will promote certain designs.

Chapter 11. Communication Support  11-5 Figure 11-4. Many states offer specialty license plates that highlight pollinators or native wildflowers. 11.2.4 Printed Publications Many DOTs have created publications to celebrate the local diversity of pollinators and native plants. These publications might provide information on the natural history of pollinators or showcase species of interest (Figure 11-5). Other publications might focus on highlighting and recognizing key native plants that can be found on roadsides in the region (Figure 11-6). Examples include posters, booklets, and factsheets (Figure 11-7). Many of these publications were created in collaboration with government agencies, nonprofit organizations, and others.

Chapter 11. Communication Support  11-6 Note: Guides are available on the following websites:   – https://iowadot.gov/lrtf – https://viz.wspis.com/flipbooks/tdot_pollinator_guide/ Figure 11-5. These guides, created by the Iowa and Tennessee DOTs, highlight pollinators as well as the work that the DOTs are doing to support them. Note: Brochures are available on the following websites:   – https://edis.ifas.ufl.edu/publication/EP138 – https://dot.nebraska.gov/media/3933/wildflower2009.pdf – https://ftp.dot.state.tx.us/pub/txdot‐info/trv/wildflowers/wildflowers_brochure.pdf Figure 11-6. Brochures created by the Florida, Nebraska, and Texas DOTs bring attention to native plants found on their respective roadsides and are often available at rest areas and other tourist stopovers.

Chapter 11. Communication Support  11-7 Note: Posters are a great tool for sharing information with wide audiences, particularly with schools and  land management agencies. Posters are available on the following website: https://iowadot.gov/lrtf  Figure 11-7. These posters were created for the Iowa DOT as part of the Iowa Living Roadway Trust Fund and are available free on request to anyone in the state. 11.2.5 Events Local or statewide events can be opportunities for outreach to the public on the pollinator-related work of your agency. Creating a booth or display that can be used at events such as a county or state fair that includes pictures of roadside habitat and pollinators will educate the public about these important animals and how your DOT is working to support them. Illinois DOT once set up a state fair display with monarch butterflies in a net cage to grab attention of fair attendees and start conversations about the connections between roadsides and monarchs. Public meetings can be another opportunity to engage with the public directly. When Ohio DOT’s Region 6 was considering installing several pollinator plantings in collaboration with partners, they set up a series of public meetings to discuss the plantings. These meetings were instrumental in helping the public understand why Ohio DOT was experimenting with native plants and what to expect as the plantings established (i.e., the plantings would not look colorful during the establishment phase but would begin to bloom a few years after planting). 11.2.6 Demonstration Sites Demonstration plantings with native plants that are showy and colorful are ideal for smaller spaces such as rest areas or gardens that receive lots of foot traffic from people within the state as well as tourists from elsewhere. Signage or brochures can educate the public as to why a DOT is showcasing these plants. In 2012, Missouri DOT installed a pollinator garden on the Missouri State Fairgrounds. The 60- by 25-foot garden included 17 species of wildflowers that attract pollinators. The garden also had two 4-foot-wide signs that offered information (and photos) regarding some of the known species of bees in Missouri and explanations as to why pollinators are important. Oklahoma DOT provided information  about roadside pollinator habitat to the  public at one of their Tourist Information  Centers  Photo Credit: R. Perkins 

Chapter 11. Communication Support  11-8 11.2.7 Social Media Social media is an effective way to communicate with the public quickly about the work your DOT is doing to support pollinators. Social media can help draw attention to articles, meetings, new publications, interviews, podcasts, or demonstration sites or just generate interest in a DOT. There are a growing number of social media platforms, but Facebook, Instagram, and Twitter remain the three with the largest reach and the ones that are most commonly used by agencies. These platforms have very different limits on how long posts can be (see Table 11-1) as well as some other differences regarding what can be posted. For Facebook and Twitter, photos or videos are optional in posts; live links can be included (they will display as a highlighted panel). Instagram does not allow live links and does require a photo or video. If you are using multiple platforms, it is worth using the same post on as many platforms as you can for efficiency, despite the different character limits. Facebook and Instagram both allow longer, more descriptive posts compared with Twitter; therefore, it is typical to use the same text for Facebook and Instagram and shorter text for Twitter. Table 11-1. Quick guide to different social media platforms. Platform  Ideal for:  Length of Post  (character limit)  Hashtag Limit  Facebook  Promoting events, summarizing recent  work, live video streams  63,206  2  Instagram  Photos  2,200  30  Twitter  Sharing links, news, marketing  280   2  The following calendar (Table 11-2) lists some events that your communications department may wish to take advantage of when using social media to share the importance of pollinators and the role DOTs play in supporting them. Table 11-2. Calendar of events relevant for pollinator outreach through social media. Month  Opportunities for Highlighting Pollinators and Their Habitat  January  Overwintering monarch butterfly counts in the west (Thanksgiving Count,  New Year’s Count data released)  February  Monarchs start to leave overwintering sites  March  Bumble bee queens are emerging  April  Earth Day/Week and National Native Plant Month; bumble bee queens  emerging 

Chapter 11. Communication Support  11-9 Month  Opportunities for Highlighting Pollinators and Their Habitat  May  Spring wildflowers and their importance for bees; National Wildflower Week,  Endangered Species Day (May 19), World Bee Day (May 20)  June  Pollinator Week (third week in June)  July  Moth Week (third week in July)  August  Wildflowers in bloom on roadsides  September  Fall monarch migration  October  Fall monarch migration  November  Overwintering habitat for pollinators  December  Overwintering habitat for pollinators  Sample Social Media Posts Social media posts that focus on pollinator-related outreach can cover a variety of topics, such as the importance of pollinators; provide photos or information about particular species of pollinators found on roadsides; or discuss the value of native plants and roadside habitat projects.  “On average, one in three bites of food is dependent on pollinators.”  “Planting native plants along roadsides has many benefits, including providing pollinator habitat, flood prevention, and carbon sequestration.”  “Monarch butterflies use milkweeds along roadsides during the breeding season.”  “Spring is here! Keep an eye out for the first bumble bees of the season.”  “Monarch butterflies in the west are in trouble – our DOT is taking action by avoiding mowing during the breeding season.”  “Migrating monarch butterflies east of the Rocky Mountains may travel as far as 3,000 miles during their lifetime, one of the longest butterfly migrations in the world!”  “Roadsides can be home for a number of rare plants and animals, including butterflies like the Karner blue butterfly.” 11.2.8 Frequently Asked Questions There are a number of frequently asked questions (FAQs) that the general public may ask of a DOT regarding pollinator conservation and roadsides. The FAQs and suggested answers that follow have been compiled into a Word document that is available for download so that the text can be used as needed in your outreach efforts (available on the National Academies Press website https://nap.nationalacademies.org/.

Chapter 11. Communication Support  11-10 Why Are Pollinators Important? Pollinators are important to human health and well-being. More than 85 percent of flowering plants require an animal, usually an insect, for pollination. One out of every three bites of food is pollinated by an insect, including bees, butterflies, moths, wasps, flies, and beetles. Unfortunately, populations of many insect pollinators are declining. This includes species that were formerly widespread, such as the monarch butterfly. Insect pollinator populations are declining due to a range of factors, including habitat loss, pesticide exposure, and climate change. How Can My DOT Help Pollinators? DOTs can help pollinators by creating pollinator habitat along roadsides that includes a diversity of native plants. DOTs can also help pollinators by protecting plant species that are important to pollinators where they occur along roadsides. These include preferred nectar and/or pollen plants as well as butterfly and moth host plants (i.e., the plants that caterpillars eat) of local pollinators. Do Roadsides Make Good Habitat for Pollinators? Yes! Roadsides can provide good habitat for pollinators when the habitat contains a variety of native plants that provide food, nesting sites, and places to overwinter. Food for pollinators can mean host plants for butterfly or moth caterpillars as well as flowers, which provide nectar and pollen. Why Is It Important to Create Pollinator Habitat Along Roadsides? One of the primary drivers of biodiversity decline for many species, including pollinators, is habitat loss. With more than 10 million acres in the United States, roadsides present a valuable opportunity to increase the amount of habitat available to pollinators. Increasing the amount of habitat available will increase the number of pollinators that can be supported on the landscape, thereby decreasing the risk of extinction. Roadside habitat is also ideally suited to increasing habitat connectivity, making it easier for animals to move among high-quality habitat patches such as nature preserves or other natural areas. Increased habitat connectivity also helps to reduce extinction risks. Will Pollinator Habitat Affect Driver Safety? No. Driver safety is a top priority for DOTs. Pollinator habitat can be maintained or planted along roadsides beyond the mown strip in the recovery area so that safety is not compromised. Won’t Pollinators Be Killed by Traffic? Although some pollinators are killed by traffic, research suggests that creating pollinator habitat along roadsides does not increase the number of pollinators killed. In fact, some research shows that pollinator mortality from traffic is actually lower in places where roadside vegetation has more plant species. Quality habitat on roadsides may reduce the number of pollinators killed by vehicles by providing necessary habitat, thereby reducing the need for pollinators to move elsewhere. In many parts of the country, roadsides are the

11-11 Chapter 11. Communication Support  primary sources of habitat; therefore, ensuring that roadsides have native plants that provide the resources pollinators need is highly beneficial. Roadsides can also be very important for increasing habitat connectivity. Are There Other Advantages to Creating Roadside Habitat for Pollinators? Creating climate-smart pollinator habitat along roadsides has many additional benefits beyond conservation. Pollinator habitat helps control erosion and reduces runoff, which reduces flooding and improves water quality. Planting a diverse assemblage of native plants can also increase soil health and improve carbon sequestration. In addition, habitat for pollinators can provide habitat for other beneficial insects, such as insect predators that contribute to the control of crop pests. How Can I Help? You can help by contacting your representatives at all levels of government and letting them know that you support DOT efforts to increase pollinator habitat along roadsides. In your own communities, you can help pollinators by planting native plants and reducing your use of pesticides, especially insecticides, around your home. 11.3 Communication Within Your DOT  Internal communication efforts can be valuable for building awareness about the importance of pollinators and the strategies that can be used to create and maintain roadside habitat for them. Awareness of the potential of roadsides as habitat for pollinators should be increased within the administration as well as at other levels (Lampinen and Anttila 2021). It can also be helpful to highlight safety, possible cost savings, public engagement, and other benefits of pollinator habitat, such as erosion control and carbon sequestration, as these may increase adoption by decision-makers (Nemec et al. 2021). Internal outreach efforts can also be useful for building enthusiasm and support for such actions among DOT staff members. This is valuable when seeking to make and implement changes successfully. Additional resources are provided here that may be useful in outreach within your DOT: the FAQs, Talking Points and Top DOT Actions for Pollinators are available for download as Word documents so that the text can be used as needed for internal communications (available on the National Academies Press website, https://nap.nationalacademies.org/). 11.3.1 Staff Training DOTs have identified staff training as a very important component to integrating changes made to maintenance and design plans regarding pollinators. Training helps build internal support and an understanding of new approaches within the agency, from the managerial staff to the crews working on the ground. Topics for training might include:  basic biological and habitat needs for pollinators,  roles that roadsides and rights-of-way can play in pollinator conservation,  current best practices to minimize impacts of vegetation management on pollinators,  landscape designs with pollinators in mind,

Chapter 11. Communication Support  11-12  recognition of important native plants,  updated noxious and invasive weed management techniques, and  monitoring techniques for roadside vegetation and/or pollinators. Figure 11-8. Agenda for pollinator training for Colorado DOT staff. If your agency does not have in-house expertise to conduct the training, partner with a local organization or agency that can help share their knowledge. In Iowa, for example, the Tallgrass Prairie Center at the University of Northern Iowa provides native plant identification training to roadside managers as well as staff members from agencies within the state, such as the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service. See Box 11-1 for an example agenda of training for DOT staff members geared toward providing background and information on practices that support pollinators.

Chapter 11. Communication Support  11-13 Box 11-1. Roadside Landscape Design and Pollinator Conservation Course Welcome, Introductions, Overview of the Day Module 1. The Importance of Pollinator conservation  Pollination biology  Pollination economics  Pollinators in decline Module 2. Bee and Butterfly Biology  Pollinator recognition  Pollinator ecology  Identifying pollinator habitat Module 3. Pollinator-Friendly Roadside Management  The value of habitat  Importance of roadsides to pollinators  Conducting roadside vegetation inventories  Adapting mowing practices  Use of herbicides to reduce risks to pollinators  Discussion about the potential for adjusting practices regionally Module 4. Roadside Design and Planning Considerations  Plant selection  Sourcing plant material  Prioritizing new locations  Brainstorming – opportunities and constraints  Coordinating with maintenance Module 5. Enhancing Establishment of Roadside Vegetation  Site preparation  Planting techniques for woody and herbaceous plants Module 6. Communicating with the Public about Pollinators  Signage, messaging, social media  Future research needs Module 7. Additional Resources and wrap up

Chapter 11. Communication Support  11-14 11.3.2 Partnerships State or federal agencies, as well as local, regional, or national organizations, can be excellent partners for outreach to the general public as well as internal communications (see Box 11-2). A land management agency or organization, for example, could offer new cutting-edge weed management techniques to the maintenance staff or organize a regional workshop to help share collective knowledge. Similarly, native plant conservation or natural heritage organizations could provide feedback to the design staff on native plants that are unfamiliar to them. Other agencies or organizations could also be partners in communications with the public when there are common goals. The Audubon Society and Pheasants Forever/Quail Forever are good partners for sharing the advantages of reduced mowing strategies involving songbirds and game birds. Possible collaborations could include events like field days or garden visits, sharing costs on plant materials or signage for habitat installations, or just spreading the word about DOT practices that support pollinators and biodiversity. Box 11-2. Communicating Timing of Mowing Within an Agency The Ohio Department of Transportation came up with a creative solution to help maintenance staff know when to mow in different parts of the state. They created window clings to be placed in the cabs of mowers that give basic guidelines on mowing height and timing, as well as a QR code that staff can scan to get more information. This type of creative communications solutions can help keep staff informed about best practices for maintaining pollinator habitat. Partnerships with other agencies or organizations can help fill knowledge gaps within your agency. A transportation department that has little experience with establishing native plants could partner with the USDA Natural Resources Conservation Service, a habitat organization such as Pheasants Forever/Quail Forever, or another group that installs native vegetation and provides guidance on habitat management. Organizations with a specialized focus on pollinators could provide background information for a DOT or provide tailored guidance or staff training. Table 11-3 has examples of organizations or groups that could be partners in pollinator conservation efforts.

Chapter 11. Communication Support  11-15 Table 11-3. Potential partners in communicating with the public regarding revegetation projects or training and educational collaborations on vegetation management techniques. Potential Partner Organization/Agency  Description  State and Federal Agencies  State departments of natural resources  Protect air, water, and soil; their roles sometimes also  encompass fishing and hunting as well as  environmental conservation and natural heritage  State fish and game departments  Involved in stewardship of parks, fish, game, and  state outdoor recreational resources; some also track  species of concern  U.S. Fish and Wildlife Service  Federal agency that protects endangered species and  manages fisheries, refuges, and migratory birds  USDA Natural Resources Conservation  Service  Federal agency that provides technical support to  producers and landowners as well as financial  support for voluntary conservation actions on  working lands  USDA Forest Service  Federal agency that manages national forests and  grasslands  Bureau of Land Management  Federal agency that manages public lands for  recreation, grazing, or energy extraction; also  manages national monuments and wilderness areas  National Park Service   Federal agency that manages national parks, some  national monuments, and other land that has historic  or conservation value  State departments of agriculture  State departments of agriculture may be the primary  agencies for managing insects in some states  Military bases  Military bases often have conservation and  management mandates that overlap with those of  DOTs  Working Groups  Rights‐of‐Way as Habitat Working  Group  A collaborative group of partners from the energy  and transportation sectors:  http://rightofway.erc.uic.edu/  Western Association of Fish and Wildlife  Agencies  Regional working group in the western states that has  taken a leadership role in monarch conservation 

Chapter 11. Communication Support  11-16 Potential Partner Organization/Agency  Description  Midwest Association of Fish and Wildlife  Agencies  Regional working group in the Midwest that has  taken a leadership role in monarch conservation  Non‐Government Organizations with Expertise Pertaining to Outreach about Natural Heritage  State master naturalists  Groups that provide naturalist training for volunteers  who are eager to make a difference  State natural heritage foundations or  commissions  Organizations devoted to protecting land and wildlife  State biological surveys  Some states have divisions that are devoted to  monitoring biological diversity; these can provide  detailed information about the locations of habitat or  particularly important diverse lands  Non‐Government Organizations with Expertise Pertaining to Native Plants  Native plant societies  State or local groups that focus on native plants,  restoration, and ecosystem health:  https://nanps.org/native‐plant‐societies/ Wild Ones  National nonprofit organization with local chapters  that focus on native plants and landscaping:   https://wildones.org/  Natural Areas Association  National nonprofit organization that provides support  to a community of natural area managers:  https://naturalareas.org/  Non‐Government Organizations with Expertise Pertaining to Native Plant Establishment  The Nature Conservancy  Nonprofit that focuses on protecting and restoring  land and water, often through partnerships:  https://www.nature.org/en‐us/   Pheasants Forever/Quail Forever  Nonprofit organizations that focus on creating and  maintaining habitat for game birds:  https://www.pheasantsforever.org/  https://quailforever.org/   Xerces Society for Invertebrate  Conservation  Nonprofit that works to support invertebrates and  the important roles they play; has significant  expertise in habitat establishment and restoration to  support pollinators: https://xerces.org/ 

Chapter 11. Communication Support  11-17 Potential Partner Organization/Agency  Description  Grassland Restoration Network  An association of projects with staff members who  work on restoration in a variety of grassland  ecosystems. They share knowledge and information  about grassland restoration. Non‐Government Organizations with Expertise on Pollinators  Xerces Society for Invertebrate  Conservation  Nonprofit that works to support invertebrates and  the important roles they play; has the largest  pollinator conservation team in the world and many  relevant resources: https://xerces.org/  Pollinator Partnership  Nonprofit known for spearheading Pollinator Week:  https://www.pollinator.org/  Monarch Joint Venture  A partnership of federal and state agencies,  nongovernmental organizations, businesses, and  academic programs that work to protect monarchs:  https://monarchjointventure.org/  Non‐Government Organizations with Expertise Pertaining to Small Wildlife Species that Use  Roadside Habitat  National and state Audubon Society  chapters  Nonprofit organization that works to protect birds:  https://www.audubon.org/  Local Wildlife Society chapters  Nonprofit organization that provides support for  wildlife professionals; local chapters have a regional  focus: https://wildlife.org/  In addition to national or statewide agencies or organizations, local groups that have a wide reach may be potential collaborators. Examples include the People and Pollinators Action Network, based in Boulder, Colorado; the Pollinator Conservation Alliance, based in Buffalo, New York; and the Pollinator Friendly Alliance, based in Stillwater, Minnesota. Fostering Pride for Your Work within Your Agency Creating a sense of pride in the work your agency is doing to protect pollinators is a great way to build support for continuing such work. At the 2022 Pollinator Habitat Conservation along Roadways Peer Exchange Meeting, many DOT staff members indicated that having leadership on board was crucial to implementing conservation practices for pollinators. Fostering a sense of agency pride in pollinator work is one way to get leadership support for pollinator conservation. Scott Lucas, assistant administrator with the Ohio DOT Office of Maintenance Operations, noted the importance of identifying the priorities of senior leadership in order to help engage them.

Chapter 11. Communication Support  11-18 Some steps that Scott Lucas suggests for success include:  Know what senior leadership is interested in and find out what motivates them. Some possibilities include eco-credits, financial gain, recognition, and aesthetics.  What motivates the staff? Find something that many staff members care about and connect it to pollinators. It might be a shared love of nature, recreational activities like hunting or fishing, or interest in our food supply. Find out what motivates people in your department and show how creating pollinator habitat connects to this shared interest.  Have a clear goal for your group.  Do not exclude people (e.g., do not make it political).  Give a shout-out to partners and recognize them whenever possible.  Apply for awards related to exemplary ecosystem management or roadside stewardship.  Do outreach events with staff members and the public to showcase the work you have done. 11.3.3 Talking Points This collection of talking points, also available for download as a Word document, may be useful in communications with the public or with DOT staff members. These talking points can help explain to decision-makers in your department the importance of pollinators and the types of actions DOTs can take to protect pollinators. Pollinators Are Important to Human Health and Well-being More than 85 percent of flowering plants require an animal, usually an insect, to move pollen between flowers for reproduction. Because they provide this important service, pollinators are vital to our natural areas as well as human health and well-being. Insect pollinators are important for many crops. It has been estimated that about one in three bites of food that humans eat every day can be traced back to pollinators. As habitat within rural landscapes decreased, agricultural crops became more dependent on pollination from managed honey bees. The bees, which are native to Europe, can be brought in during bloom and moved between crops throughout the growing season. Studies show that wild native bees contribute substantially to crop pollination as well. Furthermore, pollination improves when native bees are present compared to periods when only honey bees are present (Greenleaf and Kremen 2006; Garibaldi et al. 2011; Brittain et al. 2013). Many Species of Pollinators Are Declining and in Need of Conservation Actions Many species of insects are declining around the world, including a number of pollinators. Pollinators in the United States are no exception. For example, long-term studies in both Ohio and California have documented declines in butterfly abundance and richness (Forister et al. 2011; Wepprich et al. 2019). A recent study of butterflies in the western

Chapter 11. Communication Support  11-19 United States looked at long-term data as well as community science data and found a long-term decline in butterfly abundance amounting to 1.6 percent per year over the last 40 years (Forister et al. 2021). This decline includes previously abundant and widespread species like monarch butterfly. Native bees are also showing declines, with 27 percent of mason bees and 50 percent of leafcutter bees at risk of extinction. Similarly, 28 percent of bumble bee species in the United States and Canada are imperiled, with several on the brink of extinction. Roadsides Can Provide Valuable Habitat for Pollinators State DOTs manage substantial amounts of land and associated natural resources across North America, including more than 10 million acres in the United States (Forman et al. 2003). This acreage holds the potential to create a network of habitats that will be able to support pollinators across urban and rural landscapes. Pollinator diversity can be high in roadsides, areas where communities include a significant portion of the species found in the region (Ries et al. 2001; Hopwood 2008; Noordijk et al. 2009). Furthermore, roadsides can be home to rare species as well as common species (Munguira and Thomas 1992; Ries et al. 2001). Roadsides provide pollinators with food as well as breeding or nesting opportunities and can increase habitat connectivity. Creating and Managing Roadside Habitat for Pollinators Will Not Compromise Safety Sight lines can be maintained on roadsides with native plants through careful plant selection. Landscape designers can use the palatability of plants to large mammals to inform plant selections. In addition, reduced mowing (of the entire roadside) does not appear to influence the number of deer/vehicle collisions (Mastro et al. 2008; Barnum and Alt 2013; Guyton et al. 2014). Deer may prefer roadsides that are mowed more frequently because mowing can increase the palatability of some plants; deer often prefer new growth to older vegetation. Regular mowing of the strip of vegetation adjacent to the pavement (i.e., recovery area, also known as the clear zone), while letting the rest of the roadside grow to a reasonable height, can help maintain driver visibility and prevent deer/vehicle collisions. Creating and Managing Pollinator Habitat Along Roadsides Has Many Benefits for DOTs Creating climate-smart pollinator habitat along roadsides has many benefits beyond pollinator conservation. Pollinator habitat provides benefits such as erosion control and reductions in runoff. This reduces flooding, which is critical in areas where increased flooding is projected. Pollinator habitat can also help mitigate the climate crisis. Creating diverse plantings along roadsides increases soil health, which, in turn, increases carbon sequestration. Studies of grassland soils show that increasing plant diversity increases the amount of carbon stored by the soils (Lange et al. 2015; Chen et al. 2018; Yang et al. 2019). Thus, diverse plantings created for pollinator conservation also help mitigate climate change by increasing carbon sequestration within those habitats. Natural climate solutions encourage the restoration and protection of natural habitats as a means of combating the climate crisis. Harrison (2014) measured the value of carbon

Chapter 11. Communication Support  11-20 sequestration within roadside habitat in Florida at $39 million per year; that number could increase with the sale of carbon credits. Other more recent studies suggest that natural climate solutions alone could provide one-third of the climate mitigation required to keep warming below 2°C (3.6°F) (Griscom et al. 2017; Fargione et al. 2018). DOTs are in a position to make real contributions to natural climate solutions through the creation of roadside pollinator habitat. Some Actions that Promote Pollinator Habitat May Save Money Compared to Current Practices Some practices, such as reduced mowing, can provide cost savings. Other practices that may have higher up-front costs, such as using native plants in revegetation projects, may have lower long-term costs through the savings provided by increased weed suppression and increased resilience to climate change. Native Plants Are Better for Pollinators Native plants are central to healthy, functional ecosystems. They support soil health, improve water quality, sequester carbon, and are habitat for wildlife. Native plants support more pollinators and more wildlife than do nonnative plants (Narango et al. 2017; Williams et al. 2011). In addition to supporting more caterpillars, native plants are more attractive as sources of pollen and nectar for pollinators than nonnative plants and support more species and more individuals (Williams et al. 2011; Morandin and Kremen 2013). Native grasses and flowers are best adapted to local growing conditions, require minimal inputs for establishment, and are able to tolerate drought or heat, which will become more common in many regions. In addition, some native species are able to tolerate the poor growing conditions found on roadsides (Harper-Lore and Wilson 2000; O’Dell et al. 2007). Although the initial costs associated with establishing native plant material are relatively high, particularly in plans that include a higher density and diversity of flowering plants or specialized species, native plants are often more cost effective in the long term. Once established, the plantings persist over time and require less mowing as well as fewer herbicides and other weed control measures, thereby reducing long-term maintenance efforts and cost (Berger 2005). In contrast, controlling the growth and spread of invasive plants along roadsides through repeated mowing and rigorous herbicide use is very expensive (Westbrooks 1998). Noxious and Invasive Plants in Roadsides Negatively Affect Pollinators Noxious and invasive plants on roadsides can greatly reduce the diversity and abundance of host plants and flowering plants by outcompeting them for water, light, space, and nutrients, thereby limiting the reproductive potential of pollinators. Flowering weeds do confer some benefits to pollinators (e.g., Canada thistle provides nectar and pollen), but these benefits do not outweigh the ecological costs of keeping those plants in the landscape. Vegetation Management Is Important for Pollinators Disturbance to vegetation (e.g., mowing, haying), as well as the use of herbicides, can result in direct or indirect harm to pollinators. However, in many ecosystems, periodic

Chapter 11. Communication Support  11-21 disturbance is important for maintaining plant diversity. For example, periodic disturbances in grasslands can prevent encroachment by woody plants. The frequency of such activities, as well as the scale at which they are implemented, influences their impacts on pollinators. Overall, negative pollinator response to vegetation management is usually temporary (aside from a poorly timed event that affects a population of an imperiled species that has no other populations nearby). Herbicides Can Be Used in Ways that Reduce Harm to Pollinators Widespread use of herbicides can have negative effects on pollinators by reducing important food plants. Roadside managers and other vegetation managers can reduce the impacts of herbicide use on pollinators by:  using herbicides within an integrated approach that incorporates a range of methods to prevent or manage weeds and non-compatible vegetation,  targeting nonselective broadcast applications that can damage host or nectar plants,  using herbicides as efficiently and effectively as possible,  reducing off-site movement of herbicides, and  limiting direct exposure of pollinators to herbicides when possible. Collisions with Vehicles Are Not a Major Source of Mortality for Most Pollinators Hundreds of thousands of pollinators are killed by vehicles on roads (McKenna et al. 2001; Munoz et al. 2015), but research suggests that the numbers appear to be a small proportion of the overall populations using roadsides. Mortality rates of butterflies on roads, for example, range from 0.6 to a maximum of 10 percent of the population within the roadside, depending on the species, rates that are lower than numbers killed by natural enemies like predators or parasitoids (Munguira and Thomas 1992; Zielin et al. 2010). However, road mortality can be higher for some species of pollinators than others (Ries et al. 2001). For example, butterflies appear to be one of the more common groups of insects killed by cars (Rao and Girish 2007). Some butterflies that are strong fliers have the ability to dodge vehicles, while other species that are less able fliers are more susceptible (Munguira and Thomas 1992; Zielin et al. 2010). Migratory species like monarch butterflies may have higher rates of mortality due to vehicle collisions; during the fall migration, the eastern population of monarchs encounter hotspots of mortality while crossing a few highways (Kantola et al. 2019). The available science indicates that the benefits of supporting pollinators on roadsides outweighs any costs (Philips et al. 2020). Roadsides with High-quality Habitat Do Not Increase the Number of Pollinators Killed by Vehicles Although pollinators and other wildlife are going to be killed by vehicles as long as roads exist, there are ways to reduce pollinator road mortality. Reducing roadside mowing can reduce butterfly mortality (Skorka et al. 2013), as can enhancing the diversity and abundance of wildflowers on roadsides (Munguira and Thomas 1992; Ries et al. 2001; Skorka et al. 2013). Current research suggests that roadsides with high-quality habitat

Chapter 11. Communication Support  11-22 actually reduce pollinator mortality rather than lure pollinators to their death by vehicle. This is because the pollinators stay on the roadsides rather than going off in search of flowers for nectar or pollen. Pollinator Conservation Has Public Relations Benefits Pollinator conservation is very popular with the public. Many people intuitively understand the importance of pollinators and are motivated to help protect these important animals. In addition to concern for pollinators generally, many people feel deep connections to individual pollinator species, such as the monarch butterfly. Talking about DOT work to protect pollinators and native plants can increase public support for DOTs and inspire the public to engage in pollinator conservation as well. Additional roadside and pollinator FAQ documents can be found at:  https://monarchjointventure.org/mjvprograms/science/roadsidehabitat/frequently- asked-questions-monarchs-and-roadsides  https://xerces.org/publications/fact-sheets/roadsides-as-habitat-for-pollinators- frequently-asked-questions 11.3.4 Top DOT Actions for Pollinators The list below can be useful for communicating within your department or agency and highlighting some of the most important actions that DOTs can take to contribute to pollinator conservation.  Reduce mowing frequency beyond the mown strip in the recovery area so flowering plants have a chance to bloom and support pollinators.  Use native plants in revegetation projects because native plants support more pollinators than nonnative plants.  Protect butterfly host plants, especially the host plants of imperiled butterfly species.  Target herbicide use so that nontarget plants, including those that are host plants or that provide nectar and pollen to pollinators, are not affected.  Time maintenance activities to avoid key breeding periods for imperiled species.  Control noxious and invasive weeds.  Increase diversity of native plants in revegetation areas, which will make the habitat more resilient and able to support a diversity of pollinators.  Prioritize revegetation projects along roadsides where they will be most beneficial for pollinators, such as areas near natural areas or near populations of imperiled pollinators.  Inform the public about the work you are doing to protect pollinators.  Increase the mowing height to 8 to 10 inches to leave vegetation for pollinators to use.  Use adaptive management for managing roadside vegetation; learn from what is working and what needs tweaking.

Chapter 11. Communication Support  11-23  Experiment with vegetation management techniques; learn from local land managers and peers in surrounding states.  Provide training for staff members so they stay up to speed on new management techniques and plant identification and understand how these measures fit into the goals of the DOT and why they are important.  Communicate early with native plant vendors so that they can accommodate your needs, such as growing out any plant material needed for your projects.  Control weeds during construction, before planting, and during revegetation establishment.  Design staff need to coordinate with maintenance staff about future maintenance needed for pollinator habitat revegetation projects. 11.4 Communication Resources   This section contains links to resources that may be useful to your communications efforts. 11.4.1 Photo Library The Xerces Society has made photos of roadside habitat as well as photos of pollinators, including butterflies, bees, and monarchs, available for DOTs to use in outreach efforts. The photo library is available on the National Academies Press website (https://nap.nationalacademies.org/). 11.4.2 Graphics Graphics can be a powerful tool for communicating with the public. Graphics can make complicated ideas or processes easier to understand by using visual representations. Consider asking your communications department to create some graphics about the importance of pollinators and native plants found along roadsides in your state for use in outreach materials and social media posts. Below are some additional graphics that may be useful in communicating with the public.  Xerces Graphics. Xerces has created several relevant graphics, including graphics on the importance of pollinators, the many benefits of roadside habitat, and the linkage between plant diversity and the diversity of pollinators and other wildlife. These graphics can be used in DOT communications efforts and can be accessed here: https://xerces.org/pollinator-conservation/roadsides/benefits-roadside-pollinator- habitat and here: https://xerces.org/pollinator-conservation/roadsides/pollinators- keystone-species.  Monarch Life Cycle. This graphic shows the life cycle of the monarch butterfly and could be used in educational materials about these iconic animals. This graphic was created by the Xerces Society and the Monarch Joint Venture conducted in the National Cooperative Highway Research Program, which is administered by the Transportation Research Board of the National Academies of Sciences, Engineering, and Medicine. This graphic is available on the National Academies Press website: https://nap.nationalacademies.org/.

Chapter 11. Communication Support  11-24 11.4.3 Videos The Pollinator Habitat Conservation along Roadways video for use in outreach with the public is available on the National Academies Press website (https://nap.nationalacademies.org/). The Pollinator Habitat Conservation along Roadways video for use internally within your transportation agency is available on the National Academies Press website (https://nap.nationalacademies.org/). Videos from other organizations that may be shared to raise awareness of pollinators and the importance of restoring pollinator habitat include:  the Xerces Society YouTube channel: https://www.youtube.com/channel/UCAiPLPJuySOgn6CbjkOxqLQ;  U.S. Fish and Wildlife Service YouTube channel (has several videos on pollinators): https://www.youtube.com/c/usfws/search?query=pollinator; and  a webinar series on monarch butterfly biology and conservation, organized by the U.S. Fish and Wildlife Service and the Monarch Joint Venture: https://nctc.fws.gov/topic/online-training/webinars/monarch-conservation.html. Videos about transportation agencies and their work with pollinator habitat include:  Center for Transportation Studies, University of Minnesota: https://www.youtube.com/watch?v=DdDD0hYUkPo;  Nebraska Department of Transportation: https://www.youtube.com/watch?v=TMHB3pOafjs; and  Oklahoma Gardening: https://www.youtube.com/watch?v=OZz9keOMW3A. 11.4.4 Editable Presentation A PowerPoint file with regional guidance is available on the National Academies Press website (https://nap.nationalacademies.org/) and can be adapted to give a presentation within your organization.

Chapter 11. Communication Support  11-25 11.5 Case Studies  11.5.1 Volunteers Help Grow the Colorado Pollinator Highway Recognizing the role that roadsides play in supporting pollinators, the Colorado State Legislature unanimously passed legislation in 2017 that established Interstate 76 as the Colorado Pollinator Highway. The Colorado DOT then launched a pilot project along Interstate 76 near Julesburg, Colorado, with goals to establish native pollinator plants along rights-of-way, improve weed management practices, and increase public awareness of pollinator habitat and connectivity. The Julesburg area was selected for the pilot project because of its proximity to the Nebraska/Colorado state line. The Colorado Welcome Center was an ideal place for the public to learn more about pollinator conservation efforts. Because of the focus on pollinators, Colorado DOT partnered with a number of organizations, including the People and Pollinators Action Network, Butterfly Pavilion, Loveland Initiative for Monarch Butterflies, Colorado Native Plant Society, Denver Botanical Garden, Pheasants Forever, Xerces Society, National Resources Conservation Service, and several native plant seed companies based in Colorado. Partners offered technical assistance, recruited volunteers, or donated seed or equipment. In the fall of 2018, nearly 50 volunteers planted more than 4 acres of roadside pollinator habitat safely. The project has since sparked interest in collecting native seed on roadsides, monitoring habitat and pollinators, identifying appropriate spot treatments, and conducting vegetation inventories in the future. 11.5.2 Communities Collect Milkweeds in Ohio The Ohio DOT is one of many state agencies and organizations that compose the Ohio Pollinator Habitat Initiative (OPHI). Through OPHI, Ohio DOT has engaged with communities to connect roadsides with pollinator conservation. One effort involved recruiting volunteers throughout the state to collect milkweed seed pods. Volunteers dropped off pods at their local soil and water conservation office, which were then taken to participating Ohio Department of Rehabilitation and Correction facilities. Inmates would remove the milkweed floss from the seeds within the pods. Seeds were then packaged for future distribution at outreach events or planted and grown out in plugs that were planted by Ohio DOT at various sites. 11.5.3 Highway Sponsorships in Minnesota Minnesota DOT acquired land in the early 1970s as a possible site for a new highway rest area. However, the rest area was never built. Some of the land was instead used for staging during construction on the nearby State Route 95. Included in the parcel of land owned by Minnesota DOT was a 4-acre prairie on a steep bluff known as Blueberry Hill. For several decades, Minnesota DOT granted volunteers from The Prairie Enthusiasts, a nonprofit organization, access to the land to conduct land management actions. Volunteers Colorado DOT worked with a large group  of volunteers to help create pollinator  habitat along Interstate 76.  Photo Credit: Jason Roth/CDOT 

Chapter 11. Communication Support  11-26 collectively spent thousands of hours controlling invasive plants and managing the site for biodiversity. Blueberry Hill is also home to the endangered rusty-patched bumble bee. In 2021, Minnesota DOT proposed that the group become part of the agency’s Highway Sponsorship Program, authorized by state law in 2017. The program allows “businesses, civic groups, and individuals to support the enhancement and maintenance of interstates as well as U.S. and Minnesota highway roadsides.” Minnesota DOT has developed a number of highway sponsorship programs with partners throughout the state. The Prairie Enthusiasts continue to be stewards of Blueberry Hill and the species it harbors.

12-1 Chapter 12 Conclusion A diverse community of pollinators is important for sustaining wild plant communities and the wildlife that depends on those plants. This diversity is also critical for crop pollination and production of the many foods that provide crucial nutrients for human wellbeing. As more and more species of pollinators are in decline in the United States and worldwide, strategies to manage existing habitat and create additional habitat are needed to ameliorate those declines. Roadsides, which extend across landscapes, are an opportunity for pollinator habitat, providing pollinators with food, shelter, and connectivity to other patches of habitat. Departments of Transportation (DOTs) can make a difference for imperiled pollinators by managing existing roadside vegetation and designing new revegetation plantings with their habitat needs in mind, and they can do so in compliance with the Endangered Species Act so there are regulatory assurances if a species becomes listed. Highlighting the work that DOTs do for pollinators can generate public support for the agency. Pollinators are becoming more and more visible to the public, and the public views them favorably. People are willing to donate time to conduct bumble bee surveys, for example, or conduct outreach to kids. Additionally, U.S. households valued monarchs at up to $6 billion, levels similar to many endangered vertebrate species, according to survey findings. Actions to support pollinators are popular with the general public. Beyond their value to pollinators, roadsides managed for diverse plant communities provide a wide range of ecological services in urban, agricultural, and natural landscapes, including supporting biodiversity, storing carbon, and filtering air and water. They aid driver safety by reducing monotony and keeping drivers more alert. They also support cultural services such as health and aesthetic benefits by providing access to nature and showcasing unique regional beauty. Roadsides are also an opportunity to mitigate the negative ecological effects of roads. How DOTs manage their roadsides influences the surrounding lands, but their reach can also extend further, to local and regional businesses and the adoption of sustainable maintenance and revegetation practices. The scale at which DOTs work means that they heavily influence associated industries and can help drive the markets and therefore the availability and affordability of things like native plant materials and wildlife-friendly erosion blankets. Therefore, roadsides can be assets to DOTs, to states, to pollinators, and to ecosystems as DOTs maintain them as ecologically valuable components of the landscape. Roadsides provide a safe driving environment and so  much more.   Photo Credit: Luis Colon/Arizona DOT 

ACRO-1 Acronyms and Abbreviations Term  Definition  Btk  Bacillus thuringiensis var. kurstaki  CCA  Candidate Conservation Agreement  CCAA  Candidate Conservation Agreement with Assurances  CFR  Code of Federal Regulations  CO2  carbon dioxide  DOT  department of transportation  EA  environmental assessment  EIS  environmental impact statement  ESA  Endangered Species Act  FAQs  frequently asked questions  FAST  Fixing America’s Surface Transportation  FHWA  Federal Highway Administration  HCP  Habitat Conservation Plan  IPCC  Intergovernmental Panel on Climate Change  IRVM  Integrated Roadside Vegetation Management  IUCN  International Union for Conservation of Nature  IVM  Integrated Vegetation Management  MSHCP  Multi‐Species Habitat Conservation Plan  NEPA  National Environmental Policy Act  NMFS  National Marine Fisheries Service  NYSDOT  New York State Department of Transportation  OFWO  Oregon Fish and Wildlife Office  OPHI  Ohio Pollinator Habitat Initiative  PCA  Prelisting Conservation Agreement  RCA  Riverside County Regional Conservation Authority  RCS  Recovery Crediting System  ROW  right‐of‐way  SHA  Safe Harbor Agreement  SMA  Special Management Area  the Services  U.S. Fish and Wildlife Service and National Marine Fisheries Service  USDA  U.S. Department of Agriculture  USFWS  U.S. Fish and Wildlife Service  WSDOT  Washington State Department of Transportation  WV Refuge Complex  Willamette Valley National Wildlife Refuge Complex 

G-1  Glossary This glossary defines terms used throughout this guide. Term  Definitions  Action Area  Under Endangered Species Act Section 7 consultation, all areas to be  affected directly or indirectly by a federal action and not merely the  immediate area involved in the action. See also consultation.  adaptive management   Using the results of new information gathered through a monitoring  program to adjust management strategies and practices to help  provide for the conservation of species and their habitats.   alkaline soil  A type of soil with high amounts of calcium, sodium, and magnesium,  with a pH level above 7.  apiary  A place where honey bees are kept for commercial, hobby, or  educational purposes; a collection of honey beehives.  areas of high conservation value  Areas determined to have both high biological value and high  landscape intactness; prioritized for conservation actions.  biodiversity  The full array of living things considered at all levels, from genetic  variants of a single species to arrays of species and arrays of genera,  families, and higher taxonomic levels; includes natural communities  and ecosystems.  bivoltine  Having two generations (broods) per year.  boreal  Relating to or characteristic of the climate zone in the Northern  Hemisphere with a subarctic climate.  brood  The young that hatch from a group of eggs laid at the same time by  one mother.  Candidate Conservation  Agreement  Formal, voluntary agreements between the U.S. Fish and Wildlife  Service and one or more parties created to address the conservation  needs of one or more candidate species or species likely to become  candidates in the near future; can be entered into with states, local  governments, tribes, private property owners, and other entities.  Candidate Conservation  Agreement with Assurances  Addresses species proposed for listing or candidates for listing on non‐ federal land; results in an enhancement‐of‐survival permit, which  provides assurance to the applicant that if agreed‐upon conservation  actions for the covered species are implemented, the U.S. Fish and  Wildlife Service will not require additional conservation measures  beyond those in the agreement should the species be listed. See also  enhancement‐of‐survival permit.   candidate species  A species that has been found warranted for listing as threatened or  endangered under the Endangered Species Act, but whose listing is  precluded by higher priority species.  canopy  The aboveground portion of a plant cropping or crop, formed by the  collection of individual plant crowns; also refers to the upper layer or  habitat zone formed by maturing tree crowns.  carbon sequestration  A natural or artificial process by which carbon dioxide is removed from  the atmosphere, thereby stabilizing it in solid and dissolved forms to  prevent it from causing warming of the atmosphere.  chrysalis  The pupal stage of butterflies, covered by a hard exoskeleton, inside of  which they complete metamorphosis; typically found hanging from a  surface.  

Glossary  G-2  Term  Definitions  climate change  Long‐term shifts in temperatures and weather patterns, caused by  human activities such as burning of fossil fuels and deforestation.   climate change vulnerability  Refers to the degree to which an ecological system, natural  community, habitat, or individual species is likely to be adversely  affected as a result of changes in climate and is often dependent on  factors such as exposure, sensitivity, and adaptive capacity.  climate resiliency  The ability of species to adapt to and withstand changes in climate;  biodiversity assists species in persisting over time as climate changes.  cocoon  The pupal stage of moths (and some other holometabolous insects)  within which they complete metamorphosis; typically found hanging  from a surface or buried underground or in leaf litter.   colony  Large community of individual bees living together as one social unit;  typically includes workers, males, and a queen.   coloration  The colors, patterns, and general appearance used to identify species.  community  See natural community.  compensatory mitigation  Actions taken to fulfill, in whole or in part, mitigation requirements  under state or federal law or a court mandate.  congener  A member of the same taxonomic genus as another plant or animal.  conservation  The use of habitat and other natural resources in ways such that they  may remain viable for future generations. This includes permanent  protection of such resources.   conservation action/measure  An action that, when implemented, would protect or restore and  manage natural elements, including imperiled species and their  habitats, natural communities, ecological processes, and wildlife  corridors.   conservation bank  Permanently protected privately or publicly owned lands managed for  endangered, threatened, and other at‐risk species. May include habitat  restoration or creation in addition to protecting occupied habitats. See  mitigation bank.  conservation easement  A voluntary legal agreement between a landowner and a land trust or  government agency that permanently limits the uses of the land in  order to protect its conservation values.  conservation status  The current status of the species as either listed in, a candidate for  listing in, or petitioned for listing under the Endangered Species Act or  as imperiled without formal legal protection.   conservation strategy  Conservation actions or habitat enhancement actions that, if  implemented, will sustain and restore species and their habitats,  natural communities, biodiversity, habitat connectivity, ecosystem  functions, water resources, and other natural resources.  consultation  A process between the U.S. Fish and Wildlife Service or National  Marine Fisheries Service and a federal agency or applicant that:  (1) determines whether a proposed federal action is likely to jeopardize the continued existence of listed species or destroy or adversely modify designated critical habitat; (2) begins with a federal agency’s written request and submittal of a complete initiation package; and (3) concludes with the issuance of a biological opinion and incidental take statement by either of the two agencies. corridor  Strips or patches of habitat that connect larger patches of habitat.

Glossary  G-3  Term  Definitions  creation (of natural community or  species’ habitat)   The creation of a specified resource condition where none existed  before. See establishment.   critical habitat  Habitat designated as critical1 refers to specific areas occupied by a  federally listed species at the time it is listed, and that are essential to  the conservation of the species and that may require special  management considerations or protection. Critical habitat also  includes specific areas outside occupied habitat into which the species  could spread and that are considered essential for recovery of the  species.  crop pest  Includes seed eaters, herbivores, frugivores, and pathogens (e.g.,  insects, fungi, bacteria, and viruses) that can result in reduced  agricultural productivity or total crop loss.  diapause  A physiological state of delay in development with reduced metabolic  rate, in response to regular and recurring unfavorable environmental  conditions; the time of the year and the stage of life when diapause  occurs in insects vary among species.  dimorphism  A trait that has two or more forms within a species (e.g., sizes or  coloration).  dispersal  In insects, the process of moving from the place their eggs were laid to  another location or population where they will settle and reproduce;  can occur in reaction to environmental conditions (weather and  habitat quality) and social factors (variations in population density and  sex ratio). Migration is a type of dispersal.  disturbance regime  The historic patterns (frequency and extent) of natural processes such  as fire, insects, wind, and mass movement that affect the ecosystems  and landscapes in a particular area.  diurnal  Active during the daytime.  diversity  See biodiversity.  dormant, dormancy  Having normal physical functions suspended or slowed down for a  period of time.  ecological resources  Species, habitats, biological resources, and natural resources identified  in a conservation strategy. See natural resources.  ecoregion  As used in this document, ecoregion means a U.S. Department of  Agriculture (USDA) Section.2 USDA describes four geographic levels of  detail in a hierarchy of regional ecosystems including domains,  divisions, provinces, and sections. Sections are subdivisions of  provinces based on major terrain features, such as a desert, plateau,  valley, mountain range, or a combination thereof.3  1 16 United States Code 1532(5)(a). 2 Goudey, C. B., and D. W. Smith, Eds. 1994. Ecoregions California07_3. McClellan, CA. Remote Sensing Lab. Updated with ECOMAP 2007: Cleland, D.T.; Freeouf, J. A.; Keys, J. E., Jr.; Nowacki, G. J.; Carpenter, C; McNab, W. H. 2007. Ecological Subregions: Sections and Subsections of the Conterminous United States [1:3,500,000] [CD-ROM]. Sloan, A. M., cartog. Gen. Tech. Report WO-76. Washington, DC: U.S. Department of Agriculture, Forest Service. Miles and Goudey 1997. Ecological Subregions of California. Technical Report R5-EM-TP-005, USDA Forest Service, Pacific Southwest Region, San Francisco, CA. 3 Goudey, C. B., and D. W. Smith, Eds. 1994. Ecoregions California07_3. McClellan, CA. Remote Sensing Lab. Updated with ECOMAP 2007: Cleland, D.T.; Freeouf, J. A.; Keys, J. E., Jr.; Nowacki, G. J.; Carpenter, C; McNab, W. H. 2007. Ecological Subregions: Sections and Subsections of the Conterminous United States [1:3,500,000] [CD-ROM]. Sloan,

Glossary  G-4    Term  Definitions  ecosystem  A natural unit defined by both its living and nonliving components; a  balanced system of the exchange of nutrients and energy. See habitat.  ecosystem function  The ecosystem processes involving interactions among physical,  chemical, and biological components, such as dynamic river meander,  floodplain dynamism, tidal flux, bank erosion, and other processes  necessary to sustain the ecosystem and the species that depend on it.  ecosystem services  The beneficial outcomes to humans from ecosystem functions such as  supplying of oxygen; sequestering of carbon; moderating climate  change effects; supporting the food chain; harvesting of animals or  plants; providing clean water; recharging groundwater; abating storm,  fire, and flood damage; pollinating and fertilizing for agriculture; and  providing scenic views.  ecotone, ecotonal  A region of transition between two biological communities or habitats.  encroach, encroachment  The natural phenomenon characterized by the increase in density of  certain types of plants, bushes, or shrubs at the expense of the  herbaceous layer.   endangered  A species that has become so rare it is in danger of becoming extinct  throughout all or a significant portion of its range.  Endangered Species Act (ESA)  Federal law enacted in 1973 to prohibit the import, export, or taking of  fish, wildlife, and plants listed as threatened or endangered species;  provide for adding species to and removing them from the list of  threatened and endangered species and for preparing and  implementing plans for their recovery; provide for interagency  cooperation to avoid take of listed species and for issuing permits for  otherwise prohibited activities; provide for cooperation with state  governments, including authorization of financial assistance; and  implement the provisions of the Convention on International Trade in  Endangered Species of Wild Flora and Fauna.  endemic  A species, subspecies, or variety found only in a specified geographic  region.  enhancement  A manipulation of an ecological resource or natural resource that  improves a specific ecosystem function. An enhancement does not  result in a gain in protected or conserved land, but it does result in an  improvement in ecological or ecosystem function.  enhancement‐of‐survival permit  Available under Section 10 of the ESA for entities whose activities will  provide a net conservation benefit to listed or candidate species.  erosion (of soil)  The natural process of denudation of the upper layer of soil (topsoil)  caused by water, ice, snow, air, plants, and animals; the process is  accelerated by conversion of natural vegetation to cropland or pasture.  establishment  The manipulation of the physical, chemical, or biological characteristics  present on a site to develop an aquatic or terrestrial habitat resource  for species. Establishment will result in a gain in resource area and/or  function. See creation.  extinction  The dying out or extermination of a kind of organism or a group of  kinds, usually a species.  A. M., Cartog. Gen. Tech. Report WO-76. Washington, DC: U.S. Department of Agriculture, Forest Service. Miles and Goudey 1997. Ecological Subregions of California. Technical Report R5-EM-TP-005, USDA Forest Service, Pacific Southwest Region, San Francisco, CA.

Glossary  G-5  Term  Definitions  extirpation  The situation in which a species or population no longer exists within a  certain geographic area, while at least one other population of the  species still persists in other areas; also known as local extinction.  eyespot  A rounded, eye‐like marking on the wing of a butterfly or moth.   federal nexus  When a project requires a federal authorization apart from ESA  compliance, license, or funding.  fire regime  The pattern, frequency, and intensity of the wildfires that prevail in an  area over long periods of time; an integral part of fire ecology and  renewal for certain types of ecosystems.  fire return interval  The average period between fires, both natural and prescribed, under  the historical fire regime.  flight time  The month or months of the year in which adult pollinators are  observed in flight.  focal species  In this guide, sensitive pollinators that are of particular conservation  concern, such as monarch butterflies or other imperiled species.   food web  The overall food relationships (food chains) among organisms in a  particular environment, detailing the interconnectivity in complex  feeding relationships for that ecosystem. All the food chains in a single  ecosystem represent the multiple possible paths that energy and  nutrients may take as they move through the ecosystem.  foraging territory  The distance or area over which an individual of a species is known to  travel to find food resources, as reported in agency reports or peer‐ reviewed literature for that species.  forb  An herbaceous flowering plant other than a grass, sedge, or rush.  forewing  The anterior (front, closer to the head) wing of an insect, attached to  the middle segment of the thorax.  fringe  Long, narrow scales at the outside edges of butterfly wings.  genetic variability  The tendency of individual genetic characteristics in a population to  vary from one another; greater genetic variability and diversity give  species a better chance of survival, as variability can be lost when  populations get smaller and more isolated, decreasing a species’ ability  to adapt.   graminoid  An herbaceous plant with a grass‐like structure, such as grasses,  rushes, and sedges; contrast with forbs, which have no grass‐like  features.  habitat  An ecological or environmental area that is, or may be, inhabited by a  species of animal, plant, or other type of organism. Habitat is also the  physical and biological environment that surrounds, influences, and is  used by a species’ population and is required to support its occupancy.  habitat assessment  A process whereby habitat conditions are rated as optimal,  suboptimal, marginal, or poor based upon descriptions and a rating  scale.  habitat connectivity  The capacity of habitat to facilitate the movement of species and  ecological functions. See also landscape connectivity. 

Glossary  G-6    Term  Definitions  habitat conservation plan (HCP)  A planning document that is required as part of an application for an  incidental take permit under the ESA. HCPs provide for partnerships  with non‐federal parties to conserve the ecosystems upon which listed  species depend, ultimately contributing to their recovery. HCPs  describe the anticipated effects of the proposed taking, how those  impacts will be minimized or mitigated, and how the HCP is to be  funded.  habitat degradation  When habitat conditions decline due to invasive species, pollution,  development, or overutilization of natural resources.  habitat enhancement  Actions that, when implemented, are intended to improve the quality  of wildlife habitat or to address risks or stressors to wildlife. Habitat  enhancement would have long‐term durability but would not involve  acquiring land or permanently protecting habitat.   habitat fragmentation  When larger habitats are broken up into smaller patches, which may  be too small to sustain populations of some species or species are  unable to move between patches.  habitat loss  When habitat is eliminated or transformed into another type of  habitat.  habitat needs/requirements  In this guide, conditions that must be present in order for pollinator  species to inhabit and thrive in their surroundings, including climate,  vegetation, associated species, and natural processes.  habitat quality  The capacity of a habitat to support a species. The precise meaning of  habitat quality varies by species and depends on the specific needs of a  species in the context of a particular area. High‐quality habitat for  species may have only foraging and resting elements or it may include  foraging, resting, and nesting elements. For other species, it may  encompass all elements needed for the species to complete its  lifecycle. Low‐quality habitat has only the minimal elements to support  occurrence of the species. High‐quality habitat tends to support larger  numbers of species than low‐quality habitat.  harass  As defined by the ESA, actions that create the likelihood of injury to  listed species to such an extent as to significantly disrupt normal  behavior patterns, which include, but are not limited to, breeding,  feeding, or sheltering.  harm  As defined by the ESA, includes significant habitat modification or  degradation that results in death or injury to listed species by  significantly impairing behavioral patterns, such as breeding, feeding,  or sheltering.  herbaceous  Vascular plants with little or no persistent woody stems above ground;  includes grasses and forbs.  herbicide  A substance that is toxic to plants, used to destroy unwanted  vegetation.  hindwing  The posterior (back) wing of an insect, attached to the last segment of  the thorax.  holometabolous  Describing insects with four life stages: egg, larva, pupa, and image (or  adult).  home range  The area in which an individual of a species lives and moves to meet its  needs such as feeding, foraging, breeding, and sheltering. 

Glossary  G-7  Term  Definitions  host plant  Plants upon which butterflies and moths lay their eggs, and upon  which their caterpillars (larvae) will feed after hatching.  hydrologic regime  The timing, volume, and duration of water flow events, which may be  influenced by the climate, soils, geology, groundwater, watershed land  cover, connectivity, and valley and stream morphology.  imperiled species  A species that is in decline and may be in danger of extinction. In this  guide, this term identifies species that are not legally protected under  the ESA.  incidental take permit  A permit issued under Section 10 of the ESA to private, non‐federal  entities undertaking otherwise lawful projects that might result in the  take of a listed species. See also take.  indicator species  A species whose presence, absence, or abundance reflects a particular  habitat, community, or set of environmental conditions.4  infiltration (of water)  The movement of water into the ground from the surface.  in‐lieu fee mitigation  A framework to create a mitigation strategy, giving entities the ability  to create and contribute to a fund as mitigation for unavoidable  impacts on listed species; money deposited into the fund is used to  improve upon the conservation effort for the species beyond what is  otherwise possible if funds were being restricted to a specific project  location or to a lesser mitigation type.  instar   The stage of the insect between molts, shedding the exoskeleton.  introduced species  An organism not native to the place or area but accidentally or  deliberately transported to the new location by human activity.  invasive species, nonnative  species   A nonnative species that can spread into the ecosystems and displace  native species, hybridize with native species, alter biological  communities, and alter ecosystem processes and that has the potential  to cause environmental or economic harm. According to the California  Invasive Plant Council, nonnative plants are species introduced to  California after European contact and as a direct or indirect result of  human activity.5  invertebrate  Lacking a backbone.  land conversion  The conversion of natural and agricultural land to other land uses  through the process of development.  land cover type  The dominant feature of the land surface defined by vegetation, water,  or human uses.   land preservation  Generally, the preservation of natural resources by acquiring land.  landscape connectivity  The extent to which the landscape facilitates or impedes movement  among habitat patches. See also habitat connectivity.  larva  The active immature form of a holometabolous insect in the stage  between egg and pupa.  life cycle  For all insect pollinators, includes four distinct life stages: egg, larva,  pupa, and adult, which may occur in different habitats.  4 Lincoln, R., G. Boxshall, and P. Clark. 1998. A Dictionary of Ecology, Evolution and Systematics. Second Edition. Cambridge University Press, Cambridge, UK. 5 California Invasive Plant Council. 2022. “Definition of Invasive Plants.” Available: https://www.cal-ipc.org/plants/ impact/.

Glossary  G-8    Term  Definitions  listed species  Species currently listed as threatened or endangered under the ESA;  the species has been determined to be in danger of extinction in the  near or foreseeable future by the U.S. Fish and Wildlife Service.  managed bees  Bees that are bred and managed by people for commercial purposes.  For example, honey bees kept for honey production or rental for  commercial crop pollination; can harm other wild pollinators through  increased competition for nectar and pollen resources and spread of  disease.  mesic  Containing a moderate or well‐balanced supply of moisture.  microclimate  The atmospheric conditions of a very small or restricted area that  differ from those in the surrounding areas.  migration  The mass movement of individuals among areas, generally directional  and synchronized; see also dispersal.  mitigate, mitigation  To lessen the effects of an action, particularly adverse effects, on a  species or habitat.  mitigation bank  Land managed for its natural resource values, with an emphasis on  targeted resources. Typically requires the restoration or creation of  aquatic resources. See conservation bank.  monitoring   Data collected from repeated sampling to detect changes over time,  such as in response to revegetation or maintenance practices.  monitoring protocols  The methodology used to collect data. This guide contains protocols  for monitoring imperiled pollinators, imperiled species of pollinators,  and bumble bees.  monoculture  The cultivation of a single crop in a given area.  morphology  The form and structure of living organisms.  National Environmental Policy Act  (NEPA)  The national environmental law that promotes the enhancement of  the environment by requiring federal agencies to assess the  environmental effects of their proposed actions prior to making  decisions and to incorporate environmental considerations in their  planning and decision‐making through a systematic interdisciplinary  approach by preparing detailed statements assessing the  environmental impact of major federal actions significantly affecting  the environment.  native species  A species whose presence in a given region or ecosystem is the result  of only natural evolution and distribution.  natural community  A group of organisms living together and linked together by their  effects on one another and their responses to the environment they  share.6 A general term often used synonymously with habitat or  vegetation type.  natural resources  Biological and ecological resources including species and their habitats,  including waters of the state, waters of the United States, wetlands,  and natural communities.   6 Sawyer, J. O., T. Keeler-Wolf, and J. E. Evens. 2009. A Manual of California Vegetation. Second Edition. California Native Plant Society, Sacramento, CA.

Glossary  G-9  Term  Definitions  NatureServe  A non‐profit organization comprising a network of conservation  scientists that collects, aggregates, and standardizes data about the  status and distribution of species and ecosystems of conservation  concern in North America and assigns its own conservation rankings to  such species.  NEPA Assignment  The process by which some states (Alaska, Arizona, California, Florida,  Nebraska, Ohio, Texas, and Utah as of April 2022) assume federal  responsibility for transportation projects for the Federal Highway  Administration. States with NEPA Assignment may use the Section 7  ESA compliance process even when no other federal nexus exists.  nest  Places constructed and provisioned by bees and wasps in which their  offspring develop; can be on the ground, in soil, underground, in  tunnels, or in insulated cavities.  nocturnal  Active during the nighttime.  nonnative species  Any species introduced after European contact and as a direct or  indirect result of human activity to a new place or new habitat where it  did not previously occur.7 See invasive species.  noxious plant  A plant that can directly or indirectly injure or cause damage to crops,  livestock, poultry, or other interests of agriculture, irrigation,  navigation, the natural resources of the United States, the public  health, or the environment. The U.S. Department of Agriculture Animal  and Plant Health Inspection Service maintains a list of federally  recognized noxious weeds, and each state also has its own list.  objective, conservation objective  A concise, measurable statement of what is to be achieved and that  supports a conservation goal. The objective should be based on the  best available scientific information to conserve the species or other  conservation elements for which the conservation goal and objective is  developed.   obligate  Restricted to a particular condition of life, such as dependent on a  particular habitat or forage.  overwinter  The process by which some organisms pass through or wait out the  winter season, when conditions make normal activity or survival  difficult or near impossible.  oviposit, oviposition  To lay an egg or eggs.  parasite   An organism that lives in or on a host but does not kill the host.  parasitoid  An organism that lives on or inside a host and always kills the host.  pathogen  A bacterium, virus, or other microorganism that can cause disease.  perennial  Lasting or existing for a long time (in plants, more than 2 years);  enduring or continually recurring.  pesticide  A substance used for destroying insects, plants, or other organisms.  petitioned species  A species for which a petition to list the species as threatened or  endangered under the ESA has been received and is being evaluated  phasing/phased approach  Implementation of multiple conservation strategies in a systematic  approach to meet long‐term needs for ESA compliance and/or to cover  an expansive geographic area.  7 California Invasive Plant Council. 2022. “Definition of Invasive Plants.” Available: https://www.cal-ipc.org/plants/ impact/.

Glossary  G-10  Term  Definitions  phenology  The timing of cyclic and seasonal natural phenomenon, such as when  plants bloom and when insects emerge from pupal stages.  pollinator  An animal that helps carry pollen, either intentionally or accidentally,  from the male part of the flower (stamen) to the female part of the  same or another flower (stigma) to facilitate fertilization and  production of fruit, seeds, and young plants. Most flowers are  pollinated by insects and animals—such as bees, wasps, moths,  butterflies, birds, flies, and small mammals, including bats. Specialist  pollinators are more selective and visit flowers of one or very few plant  species.  population  The number of individuals of a particular taxon inhabiting a defined  geographic area.  population decline  The reduction in abundance of individuals of a species, often as a result  of human activity and climate change.  population density  The concentration of individuals within a species in a specific  geographic locale.  Prelisting Conservation  Agreement  Allows for the creation and banking of credits providing for the  conservation of non‐listed species. Anyone (e.g., federal agency or  private entity) who wants to participate in the process can undertake a  voluntary prelisting conservation action, earning credits to be carried  forward as long as the action occurs in a participating state within the  framework of an established conservation strategy for the species.  prescribed burning  The controlled application of fire by a team of fire experts under  specified weather conditions to restore health to ecosystems that  depend on fire.  programmatic  As opposed to a single defined project, indicating a suite of activities or  a program encompassing multiple areas or projects.  programmatic agreement  An agreement allowing for an individual compliance strategy to be  applied to a suite of projects or a program involving similar activities in  a particular geographic area.  protected area  Public or private lands managed for open space use.  pupa, pupate, pupation  In holometabolous insects, an insect in its immature form between  larva and adult; usually inactive; see also chrysalis and cocoon.   queen  In truly social insect species (e.g., honey bees, bumble bees, paper  wasps, ants), an adult female bee with fully developed reproductive  organs who is usually the mother of all of the bees in a particular hive  or colony and is responsible for laying the eggs. There is normally only  one adult, mated queen in a hive or colony.  range  See home range.  rangeland  Open country, usually grasslands, shrublands, woodlands, wetlands, or  deserts, grazed by domestic livestock or wild animals.  reclamation  The act or process of recovering, and/or the state of being recovered.  Many reclamation techniques can be used on the path to recovering or  restoring pre‐disturbance profiles. 

Glossary  G-11  Term  Definitions  recovery  The process by which the decline of an endangered or threatened  species is halted or reversed or threats to its survival are neutralized,  so that its long‐term survival in nature can be ensured.8 Recovery  entails actions to achieve the conservation and survival of a species,  including actions to prevent any further decline of a population’s  viability and genetic integrity. Recovery also includes actions to restore  or establish environmental conditions that enable a species to persist  (i.e., the long‐term occurrence of a species through the full range of  environmental variation).  recovery area  The band of low‐growing or routinely mowed vegetation directly  adjacent to the pavement or shoulder of a road where vehicles that  have left the roadway can recover; also known as the clear or safety  zone. The recovery area is free of obstruction and the width is  determined by the type of road and traffic volume, as well as the slope  of the embankment.  Recovery Crediting System  A tool that allows federal agencies to use their authorities to benefit  species already listed as threatened or endangered on non‐federal  lands; subject to consultation under Section 7 of the ESA. Creates a  process through which federal agencies create a “bank” of recovery  credits providing for the conservation of listed species while being able  to compensate for future impacts of their actions  refugia  Locations or areas providing a safe resting place for animals to hide  from predators.  restore, restoration  Manipulation of a piece of land with the goal of repairing natural or  historical ecosystem functions to degraded habitat or natural  resources. This results in an improvement in ecological or ecosystem  functions, but it does not result in a gain in area.  revegetation  The process of replanting and rebuilding the soil of disturbed lands  such as roadsides. This may be a natural process produced by plant  colonization and succession, human‐made rewilding projects, or  accelerated processes designed to repair damage to a landscape due  to construction or operational disturbance, wildfire, mining, flood, or  other cause.  riparian  Relating to wetlands adjacent to rivers and streams.  roadside  Areas along the sides of roads and highways extending across both  urban and rural landscapes; often the only natural vegetation that  remains in highly altered landscapes. Roadsides provide pollinators  with a place to find food, reproduce, and take shelter or overwinter,  and they can increase habitat connectivity.  roadside contamination  Deposit of pollutants through routine vehicle use and maintenance,  including vehicle exhaust, de‐icing materials, and heavy metals from  tire rubber, brake dust, and gasoline and diesel combustion products.  roadside management/ maintenance  The planning, design, construction, and maintenance of the non‐paved  highway right‐of‐way.  roadside restoration  See restoration, revegetation.  8 U.S. Fish and Wildlife Service and National Marine Fisheries Service. 1998. Recovery Plan for Upland Species of the San Joaquin Valley, California. Portland, OR: Region 1.

Glossary  G-12  Term  Definitions  runoff (of water)  The draining away of water from the surface of an area of land; can be  problematic when it occurs as a result of excess rainwater,  stormwater, meltwater, or other water no longer infiltrating (soak) the  soil, especially due to increased impervious surfaces created through  extensive development.   senesce, senescence  To deteriorate with age because of the loss of a cell’s power to divide  and grow.  sensitive species  Any special‐status species identified by a state or federal agency.  sexual dimorphism  The condition where the sexes of the same species exhibit different  forms (e.g., sizes or color patterns).  solitary  Solitary bees do not live in a communal nest or hive. Females build  nests and provision their eggs on their own.  Species of Greatest Conservation  Need (SGCN)  SGCNs are selected, for each state, to indicate the status of biological  diversity in the state, specifying at‐risk species that have the greatest  need for conservation.   Species of Special Concern (SSC)  Species of Special Concern9 is an administrative designation and carries  no formal legal status. The intent of designating SSCs is to: (1) focus  attention on animals considered potentially at conservation risk by  state, local, and federal governmental entities, regulators, land  managers, planners, consulting biologists, and others; (2) stimulate  research on poorly known species; and (3) achieve conservation and  recovery of these animals before they meet criteria for listing as  threatened or endangered.  State Wildlife Action Plan (SWAP)  A comprehensive plan for conserving fish and wildlife across the  state.10   status  See conservation status.  stewardship  Land planning and ecological resources management with the goal of  protecting and enhancing ecosystems and biodiversity.  strategy  A plan of action or policy designed to achieve a major or overall aim.  succession  The process by which one habitat type is overtaken by another through  changing dominance of pioneer species, altering the ecosystem  dynamics. Early successional habitat contains vigorously growing  grasses, forbs, shrubs, and trees that provide excellent food and cover  for wildlife but need disturbance to be maintained.  survey  Sampling conducted to determine the presence or absence of a  particular imperiled pollinator species at a given site.  take  According to the ESA, any action to “harass, harm pursue, hunt, shoot,  wound, kill, trap, capture, or collect, or to attempt to engage in any  such conduct.” Incidental take is take of listed species that results  from, but is not the purpose of, carrying out an otherwise lawful  activity conducted by a federal agency or applicant.  thorax  The section of an insect body that follows the head and is before the  abdomen; this section bears six legs and wings.  9 https://www.wildlife.ca.gov/Conservation/SSC. 10 California Department of Fish and Wildlife. 2017. SWAP Final 2015 Document. Available: https://www.wildlife.ca.gov/SWAP/Final.

Glossary  G-13  Term  Definitions  threat  An anthropogenic (human‐induced) or natural driver that could result  in changing the ecological conditions of the species or its habitat in a  negative way.   threatened  Plants and animals that are likely to become endangered within the  foreseeable future throughout all or a significant portion of their  ranges.  transportation planning  The process of identifying transportation needs and establishing plans  for infrastructure development to meet those needs; occurs at the  local, regional, and state levels and generally includes identifying and  prioritizing projects needed to maintain and improve transportation  networks and achieve specific transportation goals. Can involve either  short‐ (e.g., 4 years) or long‐range (e.g., 20+ years) time frames.  U.S. Fish and Wildlife Service  (USFWS)  The federal agency responsible for conserving, protecting, and  enhancing fish, wildlife, and plants and their habitats; administers the  ESA with NMFS.  univoltine  Having one generation per year.  vegetation management  The targeted control and elimination of unwanted vegetation and  replacement with desirable vegetation.  ventral  Of, on, or relating to the underside of an animal or plant (abdominal).  worker  In truly social bees (e.g., bumble bees), non‐reproducing females that  collect food for other bees in the colony.  working land  An area where people live and work in a way that allows ecosystems or  ecosystem functions to be sustained (e.g., farms, ranches). Human  activities are done in a way that minimizes disturbance on native  plants and animals while still retaining the working nature of the  landscape.  

R-1 References and Other Resources Ahern,  J.,  C. A. Niedner,  and A. Barker.  1992.  Roadside Wildflower Meadows:  Summary  of  Benefits  and  Guidelines  to  Successful  Establishment  and  Management.  Transportation  Research  Record,  No.  1334:46–53.  Alcock,  J., L. P. Brower, and E. H. Williams,  Jr. 2016. “Monarch butterflies use regenerating milkweeds  for  reproduction  in  mowed  hayfields  in  northern  Virginia.”  The  Journal  of  the  Lepidopterists'  Society  70(3):177–181.  Allen‐Wardell, G., P. Bernhardt, R. Bitner, A. Burquez, S. Buchmann, J. Cane, P. A. Cox, V. Dalton, P. Feinsinger,  M. Ingram, and D. Inouye. 1998. “The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields.” Conservation Biology 12(1):8–17. Altizer, S. M., and K. S. Oberhauser. 1999. “Effects of the protozoan parasite Ophryocystis elektroscirrha on  the fitness of monarch butterflies (Danaus plexippus).” Journal of Invertebrate Pathology 74(1):76–88.  Ament, R., J. Begley, S. Powell, and P. Stoy. 2014. Roadside Vegetation and Soils on Federal Lands‐Evaluation  of the Potential for Increasing Carbon Capture and Storage and Decreasing Carbon Emissions. Report for  the  Federal  Highway  Administration,  #  DTFH68‐07‐E‐00045.  Available:  https://westerntransportationinstitute.org/wp‐content/uploads/2016/08/4W3748_Final_Report.pdf.   American  Association  of  State  Highway  and  Transportation  Officials  (AASHTO).  2011.  Federal  Highway  Association: Guide to Roadside Vegetation Management.   Andrew, G., G. Glenn, P. Jacoby‐Garrett, and D. Thompson. 2013. Surveys and habitat assessment for Plebejus  shasta charlestonensis (Mount Charleston Blue Butterfly) in the Spring Mountain Range of Nevada (2012  field season). U.S. Fish and Wildlife Service Southern Nevada Field Office, Las Vegas Nevada. 104 pp.  Araratyan,  L.  A.,  and  S.  A.  Zakharyan.  1988.  “On  the  contamination  of  snow  along  main  highways.”  Biologicheskii Zhurnal Armenii 41:514–519.  Arizona Department of Transportation (ADOT) 2020. Implementing FHWA’s INVEST Round 3 Project and 3rd  Annual Arizona Department of Transportation Sustainable Transportation Program Final Report.  Audubon  California.  1998.  “San  Emigdio  Blue  Butterfly  –  Plebejus  emigdionis.”  Available:  http://www.kern.audubon.org/SEBLUE.htm.  Austin, G. T. 1998. Callophrys (Lepidoptera: Lycaenidae) in Nevada, with description of a new subspecies of  C. comstocki. In: Emmel, T. C. ed. Systematics of western North American butterflies. The Mariposa Press, Gainesville, FL. Austin, G. T., and P. J. Leary. 2008. “Larval host plants of butterflies in Nevada.” Holarctic Lepidoptera 12(1‐ 2):1–150.  Austin, G. T., B. M. Boyd, and D. D. Murphy. 2008. “Euphilotes ancilla (Lycaenidae) in the Spring Mountains,  Nevada: more than one species.” Journal of the Lepidopterists’ Society 62:148–160.  Balch,  J. K., B. A. Bradley, C. M. D’Antonio, and  J. Gómez‐Dans. 2012. “Introduced annual grass  increases  regional fire activity across the arid western USA (1980–2009).” Global Change Biology 19(1):173–183. 

References and Other Resources  R-2 Barnum, S. A., and G. Alt. 2013. The Effect of Reduced Roadside Mowing on Rate of Deer‐Vehicle Collisions.  Transportation Research Board 92nd Annual Meeting Compendium of Papers.  Baron, G. L., N. E. Raine, and M. J. Brown. 2014. “Impact of chronic exposure to a pyrethroid pesticide on  bumblebees and interactions with a trypanosome parasite.” Journal of Applied Ecology 51(2):460–469.  Bartel, R. A., N. M. Haddad, and J. P. Wright. 2010. “Ecosystem Engineers Maintain a Rare Species of Butterfly  and Increase Plant Diversity.” Oikos 119:883–890.  Battisti, L., M. Potrich, A. R. Sampaio, N. de Castilhos Ghisi, F. M. Costa‐Maia, R. Abati, C. B. Dos Reis Martinez,  and S. H. Sofia. 2021.  Is glyphosate  toxic  to bees? A meta‐analytical  review. The Science of  the Total  Environment 767:145397.  Baum,  K.  A.,  and  E.  K. Mueller.  2015.  Grassland  and  roadside management  practices  affect milkweed  abundance and opportunities for monarch recruitment. In: Monarchs in a Changing World: Biology and  Conservation of an Iconic Butterfly, pp. 197–202. Cornell University Press, Ithaca, NY.  Baxter‐Gilbert, J. H., J. L. Riley, C. J. Neufeld, J. D. Litzgus, and D. Lesbarrères. 2015. “Road mortality potentially  responsible for billions of pollinating insect deaths annually.” Journal of Insect Conservation 19(5):1029– 1035.  Bedsworth, L., D. Cayan, G. Franco, L. Fisher, and S. Ziaja. 2018. Statewide Summary Report. California’s Fourth  Climate Change Assessment.  Belitz, M. W., L. K. Hendrick, M. J. Monfils, D. L. Cuthrell, C. J. Marshall, A. Y. Kawahara, N. S. Cobb, J. M. Zaspel,  A. M. Horton, S. L. Huber, A. D. Warren, G. A. Forthaus, and A. K. Monfils. 2018. “Aggregated occurrence  records  of  the  federally  endangered  Poweshiek  skipperling  (Oarisma  poweshiek).” Biodiversity Data  Journal 6: e29081.  Belitz, M. W., M. J. Monfils, D. L. Cuthrell, and A. K. Monfils. 2019. “Life history and ecology of the endangered  Poweshiek  skipperling Oarisma  poweshiek  in Michigan  prairie  fens.”  Journal  of  Insect  Conservation  23:635–649.  Belitz, M. W., M. J. Monfils, D. L. Cuthrell, and A. K. Monfils. 2020. “Landscape‐level environmental stressors  contributing  to  the decline of Poweshiek  skipperling  (Oarisma poweshiek).”  Insect  conservation and  diversity / Royal Entomological Society of London 13:187–200.  Bennett, V. J., M. G. Betts, and W. P. Smith. 2014. “Influence of thermal conditions on habitat use by a rare  spring‐emerging  butterfly  Euphydryas  editha  taylori.”  Journal  of  applied  entomology  (Zeitschrift  fur  angewandte Entomologie) 138:623–634.  Berger,  R.  L.  2005.  NCHRP  Synthesis  341:  Integrated  Roadside  Vegetation Management.  Transportation  Research Board of the National Academies, Washington, DC.  Beyer,  L., and  S. H. Black. 2007.  Site utilization by adults and  larvae of mardon  skipper butterfly  (Polites  mardon) at four sites in Washington and Oregon. Final report to the Forest Service and BLM. 72 pp.  Bierzychudek, P., and K. Warner. 2015. “Modeling caterpillar movement to guide habitat enhancement for  Speyeria zerene hippolyta, the Oregon silverspot butterfly.” Journal of Insect Conservation 19:45–54.  Billings, C. H. 1990. “Wildflowers: Municipal field reports.” Public Works 121(3):106. 

References and Other Resources  R-3 Black, S. H. 2012. “Insect conservation and the endangered species act: A history.”  In  Insect Conservation:  Past, Present and Prospects (pp. 171–189). Springer, Dordrecht.  Black, S. H., and D. M. Vaughan. 2005. Species Profile: Euphilotes battoides allyni. In Shepherd, M. D., D. M.  Vaughan, and S. H. Black (Eds). Red List of Pollinator Insects of North America. CD‐ROM Version 1 (May  2005). The Xerces Society for Invertebrate Conservation, Portland, OR.  Black,  S. H., M.  Shepherd,  and M. Vaughan. 2011.  “Rangeland management  for pollinators.” Rangelands  33(3):9–13.  Blackburn,  T.  1882.  “Descriptions  of  the  larvae  of  Hawaiian  Lepidoptera.”  The  Entomologist’s Monthly  Magazine 19:55–56.  Blumenthal, D. M., N. R. Jordan, and E. L. Svenson. 2005. “Effects of prairie restoration on weed invasions.”  Agriculture, Ecosystems and Environment 107:221–230.  Bogemams, J., L. Nicrinck, and J. M. Stassart. 1989. “Effect of deicing chloride salts on  ion accumulation  in  spruce (Picea abies (L.) sp.).” Plant and Soil 113:3–11.  Bohnenblust, E. W., A. D. Vaudo, J. F. Egan, D. A. Mortensen, and J. F. Tooker. 2016. “Effects of the herbicide  dicamba  on  nontarget  plants  and  pollinator  visitation.”  Environmental  Toxicology  and  Chemistry  35(1):144–151.  Bohnenblust, E., J. F. Egan, D. Mortensen, and J. Tooker. 2013. “Direct and indirect effects of the synthetic‐ auxin herbicide dicamba on two lepidopteran species.” Environmental Entomology 42(3):586–594.  Bonebrake, T. C., C. L. Boggs, J. M. McNally, J. Ranganathan, and P. R. Ehrlich. 2010. “Oviposition behavior and  offspring  performance  in  herbivorous  insects:  consequences  of  climatic  and  habitat  heterogeneity.”  Oikos 119:927–934.  Bonebrake, T. C., R. T. Navratil, C. L. Boggs, S. Fendorf, C. B. Field, and P. R. Ehrlich. 2011. “Native and Non‐ Native  Community  Assembly  through  Edaphic Manipulation:  Implications  for  Habitat  Creation  and  Restoration.” Restoration Ecology 19:709–716.   Borror, D. J., R. E. White, and R. T. Peterson. 1970. A Field Guide to Insects: America North of Mexico (Vol. 19).  Houghton Mifflin Harcourt.  Boutin, C., B. Strandberg, D. Carpenter, S. K. Mathiassen, and P. J. Thomas. 2014. “Herbicide impact on non‐ target  plant  reproduction:  what  are  the  toxicological  and  ecological  implications?”  Environmental  Pollution 185:295–306.  Bowers, M. D., and E. H. Williams. 1995. “Variable chemical defence in the checkerspot butterfly Euphydryas  gillettii (Lepidoptera: NymphaIidae).” Ecological Entomology 20:208–212.  Brandt, J., K. Henderson, and J. Uthe. 2011. Integrated Roadside Vegetation Management Technical Manual.  Available: http://www.uni.edu/irvm.  Brittain, C., C. Kremen, and A. M. Klein. 2013. “Biodiversity buffers pollination from changes in environmental  conditions.” Global Change Biology 19(2):540–547.  Brittain, C., N. Williams, C. Kremen, and A.‐M. Klein. 2013. “Synergistic effects of non‐Apis bees and honey  bees for pollination services.” Proceedings. Biological Sciences / The Royal Society 280:20122767. 

References and Other Resources  R-4 Britten, H. B., and J. W. Glasford. 2002. “Genetic population structure of the Dakota skipper (Lepidoptera:  Hesperia dacotae): A North American native prairie obligate.” Conservation Genetics 3:363–374.  Britton, H., and L. Riley. 1994. “Nectar source diversity as an indicator of habitat suitability for the endangered  Uncompahgre fritillary Boloria acrocnema Nymphalidae.” Journal of the Lepidopterists’ Society 48:173– 179.  Brock, J. P., and K. Kaufman. 2003. Kaufman Field Guide to Butterflies of North America. Houghton Mifflin  Company, New York. 392 pp.  Brown, D. L.,  J. Laird, W. Sommers, and A. Hamilton. 1999. “Methods used by the Arizona Department of  Transportation to reduce wildlife mortality and improve highway safety.” In International Conference of  Wildlife Ecology and Transportation, Florida.  Brown,  J.  J.  1987.  “Toxicity  of  herbicides  thiobencarb  and  endothall  when  fed  to  laboratory‐reared  Trichoplusia ni (Lepidoptera: Noctuidae).” Pesticide Biochemistry and Physiology 27:97–100.  Brown, R. N. and C. D. Sawyer. 2012. “Plant species diversity of highway roadsides in southern New England.”  Northeastern Naturalist 19(1):25–42.  Brunzel, S., H. Elligsen, and R. Frankl. 2004. “Distribution of the Cinnabar moth Tyria jacobaeae L. at landscape  scale: use of linear landscape structures in egg laying on larval host plant exposures.” Landscape Ecology  19(1):21–27.  Buckingham, D. A., M. Linders, C. Landa, L. Mullen, and C. LeRoy. 2016. “Oviposition Preference of Endangered  Taylor’s  Checkerspot  Butterflies  (Euphydryas  editha  taylori)  Using  Native  and  Non‐Native  Hosts.”  Northwest science: official publication of the Northwest Scientific Association 90:491–497.  Buehler, D. M., D. R. Norris, B. J. Stutchbury, and N. C. Kopysh. 2002. “Food supply and parental feeding rates  of Hooded Warblers in forest fragments.” The Wilson Journal of Ornithology 114(1):122–127.  Bugg, R. L., C. S. Brown, and J. H. Anderson. 1997. “Restoring native perennial grasses to rural roadsides in the  Sacramento Valley of California: Establishment and evaluation.” Restoration Ecology 5:214–228.  Bureau of Land Management. 2019. OR‐IM‐2019‐003 Transmittal of State Director Special Status Species List,  with attachments. Available: http://www.fs.fed.us/r6/sfpnw/issssp/agency‐policy/. Accessed: August 7,  2020.  Burghardt, K.  T., D. W.  Tallamy,  and W. G.  Shriver.  2009.  “Impact of native plants on bird  and butterfly  biodiversity in suburban landscapes.” Conservation Biology 23:219–224.  Burghardt, K. T., D. W. Tallamy, C. Philips, and K. J. Shropshire. 2010. “Non‐native plants reduce abundance,  richness, and host specialization in lepidopteran communities.” Ecosphere 1(5):1–22.  Burkle, L. A., and  J. B. Runyon. 2016. Drought and  leaf Herbivory  Influence Floral Volatiles and Pollinator  Attraction. Global Change Biology 22:1644–1654.  Cackowsky,  J.‐M.,  and  J.  L.  Nasar.  2003.  “Restorative  effects  of  roadside  vegetation:  implications  for  automobile driver anger and frustration.” Environment and Behavior 35(6):736–751.  Calderone, N. W. 2012.  “Insect Pollinated Crops,  Insect Pollinators  and US Agriculture: Trend Analysis of  Aggregate Data for the Period 1992–2009.” PLOS ONE 7:e37235. 

References and Other Resources  R-5 Calhoun, J. V. 1995. “The biogeography and ecology of Euphyes dukesi (Hesperiidae)  in Florida.” Journal of  the Lepidopterists’ Society. 29(1):6–23.  California Department of Transportation (Caltrans). 2019. Caltrans Advance Mitigation Program Final Formal  Guidelines, Version 1.0. October. 52 pp.  Camarretta, N., P. A. Harrison, T. Bailey, N. Davidson, A. Lucieer, M. Hunt, and B. M. Potts. 2020. Stability of  Species  and  Provenance  Performance  when  Translocated  into  Different  Community  Assemblages.  Restoration Ecology 28:447–458.  Cambell,  C.  L.,  and  L. M.  Ishii.  1993.  “Larval  host  plant  testing  of  Tinostoma  smaragditis  (Lepidoptera:  Sphingidae), the Fabulous Green Sphinx of Kauai.” Proceedings of the Hawaiian Entomological Society  32:83–90.  Cameron, S. A., J. D. Lozier, J. P. Strange, J. B. Koch, N. Cordes, L. F. Solter, and T. L. Griswold. 2011. Patterns  of Widespread Decline in North American Bumble Bees. Proceedings of the National Academy of Sciences  108(2):662–667.  Campioni, L., Marengo, I., Román, J. and D’Amico, M., 2022. Mud‐puddling on roadsides: a potential ecological  trap for butterflies. Journal of Insect Conservation, 26(1), pp.131‐134.  Cane, J. H. 1991. “Soils of ground‐nesting bees (Hymenoptera: Apoidea): texture, moisture, cell depth and  climate.” Journal of the Kansas Entomological Society 64(4):406–413.  Cane, J. H. 1997. “Violent weather and bees: populations of the Barrier Island endemic, Hesperapis oraria.”  Journal of the Kansas Entomological Society 70:73–75.  Cane,  J. H.,  and V.  J.  Tepedino.  2017.  “Gauging  the  effect  of  honey  bee  pollen  collection  on  native  bee  communities.” Conservation Letters 10(2):205–210.  Cane, J. H., R. R. Snelling, and L. J. Kervin. 1996. “A new monolectic coastal bee, Hesperapis oraria Snelling  and  Stage  (Hymenoptera: Melittidae),  with  a  review  of  desert  and  neotropical  disjunctives  in  the  Southeastern U.S.” Journal of the Kansas Entomological Society 69:238–247.  Cape, J. N., Y. S. Tang, N. Van Dijk, L. Love, M. A. Sutton, and S. C. F. Palmer. 2004. “Concentrations of ammonia  and nitrogen dioxide at roadside verges, and their contribution to nitrogen deposition.” Environmental  Pollution 132(3):469–478.  Cariveau, D., E. Evans, and M. Boone. 2019. Monitoring and habitat assessment of declining bumble bees in  roadsides in the Twin Cities metro area of Minnesota. Minnesota Department of Transportation.  Carroll, S. P., and J. Loye. 2006. “Invasion, Colonization, and Disturbance; Historical Ecology of the Endangered  Miami Blue Butterfly.” Journal of Insect Conservation 10:13–27.  Carvell, C. 2002.  “Habitat use and  conservation of bumble bees  (Bombus  spp.) under different grassland  management regimes.” Biological Conservation 103:33–49.  Cayan, D. R., E. P. Maurer, M. D. Dettinger, M. Tyree, and K. Hayhoe. 2008. “Climate Change Scenarios for the  California Region.” Climatic Change 87:21–42.  Cayton,  H.  L.,  and  N. M.  Haddad.  2018.  “Water  Availability  Coincides  with  Population  Declines  for  an  Endangered Butterfly.” Diversity 10:94. 

References and Other Resources  R-6 Center  for Biological Diversity. 2010. Petition  to  list 404 aquatic,  riparian and wetlands  species  from  the  Southeastern United States as threatened or endangered under the Endangered Species Act.  Center  for Biological Diversity.  2018.  Petition  to  list  the Mojave  poppy  bee  (Perdita meconis)  under  the  Endangered Species Act and concurrently designate critical habitat.  Center for Biological Diversity. 2019. Petition to list the Gulf Coast solitary bee (Hesperapis oraria) under the  Endangered Species Act and concurrently designate critical habitat.  Chan, P. K., and L. Packer. 2006. “Assessment of potential karner blue butterfly (Lycaeides melissa samuelis)  (Family: Lycanidae) reintroduction sites in Ontario, Canada.” Restoration Ecology 14:645–652.  Chen, S., W. Wang, W. Xu, Y. Wang, H. Wan, D. Chen, Z. Tang, X. Tang, G. Zhou, Z. Xie, D. Zhou, Z. Shangguan,  J. Huang, J.‐S. He, Y. Wang, J. Sheng, L. Tang, X. Li, M. Dong, Y. Wu, Q. Wang, Z. Wang, J. Wu, F. S. Chapin  III, and Y. Bai. 2018. Plant Diversity Enhances Productivity and Soil Carbon Storage. Proceedings of the  National Academy of Sciences, 115(16):4027–4032.  Clayborn,  J.  T.  2017.  Top‐down  and  bottom‐up  approaches  to  understanding  the  fate  of  the  federally  endangered  Schaus’  swallowtail  butterfly  (Heraclides  aristodemus  ponceanus).  Ph.D.,  Florida  International University.  Clayborn, J., and S. Koptur. 2017. “Mortal combat between ants and caterpillars: an ominous threat to the  endangered Schaus swallowtail butterfly (Heraclides aristodemus ponceanus) in the Florida Keys, USA.”  Journal of Insect Conservation 21:689–702.  Clayborn, J., S. Koptur, G. O’Brien, and K. R. T. Whelan. 2017. “The Schaus swallowtail habitat enhancement  project: An  applied  service‐learning project  continuum  from Biscayne National Park  to Miami–Dade  County public schools.” Southeastern Naturalist 16:26–46.  Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 2003. COSEWIC assessment and status  report on the sand‐verbena moth Copablepharon fuscum in Canada. Ottawa. Vii+39 pp.   Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 2014. COSEWIC Annual Report: 2013– 2014.  Ottawa.  44  pp.  Available:  https://wildlife‐species.canada.ca/species‐risk‐registry/virtual_sara/ files/cosewic/CESCC_1014_e.pdf. Accessed: September 16, 2020.  Conserve Wildlife Foundation of New  Jersey. 2022. New  Jersey Endangered and Threatened Species Field  Guide.  Available:  http://www.conservewildlifenj.org/species/fieldguide/view/ Atrytone%20arogos%20arogos/. Accessed: October 4, 2020.  Cramer, C. 1991.  “Tougher  than weeds: native prairie plants, better management  trim  roadside  spraying  90%.” The New Farm 13:37–39.  Croxton, P.  J.,  J. P. Hann,  J. N. Greatorex‐Davis, and T. H.  Sparks. 2005.  “Linear hotspots? The  floral and  butterfly diversity of green lanes.” Biological Conservation 121:579–584.  Cuddihy,  L. W.,  and C. P.  Stone.  1990. Alteration of native Hawaiian  vegetation‐effects of humans,  their  activities and introductions. University of Hawaii Cooperative National Park Studies Unit, University of  Hawaii Press, Honolulu, Hawaii. 138 pp.  Dale, J. M., and B. Freedman. 1982. “Lead and zinc contamination of roadside soil and vegetation in Halifax,  Nova Scotia.” Proceedings of the Nova Scotian Institute of Science 32:327–336. 

References and Other Resources  R-7 Daly, H. V., and K. N. Magnacca. 2003.  Insects of Hawaii. Vol. 17. Hawaiian Hylaeus  (Nesoprosopis) Bees  (Hymenoptera: Apoidea). University of Hawai‘i Press, Honolulu. 234 pp.  Dana, M. N., R. D. Kemery, and B. S. Boszor. 1996. Wildflowers for Indiana’s Highways. Purdue University Joint  Highway Research Project, Project No: C‐36‐48N, File No: 9‐5‐14.  Dana, R. P. 1991. Conservation Management of the Prairie Skippers Hesperia Dacotae and Hesperia Ottoe.  Station Bulletin 594–1991 (AD–SB‐5511‐S). University of Minnesota, Minnesota Agricultural Experiment  Station.  Available:  https://conservancy.umn.edu/bitstream/handle/11299/139544/ SB594.pdf?sequence=1&isAllowed=y. Accessed: September 2020.  Dániel‐Ferreira, J., Berggren, Å., Wissman, J. and Öckinger, E. 2022a. “Road verges are corridors and roads  barriers for the movement of flower‐visiting insects.” Ecography, 2022(2).  Dániel‐Ferreira,  J.,  Berggren, Å., Bommarco, R., Wissman,  J.  and Öckinger,  E.  2022b.  “Bumblebee  queen  mortality along roads increase with traffic.” Biological Conservation 272:109643.  Daniels,  J. C. 2011. Schaus Swallowtail, Heraclides aristodemus ponceanus  (Schaus)  (Insecta: Lepidoptera:  Papilionidae). University of Florida/IFAS Extension. Document EENY‐387.  Davis, H. K., D. L. Miller, and M. Thetford. 2020. “Habitat suitability of an at‐risk, monolectic, ground‐nesting  bee Hesperapis oraria and its floral host Balduina angustifolia at two spatial scales along the Northern  Gulf of Mexico.” Journal of insect Conservation 24:561–573.  Dearborn,  K.,  and  R. Westwood.  2014.  “Predicting  adult  emergence  of  Dakota  skipper  and  Poweshiek  skipperling (Lepidoptera: Hesperiidae) in Canada.” Journal of Insect Conservation 18:875–884.  Debinski, D. M. 1994. Genetic diversity assessment in a metapopulation of the butterfly Euphydryas gillettii.  Defenders of Wildlife. 2015. Petition to list the blue calamintha bee (Osmia calaminthae) as an endangered,  or alternatively as a threatened, species pursuant to the Endangered Species Act and for the designation  of critical habitat for this species.  Dickson, T. L., and W. H. Busby. 2009. “Forb species establishment  increases with decreased grass seeding  density  and  increased  forb  seeding  density  in  a  northeast  Kansas,  U.S.A.,  experimental  prairie  restoration.” Restoration Ecology 17:597–605.  Dilts, T. E., M. O. Steele, J. D. Engler, E. M. Pelton, S. J. Jepsen, S. J. McKnight, A. R. Taylor, C. E. Fallon, S. H.  Black,  E.  E. Cruz, D. R. Craver,  and M.  L.  Forister.  2019.  “Host Plants  and Climate  Structure Habitat  Associations of the Western Monarch Butterfly.” Frontiers in Ecology and Evolution 7:188.  Dirig, R., and J. F. Cryan. 1991. “The status of silvery blue subspecies (Glaucopsyche lygdamus lygdamus and  G. l. couperi: Lycaenidae) in New York.” Journal of the Lepidopterists’ Society 45(4):272–290.  Dixon, L., P. Sorensen, M. Wachs, M. T. Collins, M. A. Hanson, A. Kofner, T. Light, M. Madsen, L. Marsh, A.  Overton, H. J. Shatz, and B. A. Weatherford. 2008. Costs, Revenues, and Benefits of the Western Riverside  County Multiple Species Habitat Conservation Plan. Prepared by Rand Corporation.  Dover, J., N. Sotherton, and K. A. Y. Gobbett. 1990. “Reduced pesticide  inputs on cereal field margins: the  effects on butterfly abundance.” Ecological Entomology 15(1):17–24.  Eaton, E. R., and K. Kaufman. 2007. Kaufman Field Guide to Insects of North America. 392 pp. New York, NY:  HarperCollins Publishers. 

References and Other Resources  R-8 Ehrlich, P. R., and I. Hanski, eds. 2004. On the wings of checkerspots: a model system for population biology.  Oxford University Press.   Eilers,  E.  J., C. Kremen,  S.  S. Greenleaf, A. K. Garber,  and A. M. Klein.  2011.  “Contribution of pollinator‐ mediated crops to nutrients in the human food supply.” PLOS ONE 6(6):e21363.  Elkington, J. 2018. “25 Years Ago I Coined the Phrase ‘Triple Bottom Line.’ Here’s Why It’s Time to Rethink It.”  Harvard Business Review Online. Available: https://hbr.org/2018/06/25‐years‐ago‐i‐coined‐the‐phrase‐ triple‐bottom‐line‐heres‐why‐im‐giving‐up‐on‐it.   Elliott, C. H. 2019. The Riddle of the Sphinx: Population ecology of the endangered Blackburn’s sphinx moth,  Manduca  blackburni  (Lepidoptera:  Sphingidae)  on  an  invasive  host  plant.  Doctoral  dissertation,  University of Hawaiʻi at Mānoa. 60 pp.  Elliott, R. H., D. Cmiralova, and W. G. Wellington, 1979. “Olfactory Repellency of Herbicides to Foraging Honey  Bees (Hymenoptera: Apidae).” The Canadian Entomologist 111(10):1131–1135.  Elzinga, C. L., and D. W. Salzer. 1998. Measuring & Monitoring Plant Populations. U.S. Department of  the  Interior, Bureau of Land Management.  Engel, M.  S.,  I. Hinojosa,  and A. P. Rasnitsyn. 2009.  “A honey bee  from  the Miocene of Nevada  and  the  biogeography of Apis (Hymenoptera: Apidae; Apini).” Proceedings of the California Academy of Sciences  60 (3):23–38.   Entsminger, E. D., J. C. Jones, J. W. Guyton, B. K. Strickland, and B. D. Leopold. 2017. “Evaluation of mowing  frequency on right‐of‐way plant communities in Mississippi.” Journal of Fish and Wildlife Management  8(1):125–139.  Espeset, A. E., J. G. Harrison, A. M. Shapiro, C. C. Nice, J. H. Thorne, D. P. Waetjen, J. A. Fordyce, and M. L.  Forister.  2016.  “Understanding  a  migratory  species  in  a  changing  world:  climatic  effects  and  demographic  declines  in  the western monarch  revealed  by  four  decades  of  intensive monitoring.”  Oecologia 181(3):819–830.  Essig  Museum  of  Entomology.  2022.  “Valley  Elderberry  Longhorn  Beetle.”  Available:  https://essig.berkeley.edu/endangered/endangered_desmcali/.   European Food Safety Authority  (EFSA). 2005. “Conclusion  regarding  the peer  review of  the pesticide  risk  assessment  of  the  active  substance  clopyralid.”  EFSA  Journal  50:1–65.  Available:  https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2006.50r.  European Food Safety Authority (EFSA). 2009. “Conclusion on the Conclusion regarding the peer review of  the pesticide  risk  assessment of  the  active  substance picloram.” EFSA  Journal 7(12):1390. Available:  https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2009.1390.  European Food Safety Authority (EFSA). 2015. “Conclusion on the Conclusion regarding the peer review of  the  pesticide  risk  assessment  of  the  active  substance  pyraflufen‐ethyl.”  EFSA  Journal  13(2):4001.  Available: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2015.4001.  Evans, E., M. Boone, and D. Cariveau. 2019. Monitoring and Habitat Assessment of Declining Bumble Bees in  Roadsides  in  the  Twin  Cities Metro Area  of Minnesota.  Research Report, Minnesota Department  of  Transportation.  Report  # MN/RC  2019‐25.  Available:  http://www.dot.state.mn.us/research/reports/ 2019/201925.pdf. 

References and Other Resources  R-9 Falk, A. D., T. E. Fulbright, F. S. Smith, L. A. Brennan, A. J. Ortega‐Santos, and S. Benn. 2013. “Does Seeding a  Locally Adapted Native Mixture Inhibit Ingress by Exotic Plants?” Restoration Ecology 21(4):474–480.  Fargione, J. E., S. Bassett, T. Boucher, S. D. Bridgham, R. T. Conant, S. C. Cook‐Patton, P. W. Ellis, A. Falcucci, J.  W. Fourqurean, T. Gopalakrishna, H. Gu, B. Henderson, M. D. Hurteau, K. D. Kroeger, T. Kroeger, T. J. Lark, S. M. Leavitt, G. Lomax, R. I. McDonald, J. P. Megonigal, D. A. Miteva, C. J. Richardson, J. Sanderman, D. Shoch, S. A. Spawn, J. W. Veldman, C. A. Williams, P. B. Woodbury, C. Zganjar, M. Baranski, P. Elias, R. A. Houghton, E.  Landis, E. McGlynn, W. H. Schlesinger,  J. V. Siikamaki, A. E. Sutton‐Grier, and B. W. Griscom. 2018. “Natural climate solutions for the United States.” Science Advances 4:eaat1869. Faulkner, D., and M. Klein. 2012. Sensitive butterflies of San Diego County, California. Booklet provided for a  workshop focusing on nine sensitive butterflies. Produced by F.L.I.T.E. Tours. 72 pp.  Feber, R. E., H. Smith, and D. W. Macdonald. 1996. “The effects on butterfly abundance of the management  of uncropped edges of arable fields.” Journal of Applied Ecology 33:1191–1205.  Federal  Highway  Administration  (FHWA).  2011.  Our  Nation’s  Highways  2011.  U.S.  Department  of  Transportation.  Federal  Highway  Administration  (FHWA).  2016.  Use  of  Benefit‐Cost  Analysis  by  State  Departments  of  Transportation:  Report  to  Congress.  Available:  https://www.fhwa.dot.gov/policy/otps/pubs/ bca_report/senate_bca_report_05172016_revised.pdf.   Federal  Highway  Administration  (FHWA).  2017.  Roadside  Revegetation:  An  Integrated  Approach  to  Establishing  Native  Plants  and  Pollinator  Habitat.  Version  1.2.  Available:  http://www.nativerevegetation.org/learn/manual_2017/pdfs/wfl_v1‐2_06262020.pdf.   Fiedler, A. K., D. A. Landis, and M. Arduser. 2012. “Rapid shift  in pollinator communities following  invasive  species removal.” Restoration Ecology 20(5):593–602.  Fischer, S. J. 2015. “Enhancing monarch butterfly reproduction by mowing fields of common milkweed.” The  American Midland Naturalist 173(2):229–240.  Forister,  M.  L.  2021.  “Prioritizing  western  butterflies  for  conservation  concern.”  Available:  https://sites.google.com/site/greatbasinbuglab/ranking. Accessed December 28, 2021.  Forister, M. L., A. C. McCall, N. J. Sanders, J. A. Fordyce, J. H. Thorne, J. O’Brien, D. P. Waetjen, and A. M.  Shapiro. 2010. Compounded Effects of Climate Change and Habitat Alteration Shift Patterns of Butterfly  Diversity. Proceedings of the National Academy of Sciences, 107(5):2088–2092.  Forister, M. L., C. A. Halsch, C. C. Nice, J. A. Fordyce, T. E. Dilts, J. C. Oliver, K. L. Prudic, A. M. Shapiro, J. K.  Wilson, and J. Glassberg. 2021. “Fewer butterflies seen by community scientists across the warming and  drying landscapes of the American West.” Science 371:1042–1045.   Forister, M. L., J. P. Jahner, K. L. Casner, J. S. Wilson, and A. M. Shapiro. 2011. “The race is not to the swift:  long‐term data reveal pervasive declines in California’s low‐elevation butterfly fauna.” Ecology 92:2222– 2235.  Forman, R. T. T., D. Sperling, J. A. Bissonette, A. P. Clevenger, C. D. Cutshall, V. H. Dale, L. Fahrig, R. France, C.  R. Goldman, K. Heanue, J. A. Jones, F. J. Swanson, T. Turrentine, and T. C. Winter. 2003. Road Ecology: Science and Solutions. Island Press, Washington, DC.

References and Other Resources  R-10 Foster, B. L., K. Kindscher, G. R. Houseman, and C. A. Murphy. 2009. “Effects of hay management and native  species sowing on grassland community structure, biomass, and  restoration.” Ecological Applications  19(7):1884–1896.  Fuller, T. C., and G. D. Barbe. 1985. The Bradley method of eliminating exotic plants from natural reserves.”  Fremontia 13(2):24–26.  Funasaki, G. Y., P. L. Lai, L. M. Nakahara, J. W. Beardsley, and A. K. Ota. 1988. “A review of biological control  introductions in Hawaii: 1890 to 1985.” Proceedings of the Hawaiian Entomological Society 28:105–160.  Fürst, M. A., D. P. McMahon,  J. L. Osborne, R.  J. Paxton, and M.  J. F. Brown. 2014. “Disease associations  between honeybees and bumblebees as a threat to wild pollinators.” Nature 506(7488):364–366.  Gade, K. J. 2013. Freeways as Corridors for Plant Dispersal: A Case Study from Central Arizona. Proceedings of  the  2013  International  Conference  on  Ecology  and  Transportation.  Available:  http://www.icoet.net/ICOET_2013/documents/papers/ICOET2013_Paper403B_Gade.pdf.  Gagné, W. C., and C. C. Christensen. 1985. “Conservation status of native terrestrial invertebrates in Hawaii.”  Hawaii’s  terrestrial  ecosystems:  preservation  and  management.  University  of  Hawaii  Cooperative  National Park Resources Studies Unit, Honolulu, pp. 105–126.  Gagné, W. C., and F. G. Howarth. 1982. “Conservation Status of Endemic Hawaiian Lepidoptera.” Proceedings  of  the  Third  Congress  of  European  Lepidopterology,  Societus  Europaea  Lepidopterologica,  Karluhe.  Cambridge. pp. 74–84.  Gall, L. F. 1984. “Population structure and recommendations for conservation of the narrowly endemic alpine  butterfly, Boloria acrocnema (Lepidoptera: Nymphalidae).” Biological Conservation 28:111–138.  Garibaldi, L. A., I. Steffan‐Dewenter, C. Kremen, J. M. Morales, R. Bommarco, S. A. Cunningham, et al. 2011.  “Stability of pollination services decreases with isolation from natural areas despite honey bee visits.”  Ecology Letters 14(10):1062–1072.  Garibaldi, L. A., I. Steffan‐Dewenter, R. Winfree, M. A. Aizen, R. Bommarco, S. A. Cunningham, C. Kremen, L.  G. Carvalheiro, L. D. Harder, O. Afik, I. Bartomeus, F. Benjamin, V. Boreux, D. Cariveau, N. P. Chacoff, J.  H. Dudenhöffer, B. M. Freitas, J. Ghazoul, S. Greenleaf, J. Hipólito, A. Holzschuh, B. Howlett, R. Isaacs, S.  K.  Javorek, C. M. Kennedy, K. M. Krewenka,  S. Krishnan, Y. Mandelik, M. M. Mayfield,  I. Motzke, T.  Munyuli, B. A. Nault, M. Otieno, J. Petersen, G. Pisanty, S. G. Potts, R. Rader, T. H. Ricketts, M. Rundlöf,  C. L. Seymour, C. Schüepp, H. Szentgyörgyi, H. Taki, T. Tscharntke, C. H. Vergara, B. F. Viana, T. C. Wanger,  C. Westphal, N. Williams, and A. M. Klein. 2013. “Wild pollinators enhance fruit set of crops regardless  of honey bee abundance.” Science 339:1608–1611.  Gelbard,  J. L., and  J. Belnap. 2003. “Roads as conduits  for exotic plant  invasions  in a semiarid  landscape.”  Conservation Biology 17(2):420–432.  Geldmann,  J.,  and  J.  P.  González‐Varo.  2018.  :Conserving  honey  bees  does  not  help  wildlife.”  Science  359(6374):392–393.  Ghazoul, J. 2006. “Floral diversity and the facilitation of pollination.” Journal of Ecology 94:295–304.  Gibble, W.,  and  J.  Fleckenstein.  2013.  Copablepharon  fuscum  (sand‐verbena moth)  and Abronia  latifolia  (yellow sand‐verbena) Washington State Surveys. Natural Heritage Report 2013‐02. Prepared  for U.S.  Fish and Wildlife Service. January 14, 2013. 16 pp. + appendix. 

References and Other Resources  R-11 Gjessing, E., E. Lygren, L. Berglind, T. Gulbrandsen, and R. Skanne. 1984. “Effect of highway runoff on  lake  water quality.” Science of the Total Environment 33(1‐4):245–257.  Glenny, W. R., J. B. Runyon, and L. A. Burkle. 2018. “Drought and increased CO2 alter floral visual and olfactory  traits with context‐dependent effects on pollinator visitation.” New Phytologist 220(3):785–798.  Gorelick, G. A., and R. S. Wielgus. 1968. “Notes and observations on  the biology and host preferences of  Vanessa tameamea (Nymphalidae).” Journal of the Lepidopterists’ Society 22(2):111–114.  Goulson, D. 2003. Bumblebees, Their Behavior and Ecology. Oxford University Press. 235 pages.  Gove, B.,  S. A. Power, G. P. Buckley,  and  J. Ghazoul. 2007.  “Effects of herbicide  spray drift  and  fertilizer  overspread on selected species of woodland ground flora: comparison between short‐term and  long‐ term impact assessments and field surveys.” Journal of Applied Ecology 44(2):374–384.  Graham, J., C. King, and W. Haines. 2015. “The nest architecture of Hylaeus anthracinus and other coastal  solitary bees.” Hawaii Conservation Conference Proceedings. August 3–6, 2015. University of Hawaii,  Hilo, Hawaii.  Graham, J., S. Plentovich, and C. King. 2016. Nest ecology of an endemic Hawaiian bee, Hylaeus anthracinus  (Hymenoptera: Colletidae), and implications for conservation. University of Hawaii at Manoa. College of  Tropical Agriculture and Human Resources. Unpublished Data.  Grant, V. 1994. Historical Development of Ornithophily in The Western North American Flora. Proceedings of  the National Academy of Sciences, 91(22):10407–10411.  Greenleaf, S. S., and C. Kremen. 2006. “Wild bee species increase tomato production and respond differently  to surrounding land use in Northern California.” Biological conservation 133:81–87.  Griscom, B. W., J. Adams, P. W. Ellis, R. A. Houghton, G. Lomax, D. A. Miteva, W. H. Schlesinger, D. Shoch, J.  V. Siikamäki, P. Smith, P. Woodbury, C. Zganjar, A. Blackman, J. Campari, R. T. Conant, C. Delgado, P. Elias, T. Gopalakrishna, M. R. Hamsik, M. Herrero, J. Kiesecker, E. Landis, L. Laestadius, S. M. Leavitt, S. Minnemeyer, S. Polasky, P. Potapov, F. E. Putz, J. Sanderman, M. Silvius, E. Wollenberg, and J. Fargione. 2017. Natural  Climate  Solutions.  Proceedings  of  the National  Academy  of  Sciences,  114(44):11645– 11650. Griswold,  T.  1993.  “New  species  of  Perdita  (Pygoperdita)  Timberlake  of  the  P.  californica  species  group  (Hymenoptera: Andrenidae).” The Pan‐Pacific Entomologist 69:183–189.  Grixti, J. C., L. T. Wong, S. A. Cameron, and C. Favret. 2009. “Decline of bumble bees (Bombus) in the North  American Midwest.” Biological Conservation 142:75–84.  Grunau, L., A. K. Ruggles, M. Veneer, C. Pague, R. Rondeau, and J. M. Powell. 2003. Programmatic Biological  Assessment,  Conference  Report,  and  Conservation  Strategy  for  Impacts  from  Transportation  Improvement  Projects  on  Select  Sensitive  Species  on  Colorado’s  Central  Shortgrass  Prairie.  May.  Available: http://hermes.cde.state.co.us/drupal/islandora/object/co:12176/datastream/OBJ/view.   Gustafson, D. J., D. J. Gibson, and D. L. Nickrent. 2005. “Using local seeds in prairie restoration—data support  the paradigm.” Native Plants Journal 6(1):25–28.  Guyton, J., J. C. Jones, and E. Entsminger. 2014. Alternative Mowing Regimes’ Influence on Native Plants and  Deer. Report No. FHWA/MDOT‐RD‐14‐228. 

References and Other Resources  R-12 Haack, R. A. 1993. The endangered Karner blue butterfly  (Lepidoptera: Lycaenidae): biology, management  considerations, and data gaps.  Haan, N.  L.,  and D. A.  Landis.  2019.  “Grassland  disturbance  increases monarch  butterfly  oviposition  and  decreases arthropod predator abundance.” Biological Conservation 233:185–192.  Haan, N. L., J. D. Bakker, P. W. Dunwiddie, and M. J. Linders. 2018. “Instar‐specific effects of host plants on  survival of endangered butterfly  larvae: Host plants and caterpillar ontogeny.” Ecological Entomology  43:742–753.  Habel, J. C., M. Husemann, T. Schmitt, and W. Ulrich. 2020. “Island‐mainland lepidopteran assemblies: a blue‐ print for species conservation in fragmented habitats.” Biodiversity and Conservation 29(11):3313–3325.  Habel, J. C., W. Ulrich, and T. Schmitt. 2020. “Butterflies in corridors: quality matters for specialists.” Insect  Conservation and Diversity 13(1):91–98.  Haddad, N. M. 1999. “Corridor and distance effects on interpatch movements: a landscape experiment with  butterflies.” Ecological Applications 9:612–622.   Haddad, N. M.,  and  K. A. Baum.  1999.  “An  experimental  test  of  corridor  effects  on  butterfly  densities.”  Ecological Applications 9:623–633.   Haddad, N. M., B. Hudgens, C. Damiani, K. Gross, D. Kuefler, and K. Pollock. 2008.  “Determining optimal  population monitoring for rare butterflies.” Conservation Biology 22(4):929–940.  Haines, W. 2018. Personal communication with Michele Blackburn and Candace Fallon, the Xerces Society.  Research  Entomologist,  Hawaii  Invertebrate  Program,  Hawaii  Department  of  Land  and  Natural  Resources, Division of Forestry and Wildlife, University of Hawaii, Center for Conservation Research and  Training, Honolulu, Hawaii. 22 October 2018.  Haines, W. 2019. Personal communication with Michele Blackburn, Conservation Biologist, the Xerces Society.  Research  Entomologist,  Hawaii  Invertebrate  Program,  Hawaii  Department  of  Land  and  Natural  Resources, Division of Forestry and Wildlife University of Hawaii, Center for Conservation Research and  Training. January 8–10, 2019.  Halbritter, D. A., J. C. Daniels, D. C. Whitaker, and L. Huang. 2015. “Reducing mowing  frequency  increases  floral  resource  and  butterfly  (Lepidoptera: Hesperioidea  and  Papilionoidea)  abundance  in managed  roadside margins.” Florida Entomologist 98(4):1081–1092.  Hall,  F.  C.  2002.  Photo  Point Monitoring Handbook. Gen.  Tech.  Rep.  PNW‐GTR‐526. U.S. Department  of  Agriculture,  Forest  Service,  Pacific  Northwest  Research  Station,  Portland,  OR.  Available:  https://www.fs.fed.us/pnw/pubs/gtr526/.  Hamm, C. A., B. L. Williams, and D. A. Landis. 2013. “Natural history and conservation status of the endangered  Mitchell’s satyr butterfly: synthesis and expansion of our knowledge  regarding Neonympha mitchellii  mitchellii (French 1889).” Journal of the Lepidopterists’ Society 67:15–28.  Hamm, C. A., V. Rademacher, D. A. Landis, and B. L. Williams. 2013. Data from: Conservation genetics and the  implication for recovery of the endangered Mitchell’s satyr butterfly, Neonympha mitchellii mitchellii.  Dryad Digital Repository. 

References and Other Resources  R-13 Hammond, P. 2012. Personal communication with Sarah Foltz  Jordan,  the Xerces Society  for  Invertebrate  Conservation. Lepidopterist and Research Associate  in  the Department of Entomology, Oregon State  University. January 3.  Hansen, M. J., and A. P. Clevenger. 2005. “The influence of disturbance and habitat on the presence of non‐ native plant species along transport corridors.” Biological Conservation 125(2):249–259.  Hanula, J. L., and S. Horn. 2011. “Removing an invasive shrub (Chinese privet) increases native bee diversity  and abundance in riparian forests of the southeastern United States.” Insect Conservation and Diversity  4(4):275–283.  Harmon‐Threatt, A. N.,  and  C.  Kremen.  2015.  “Bumble  bees  selectively  use  native  and  exotic  species  to  maintain nutritional  intake across highly variable and  invaded  local  floral  resource pools.” Ecological  Entomology 40(4):471–478.  Harper‐Lore, B., and M. Wilson, Eds. 2000. Roadside Use of Native Plants. Island Press, Washington, DC, 665  pp.  Harper‐Lore, B., M. Johnson, and W. F. Ostrum. 2013. Vegetation Management: An Ecoregional Approach.  United States Department of Transportation Federal Highway Administration.  Harrison, G. L. 2014. Economic Impact of Ecosystem Services Provided by Ecologically Sustainable Roadside  Right of Way Vegetation Management Practices. University of Florida/IFAS, Wakulla County Extension  Service.  Harvey, J. A., K. Tougeron, R. Gols, R. Heinen, M. Abarca, P. K. Abram, Y. Basset, M. Berg, C. Boggs, J. Brodeur,  P. Cardoso, J. G. de Boer, G. R. De Snoo, C. Deacon, J. E. Dell, N. Desneux, M. E. Dillon, G. A. Duffy, L. A. Dyer, J. Ellers, A. Espíndola, J. Fordyce, M. L. Forister, C. Fukushima, M. J. G. Gage, C. García‐Robledo, C. Gely, M. Gobbi, C. Hallmann, T. Hance, J. Harte, A. Hochkirch, C. Hof, A. A. Hoffmann, J. G. Kingsolver, G.  P. A. Lamarre, W. F. Laurance, B. Lavandero, S. R. Leather, P. Lehmann, C. Le Lann, M. M. López‐Uribe, C.‐S. Ma, G. Ma, J. Moiroux, L. Monticelli, C. Nice, P. J. Ode, S. Pincebourde, W. J. Ripple, M. Rowe, M. J.  Samways, A. Sentis, A. A. Shah, N. Stork, J. S. Terblanche, M. P. Thakur, M. B. Thomas, J. M. Tylianakis, J.  Van Baaren, M. Van de Pol, W. H. Van der Putten, H. Van Dyck, W. C. E. P. Verberk, D. L. Wagner, W. W. Weisser, W. C. Wetzel, H. A. Woods, K. A. G. Wyckhuys, and S. L. Chown. 2022. Scientists’ warning on climate change and insects. Ecological Monographs: e1553. Hatfield, R. G., and G. LeBuhn. 2007. “Patch and landscape factors shape community assemblage of bumble  bees, Bombus spp.  (Hymenoptera: Apidae),  in montane meadows.” Biological Conservation 139:150– 158.  Hatfield, R. G., S. R. Colla, S.  Jepsen, L. L. Richardson, and R. W. Thorp. 2016.  International Union  for  the  Conservation of Nature (IUCN) Assessments for North American Bombus spp. for the North American  IUCN Bumble Bee Specialist Group. The Xerces Society for Invertebrate Conservation, Portland, OR.  Hatfield, R., C. Fallon, and M. Blackburn. 2018. Mardon skipper (Polites mardon) distance sampling surveys at  four sentinel sites in Oregon and Washington: Year 5. Final report to the U.S. Forest Service, Bureau of  Land Management, and the Interagency Special Status/Sensitive Species Program (ISSSSP). The Xerces  Society, Portland, OR. 31 pp. 

References and Other Resources  R-14 Hatfield, R., R. Jepsen, R. Thorp, L. Richardson, S. Colla, and S. Foltz Jordan. 2015. “Bombus pensylvanicus.”  The  IUCN  Red  List  of  Threatened  Species  2015:  e.T21215172A21215281.  Available:  https://dx.doi.org/10.2305/IUCN.UK.2015‐4.RLTS.T21215172A21215281.en. Accessed: March 24, 2020.  Hatfield, R., S. Jepsen, E. Mader, S. H. Black, and M. Shepherd. 2012. Conserving Bumble Bees, Guidelines for  Creating  and Managing  Habitat  for  America’s  Declining  Pollinators.  32  pp.  The  Xerces  Society  for  Invertebrate Conservation, Portland, OR.  Hatfield, R., S. Jepsen, R. Thorp, L. Richardson, and S. Colla. 2015. “Bombus terricola.” The IUCN Red List of  Threatened  Species  2015:  e.T44937505A46440206.  Available:  https://dx.doi.org/10.2305/IUCN.UK.2015‐2.RLTS.T44937505A46440206.en. Accessed: March 24, 2020.  Hatfield, R., S. Jepsen, R. Thorp, L. Richardson, S. Colla, and S. Foltz Jordan. 2015. “Bombus fervidus.” The IUCN  Red  List  of  Threatened  Species  2015:  e.T21215132A21215225.  Available:  https://dx.doi.org/10.2305/IUCN.UK.2015‐4.RLTS.T21215132A21215225.en. Accessed: March 24, 2020.  Hatfield, R., S. Jepsen, R. Thorp, R. Richardson, and S. Colla. 2015. “Bombus suckleyi.” The IUCN Red List of  Threatened  Species  2015:  e.T44937699A46440241.  Available:  https://dx.doi.org/10.2305/IUCN.UK.2015‐2.RLTS.T44937699A46440241.en. Accessed: March 24, 2020.  Hausfather, Z., H. F. Drake, T. Abbott, and G. A. Schmidt. 2020. Evaluating the Performance of Past Climate  Model Projections. Geophysical Research Letters 47:1535.  Havens,  K.,  and  P.  Vitt.  2016.  “The  importance  of  phenological  diversity  in  seed  mixes  for  pollinator  restoration.” Natural Areas Journal 36(4):531–537.  Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife. 2015. Draft Habitat  Conservation Plan  for Game Management at Pu‘u Wa‘awa‘a and Pu‘u Anahulu. Napu’u Conservation  Project. 269 pp.  Hawaii Department of Land and Natural Resources. 2015. Hawai‘i’s State Wildlife Action Plan. Prepared by H.  T. Harvey and Associates, Honolulu, Hawai‘i. 1055 pp.  Hayhoe, K., D. Cayan, C. B. Field, P. C. Frumhoff, E. P. Maurer, N. L. Miller, S. C. Moser, S. H. Schneider, K. N.  Cahill, E. E. Cleland, L. Dale, R. Drapek, R. M. Hanemann, L. S. Kalkstein,  J. Lenihan, C. K. Lunch, R. P.  Neilson, S. C. Sheridan, and J. H. Verville. 2004. Emissions Pathways, Climate Change, and  Impacts on  California. Proceedings of the National Academy of Sciences, 101(34):12422–12427.  Heddle,  M.  L.  2004.  Tinostoma  smaragditis.  The  IUCN  Red  List  of  Threatened  Species  2004:  e.T21913A9339981.  Available:  https://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T21913A9339981.en. Accessed: September 2020. Heddle, M. L., K. R. Wood, A. Asquith, and R. G. Gillespie. 2000. “Conservation status and research on the  Fabulous Green Sphinx of Kaua’i, Tinostoma smaragditis (Lepidoptera: Sphingidae), including checklists  of the vascular plants of the diverse mesic forests of Kaua‘i, Hawai‘i.” Pacific Science 54(1):1–9.  Henry,  E.  2010.  Master  of  Science  Thesis:  “A  first  step  towards  successful  habitat  restoration  and  reintroduction: Understanding  oviposition  site  selection of  an  imperiled butterfly, Mardon  skipper.”  Washington State University, School of Earth and Environmental Science.   Herrera, C. M. 1989. “Pollinator abundance, morphology, and flower visitation rate: analysis of the ‘quantity’  component in a plant‐pollinator system.” Oecologia 80:241–248. 

References and Other Resources  R-15 Herrmann, C. R. 2017. Living on the edge: assessing the effects of catastrophic fire on plants utilized by two  endemic subspecies of spring mountains butterflies. MS, University of Nevada Las Vegas.  Hess, A. N., R.  J. Hess,  J.  L. M. Hess, B. Paulan,  and  J. A. M. Hess.  2014.  “American bison  influences on  lepidopteran  and  wild  blue  lupine  distribution  in  an  oak  savanna  landscape.”  Journal  of  Insect  Conservation 18:327–338.  Holdren,  C.  E.,  and  P.  R.  Ehrlich.  1981.  “Long  range  dispersal  in  checkerspot  butterflies:  Transplant  experiments with Euphydryas gillettii.” Oecologia 50:125–129.  Hopwood,  J.  L.  2008.  “The  contribution  of  roadside  grassland  restorations  to  native  bee  conservation.”  Biological Conservation 141:2632–2640.  Hopwood, J., L. Winkler, B. Deal, and M. Chivvis. 2010. Use of roadside prairie plantings by native bees. Living  Roadway  Trust  Fund.  Available:  http://www.iowalivingroadway.com/ResearchProjects/90‐00‐LRTF‐ 011.pdf. Accessed: October 2014.  Hopwood,  J., S. H. Black, and S. Fleury. 2016a. Pollinators and Roadsides: Best Management Practices  for  Managers and Decision Makers. 96 pp.  Federal Highway Administration, Washington, DC. Available:  https://www.environment.fhwa.dot.gov/ecosystems/Pollinators_Roadsides/BMPs_pollinators_roadsid es.pdf.  Hopwood,  J.,  S. H.  Black,  and  S.  Fleury.  2016b.  Identifying  the  Current  State  of  Practice  for  Vegetation  Management  Associated  with  Pollinator  Health  and  Habitat:  An  Interview  Report.  38  pp.  Federal  Highway  Administration,  Washington,  DC.  Available:  https://www.environment.fhwa.dot.gov/ env_topics/ecosystems/pollinator_reports/pollinator_interview_rpt.aspx.  Hopwood, J., S. H. Black, E. Lee‐Mader, A. Charlap, R. Preston, K. Mozumder, and S. Fleury. 2015. Literature  Review: Pollinator Habitat Enhancement and Best Management Practices  in Highway Rights‐of‐Way.  Prepared by The Xerces Society for Invertebrate Conservation in collaboration with ICF International. 68  pp. Federal Highway Administration, Washington, DC.  Houseal,  G.,  and  D.  Smith.  2000.  “Source‐identified  seed:  The  Iowa  roadside  experience.”  Ecological  Restoration 18(3):173–183.  Howarth, F. G. 1985. “Impacts of alien land arthropods and mollusks on native plants and animals in Hawaii.”  Hawaii’s  terrestrial ecosystems: preservation and management. University of Hawaii Press, Honolulu,  Hawaii. Pp. 149–179.  Howarth, F. G., and W. P. Mull. 1992. Hawaiian Insects and Their Kin. University of Hawaii Press. Honolulu,  Hawaii. 160 pp.  Howarth, F. G., D. J. Preston, and R. Pyle. 2012. Surveying for Terrestrial Arthropods (Insects and Relatives)  Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report. Hawaii Biological Survey.  Bishop Museum Technical Report 58, Honolulu, Hawaii. 225 pp.  Huijser, M. P., and A. P. Clevenger. 2006. “Habitat and corridor function of rights‐of‐way.” In The Ecology of  Transportation: Managing Mobility for the Environment (pp. 233–254). Springer Netherlands.  Huijser, M. P., P. McGowen, J. Fuller, A. Hardy, A. Kociolek, A. P. Clevenger, D. Smith, and R. Ament. 2008.  Wildlife‐Vehicle  Collision  Reduction  Study:  Report  to  Congress.  FHWA‐HRT‐08‐034.  Available:  https://www.fhwa.dot.gov/publications/research/safety/08034/08034.pdf.  

References and Other Resources  R-16 Humbert, J‐Y., J. Ghazoul, G. J. Sauter, and T. Walter. 2010. “Impact of different meadow mowing techniques  on field invertebrates.” Journal of Applied Entomology 134(7):592–599.  Huntzinger, M. 2003. “Effects of  fire management practices on butterfly diversity  in  the  forested western  United States.” Biological Conservation 113(1):1–12.  iNaturalist. 2020.  iNaturalist Network  (web application): “Hylaeus.” Available: http://www.inaturalist.org/.  Accessed: September 2020.  Ing, K., and C.  L. Mogren. 2020.  “Evidence of  competition between honey bees and Hylaeus anthracinus  (Hymenoptera: Colletidae), an endangered Hawaiian yellow‐faced bee.” Pacific Science 74(1):75–85.  Intergovernmental Panel on Climate Change (IPCC). 2018: Summary for Policymakers. In: Global Warming of  1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre‐Industrial Levels and  Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response  to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. V. Masson‐ Delmotte, P. Zhai, H.‐O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma‐Okia, C. Péan,  R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor,  and T. Waterfield (eds.). World Meteorological Organization, Geneva, Switzerland.  Intergovernmental  Science‐Policy  Platform  on  Biodiversity  and  Ecosystem  Services  (IPBES).  2016.  The  assessment report on pollinators, pollination and food production. S. G. Potts, V. L. Imperatriz‐Fonseca,  and H. T. Ngo (Eds.). Secretariat of the Intergovernmental Science‐Policy Platform on Biodiversity and  Ecosystem Services, Bonn, Germany. 552 pages. Available: https://doi.org/10.5281/zenodo.3402856.  Jablonski, B., Z. Koltowsk, J. Marcinkowski, H. Rybak‐Chmielewska, T. Szczesna, and Z. Warakomska. 1995.  “Zawartosc metali ciezkich [Pb, Cd, i Cu] w nektarze, miodzie i pylku pochodzacym z roslin rosnacych przy  szlakach komunikacyjnych [The content of heavy metals (Pb, Cd and Cu) in the nectar, honey and pollen  collected from roadside plants].” Pszczelnicze Zeszyty Naukowe 39:129–144.  Jacobsen, R. L., N. J. Albrecht, and K. E. Bolin. 1990. “Wildflower Routes: Benefits of a Management Program  for Minnesota Right‐of‐Way Prairies.” Proceedings of  the Twelfth North American Prairie Conference  153–158.  James, D. G., and D. Nunnallee. 2011. Life Histories of Cascadia Butterflies. Oregon State University Press,  Corvallis, Oregon. 447 pp.  Jepsen, S., E. Evans, R. Thorp, R. Hatfield, and S. H. Black. 2013. Petition to List the Rusty Patched Bumble Bee,  Bombus affinis (Cresson), 1863, as an Endangered Species under the U.S. Endangered Species Act. Xerces  Society  for  Invertebrate  Conservation.  Available:  https://www.xerces.org/sites/default/files/2018‐ 07/Bombus‐affinis‐petition.pdf.   Johnson, A. M. 2000. Best Practices Handbook on Roadside Vegetation Management. Minnesota Department  of  Transportation,  Report  #  2000‐19,  University  of  Minnesota  132  pp.,  p.  78.  Available:  http://www.lrrb.org/media/reports/200820.pdf. Accessed: November 2020.  Johst, K., M. Drechsler,  J. Thomas, and  J.  Settele. 2006.  “Influence of mowing on  the persistence of  two  endangered large blue butterfly species.” Journal of Applied Ecology 43(2):333–342. 

References and Other Resources  R-17 Jordan, S. F., S. H. Black, and S. Jepsen. 2012. Petition to list the island marble butterfly, Euchloe ausonides  insulanus (Guppy and Shepard, 2001) as an endangered species under the U.S. Endangered Species Act.  Xerces Society  for  Invertebrate Conservation, Portland, Oregon. Available: https://ecos.fws.gov/docs/ tess/petition/631.pdf. Accessed December 29, 2021.   Jump, P. M., T. Longcore, and C. Rich. 2006. “Ecology and distribution of a newly discovered population of the  federally threatened Euproserpinus euterpe (Sphingidae).” Journal of the Lepidopterists’ Society 60:41– 50.  Kantola, T., J. L. Tracy, K. A. Baum, M. A. Quinn, and R. N. Coulson. 2019. “Spatial risk assessment of eastern  monarch butterfly  road mortality during autumn migration within  the  southern  corridor.” Biological  Conservation 231:150–160.  Kearns, C. A. 2001. “North American dipteran pollinators: Assessing  their value and conservation  status.”  Conservation Ecology 5(1).  Kearns, C. A., and J. D. Thompson. 2001. The Natural History of Bumble bees. A Sourcebook for Investigations.  Boulder: University Press of Colorado.  Kearns, C. A., D. A.  Inouye, and N. M. Waser. 1998. “Endangered mutualisms:  the conservation of plant– pollinator interactions.” Annual Review of Ecology & Systematics 29:83–113.  Keilsohn, W., D. L. Narango, and D. W. Tallamy. 2018. “Roadside habitat  impacts  insect  traffic mortality.”  Journal of Insect Conservation 22(2):183–188.  Kerwin,  A.  E.  2011.  Conservation  assessment  for  the  mardon  skipper  (Polites  mardon).  Version  2.0.  Interagency Special Status/Sensitive Species Program, USDA Forest Service Region 6, and USDI Bureau  of Land Management, Oregon and Washington. 60 pp.  Kevan, P. G. 1975. “Forest application of the  insecticide  fenitrothion and  its effect on wild bee pollinators  (Hymenoptera: Apoidea) of lowbush blueberries (Vaccinium spp.) in Southern New Brunswick, Canada.”  Biological Conservation 7(4):301–309.  Kevan,  P.  G.  1999.  “Pollinators  as  bioindicators  of  the  state  of  the  environment:  species,  activity  and  diversity.” Agriculture Ecosystems & Environment 74(1‐3):373–393.  Keysmoths.com.  No  date.  “Euphyes  pilatka  klotsi,  Palatka  Skipper.”  "Available:  https://www.keysmoths.com/euphyes‐pilatka‐klotsi‐palatka‐skip/.   Kingsley,  K.  J.  1996.  “Behavior  of  the  Delhi  Sands  Flower‐Loving  Fly  (Diptera: Mydidae),  a  Little‐Known  Endangered Species.” Annals of the Entomological Society of America 89:883–891.  Kingsley, K. J. 2002. “Population dynamics, resource use, and conservation needs of the delhi sands flower‐ loving fly (Rhaphiomidas terminatus abdominalis Cazier) (Diptera: Mydidae), an Endangered Species.”  Journal of Insect Conservation 6:93–101.  Kitching,  I.  J., and  J. M. Cadiou. 2000. Hawkmoths of  the World. Comstock Publishing Associates, Cornell  University Press. Ithaca, New York. 227 pp.  Klein, A. M., B. E. Vaissiere, J. H. Cane, I. Steffan‐Dewenter, S. A. Cunningham, C. Kremen, and T. Tscharntke.  2007.  “Importance of pollinators  in  changing  landscapes  for world  crops.” Proceedings of  the Royal  Society of London B: Biological Sciences 274(1608):303–313. 

References and Other Resources  R-18 Kleintjes Neff, P., C. Locke, and E. Lee‐Mӓder. 2017. “Assessing a farmland set‐aside conservation program  for an endangered butterfly: USDA State Acres  for Wildlife Enhancement  (SAFE)  for  the Karner blue  butterfly.” Journal of Insect Conservation 21:929–941.  Koch, J. B., and H. F. Sahli. 2013. “Patterns of flower visitation across elevation and successional gradients in  Hawai ‘i.” Pacific Science 67(2):253–266.  Koch, J. B., and J. P. Strange. 2012. “The status of Bombus occidentalis and B. moderatus in Alaska with special  focus on Nosema bombi incidence.” Northwest Science 86(3):212–220.  Kociolek, A., C. Grilo, and S. Jacobson. 2015. “Flight doesn’t solve everything: Mitigation of road impacts on  Birds.” In: van der Ree, Rodney, Daniel J. Smith, and Clara Grilo (Eds.) Handbook of Road Ecology. John  Wiley & Sons, Ltd., Chichester, UK. pp. 281–289.  Kremen, C., K. S. Ullman, and R. W. Thorp. 2011. “Evaluating the quality of citizen‐scientist data on pollinator  communities.” Conservation Biology 25(3):607–617.  Kremen,  C.,  N. M. Williams,  and  R. W.  Thorp.  2002a.  Crop  Pollination  from  Native  Bees  at  Risk  From  Agricultural Intensification. Proceedings of the National Academy of Sciences, 99(26):16812–16816.  Kremen, C., R. L. Bugg, N. Nicola, S. A. Smith, R. W. Thorp, and N. M. Williams. 2002b. “Native bees, native  plants, and crop pollination in California.” Fremontia 30(3‐4):41–49.  Kruess, A., and T. Tscharntke. 2002. “Grazing intensity and the diversity of grasshoppers, butterflies, and trap‐ nesting bees and wasps.” Conservation Biology 16:1570–80.  Kudo,  G.,  and  E.  J.  Cooper.  2019.  “When  spring  ephemerals  fail  to  meet  pollinators:  mechanism  of  phenological mismatch  and  its  impact  on  plant  reproduction.”  Proceedings  of  the  Royal  Society  B  286(1904):20190573.  Kuefler, D., N. M. Haddad, S. Hall, B. Hudgens, B. Bartel, and E. Hoffman. 2008. “Distribution, Population  Structure  and  Habitat  Use  of  the  Endangered  Saint  Francis  Satyr  Butterfly,  Neonympha  mitchellii  francisci.” American Midland Naturalist 159(2):298–320.  Kuppler, J., M. K. Höfers, W. Trutschnig, A. C. Bathke, J. A. Eiben, C. C. Daehler, and R. R. Junker. 2017. “Exotic  flower visitors exploit large floral trait spaces resulting in asymmetric resource partitioning with native  visitors.” Functional Ecology 31(12):2244–2254.  Kutlesa, N.  J., and S. Caveney. 2001. “Insecticidal activity of glufosinate  through glutamine depletion  in a  caterpillar.” Pest Management Science 57:25–32.  LaBar, C. C., and C. B. Schultz. 2012. “Investigating the role of herbicides  in controlling  invasive grasses  in  prairie habitats: effects on non‐target butterflies.” Natural Areas Journal 32(2):177–189.  Lach,  L.  2005.  “Interference  and  exploitation  competition  of  three  nectar‐thieving  invasive  ant  species.”  Insectes Sociaux 52:257–262.  Lach, L., and L. M. Hooper‐Bui. 2010. Consequences of ant invasions. In: Lach, L., C. L. Parr, and K. L. Abbott  (Eds.), Ant Ecology. Oxford University Press, Inc., Oxford. pp. 261–286.  Lambert, A. M. 2011. Natural history and population ecology of a rare pierid butterfly, Euchloe ausonides  insulanus Guppy and Shepard (Pieridae). Ph.D., University of Washington. 

References and Other Resources  R-19 Lampinen, J. and Anttila, N., 2021. Reconciling road verge management with grassland conservation is met  with positive attitudes among stakeholders, but faces implementation barriers related to resources and  valuation. Journal of Environmental Planning and Management, 64(5), pp.823‐845.  Lange, M., N. Eisenhauer, C. A. Sierra, H. Bessler, C. Engels, R. I. Griffiths, P. G. Mellado‐Vázquez, A. A. Malik,  J. Roy, S. Scheu, S. Steinbeiss, B. C. Thomson, S. E. Trumbore, and G. Gleixner. 2015. “Plant diversity  increases soil microbial activity and soil carbon storage.” Nature Communications 6:6707.  Launer, A. E., D. D. Murphy, J. M. Hoekstra, and H. R. Sparrow. 1992. “The endangered Myrtle’s silverspot  butterfly: present status and initial conservation planning.” The Journal of Research on the Lepidoptera  31:132–146.  Lavsund, S., and F. Sandegren. 1991. “Moose‐vehicle relations in Sweden: a review.” Alces 27:118–126.  Leharne, S., D. Charesworth, and B. Chowdhry. 1992. “A survey of metal  levels  in street dusts  in an  inner  London neighbourhood.” Environment International 18:263–270.  Liebherr, J. K., and D. A. Polhemus. 1997. “R. C. L. Perkins: 100 years of Hawaiian entomology.” Pacific Science  51(4):343–355.  Lindzey, S., and E. F. Connor. 2011. “Monitoring the mission blue butterfly using immature stages.” Journal of  Insect Conservation 15:765–773.  Longcore, T., C. S. Lam, P. Kobernus, E. Polk, and J. P. Wilson. 2010. “Extracting useful data from imperfect  monitoring  schemes:  endangered  butterflies  at  San  Bruno Mountain,  San Mateo  County,  California  (1982–2000) and implications for habitat management.” Journal of Insect Conservation 14:335–346.  Lotts,  K.,  and  T.  Naberhaus,  coordinators.  2017.  Butterflies  and  moths  of  North  America.  Available:  www.butterfliesandmoths.org (Version 09292020).  Louda, S. M., C. Kendall, J. Connor, and D. Simberloff. 1997. “Ecological effects of an insect introduced for the  biological control of weeds.” Science 277:1088–1090.  Lövei, G. L., A. Macleod, and J. M. Hickman. 1998. “Dispersal and effects of barriers on the movement of the  New Zealand hover fly Melanostoma fasciatum (Dipt., Syrphidae) on cultivated land.” Journal of Applied  Entomology 122(1‐5):115–120.  Lucey,  A.,  and  S.  Barton.  2010.  Public  Perception  and  Sustainable  Roadside  Vegetation  Management  strategies.  Available:  http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.347.2930& rep=rep1&type=pdf.   Macdonald, E., R. Sanders, and P. Supawanich. 2008. The Effects of Transportation Corridors’ Roadside Design  Features on User Behavior and Safety, and Their Contributions to Health, Environmental Quality, and  Community  Economic  Vitality:  A  Literature  Review.  University  of  California  Transportation  Center,  Research Report 878.   Macgregor, C. J., M. J. Pocock, R. Fox, and D. M. Evans. 2015. “Pollination by nocturnal Lepidoptera, and the  effects of light pollution: a review.” Ecological Entomology 40(3):187–198.  Magnacca, K. N. 2005. Species Profile: Hylaeus anthracinus. In Shepherd, M. D., D. M. Vaughan, and S. H. Black  (Eds.), Red List of Pollinator Insects of North America. CD‐ROM Version 1 (May 2005). The Xerces Society  for Invertebrate Conservation, Portland, OR.  

References and Other Resources  R-20 Magnacca, K. N. 2005. Species Profile: Hylaeus assimulans. In Shepherd, M. D., D. M. Vaughan, and S. H. Black  (Eds.), Red List of Pollinator Insects of North America. CD‐ROM Version 1 (May 2005). The Xerces Society  for Invertebrate Conservation, Portland, OR.  Magnacca, K. N. 2005. Species Profile: Hylaeus  facilis.  In Shepherd, M. D., D. M. Vaughan, and S. H. Black  (Eds.), Red List of Pollinator Insects of North America. CD‐ROM Version 1 (May 2005). The Xerces Society  for Invertebrate Conservation, Portland, OR.  Magnacca, K. N. 2005. Species Profile: Hylaeus hilaris.  In Shepherd, M. D., D. M. Vaughan, and S. H. Black  (Eds.), Red List of Pollinator Insects of North America. CD‐ROM Version 1 (May 2005). The Xerces Society  for Invertebrate Conservation, Portland, OR.   Magnacca, K. N. 2005. Species Profile: Hylaeus kuakea  In Shepherd, M. D., D. M. Vaughan, and S. H. Black  (Eds.), Red List of Pollinator Insects of North America. CD‐ROM Version 1 (May 2005). The Xerces Society  for Invertebrate Conservation, Portland, OR.  Magnacca, K. N. 2005. Species Profile: Hylaeus longiceps. In Shepherd, M. D., D. M. Vaughan, and S. H. Black  (Eds.), Red List of Pollinator Insects of North America. CD‐ROM Version 1 (May 2005). The Xerces Society  for Invertebrate Conservation, Portland, OR.   Magnacca, K. N. 2005. Species Profile: Hylaeus mana.  In Shepherd, M. D., D. M. Vaughan, and S. H. Black  (Eds.), Red List of Pollinator Insects of North America. CD‐ROM Version 1 (May 2005). The Xerces Society  for Invertebrate Conservation, Portland, OR.  Magnacca,  K.  N.  2007.  “Conservation  status  of  the  native  bees  of  Hawaii,  Hylaeus  (Nesoprosopis)  (Hymenoptera: Apoidea).” Pacific Science 61(2):173–190.  Magnacca, K. N. 2007. “New records of Hylaeus (Nesoprosopis) and Ceratina bees in Hawai‘i.” Bishop Museum  Occasional Papers 96:44–45. Honolulu, Hawaii.  Magnacca, K. N. 2018. Personal database of Hawaiian Hylaeus records. Entomological Specialist, Oahu Army  Natural Resources Program.  Magnacca, K. N., and B. N. Danforth. 2006. “Evolution and biogeography of native Hawaiian Hylaeus bees  (Hymenoptera: Colletidae).” Cladistics 22(5):393–411.  Magnacca, K. N., and C. King. 2013. Assessing the presence and distribution of 23 Hawaiian yellow‐faced bee  species on lands adjacent to military installations on O‘ahu and Hawai‘i Island. Technical Report No. 185.  Pacific Cooperative Studies Unit, University of Hawaii, Honolulu, Hawai‘i. 39 pp.  Magrach, A., J. P. González‐Varo, M. Boiffier, M. Vilà, and I. Bartomeus. 2017. “Honeybee spillover reshuffles  pollinator diets and affects plant reproductive success.” Nature Ecology & Evolution 1(9):1299–1307.  Marschalek, D. A. 2004. Factors influencing population viability of hermes copper (Lycaena hermes). MS, San  Diego State University.  Marschalek,  D.  A.,  and  D.  H.  Deutschman.  2008.  “Hermes  copper  (Lycaena  [Hermelycaena]  hermes:  Lycaenidae):  life history and population estimation of a rare butterfly.” Journal of Insect Conservation  12:97–105.  Marschalek,  D.  A.,  and M. W.  Klein.  2010.  “Distribution,  ecology,  and  conservation  of  Hermes  copper  (Lycaenidae: Lycaena [Hermelycaena] hermes).” Journal of Insect Conservation 14:721–730. 

References and Other Resources  R-21 Marschalek, D. A., D. H. Deutschman, S. Strahm, and M. E. Berres. 2016. “Dynamic  landscapes shape post‐ wildfire  recolonisation  and  genetic  structure  of  the  endangered  Hermes  copper  (Lycaena  hermes)  butterfly: Hermes copper recolonisation and genetics.” Ecological Entomology 41:327–337.  Marschalek, D. A., J. A. Jesu, and M. E. Berres. 2013. “Impact of non‐lethal genetic sampling on the survival,  longevity and behaviour of  the Hermes copper  (Lycaena hermes) butterfly.”  Insect Conservation and  Diversity / Royal Entomological Society of London 6:658–662.  Mastro, L. L., M. R. Conover, and S. N. Frey. 2008. “Deer‐vehicle collision prevention techniques.” Human‐ Wildlife Conflicts 2(1):80–92.  Mattoni,  R.  1992.  Rediscovery  of  the  endangered  Palos  Verdes  blue  butterfly,  Glaucopsyche  lygdamus  palosverdesensis Perkins and Emmel (Lycaenidae). The Journal of Research on the Lepidoptera 31:180– 194.  Mattoni,  R.,  T.  Longcore,  C.  Zonneveld,  and  V.  Novotny.  2001.  “Analysis  of  transect  counts  to monitor  population size in endangered insects: The case of the El Segundo blue butterfly, Euphilotes bernardino  allyni.” Journal of Insect Conservation 5:197–206.  Mattoni, R., T. Longcore, Z. Krenova, and A. Lipman. 1998. “Mass rearing the endangered Palos Verdes blue  butterfly  (Glaucopsyche  lygdamus  palosverdesensis:  Lycaenidae).”  The  Journal  of  Research  on  the  Lepidoptera 37:55–67.  Mattoni, Rudi, Kurt Medinger, Richard Rogers, Christopher D. Nagano. 1997. Final recovery plan for the Delhi  sands flower‐loving fly. U.S. Fish and Wildlife Service.  McCleery, R. A., A. R. Holdorf, L. L. Hubbard, and B. D. Peer. 2015. “Maximizing the Wildlife Conservation  Value of Road Right‐of‐Ways in an Agriculturally Dominated Landscape.” PLOS ONE 10(3):1–19.   McCorkle, D. V., and P. C. Hammond. 1988. “Biology of Speyeria zerene hippolyta (Nymphalidae) in a marine‐ modified environment.” Journal of the Lepidopterists’ Society 42:184–195.  McGregor,  S.  E.  1976.  Insect  Pollination  of  Cultivated  Crop  Plants. USDA Agriculture Handbook No.  496.  Available:  https://www.ars.usda.gov/ARSUserFiles/20220500/onlinepollinationhandbook.pdf.  Accessed: November 2020.  McKenna, D. D., K. M. McKenna, S. B. Malcom, and M. R. Berenbaum. 2001. “Mortality of Lepidoptera along  roadways in central Illinois.” Journal of the Lepidopterists Society 55(2):63–68.  Medeiros, A. C., L. L. Loope, and F. R. Cole. 1986. “Distribution of ants and their effects on endemic biota of  Haleakala  and  Hawaii  Volcanoes  National  Park:  a  preliminary  assessment.”  Proceedings  of  the  6th  Conference of Natural Sciences, Hawaii Volcanoes National Park. Pp. 39–52.  Medeiros, A., and E. vonAllmen. 2006. Restoration of a native Hawaiian dryland forest at Auwahi, Maui. U.S.  Geological Survey Fact Sheet 2006–3035.  Medeiros, M. J., J. A. Eiben, W. P. Haines, R. L. Kaholoaa, C. B. A. King, P. D. Krushelnycky, K. N. Magnacca, D.  Rubinoff, F. Starr, and K. Starr. 2013. “The  importance of  insect monitoring to conservation actions  in  Hawaii.” Proceedings of the Hawaiian Entomological Society 45:149–166.  Meissen, J. C., A. J. Glidden, M. E. Sherrard, K. J. Elgersma, and L. L. Jackson. 2019. “Seed mix design and first  year  management  influence  multifunctionality  and  cost‐effectiveness  in  prairie  reconstruction.”  Restoration Ecology 28(4):807–816. 

References and Other Resources  R-22 Memmott, J., and N. M. Waser. 2002. “Integration of alien plants  into a native flower–pollinator visitation  web.” Proceedings of the Royal Society of London Series B: Biological Sciences 269:2395–2399.  Menz, M. H.,  R. D.  Phillips,  R. Winfree,  C.  Kremen, M.  A.  Aizen,  S. D.  Johnson,  and  K. W. Dixon.  2011.  “Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms.” Trends in  Plant Science 16(1):4–12.  Mesnage, R., and M. N. Antoniou. 2018. “Ignoring adjuvant toxicity falsifies the safety profile of commercial  pesticides.” Frontiers in Public Health 5:361.  Metalmark  Web  and  Data.  “Ferris’  Copper:  Lycaena  ferrisi  K.  Johnson  &  Balogh,  1977.”  Available:  https://www.butterfliesandmoths.org/species/Lycaena‐ferrisi.   Michener, C. D. 2007. The Bees of the World. 2nd Edition. Johns Hopkins University Press, Baltimore, Maryland.  972 pp.  Michigan  State  University.  No  date.  “Erynnis  persius  persius:  Persius  dusky  wing.”  Available:  https://mnfi.anr.msu.edu/species/description/11586/Erynnis‐persius‐persius.   Milko, L. V., N. M. Haddad, and S. L. Lance. 2012. “Dispersal via Stream Corridors Structures Populations of  the  Endangered  St.  Francis’  Satyr  Butterfly  (Neonympha  mitchellii  francisci).”  Journal  of  Insect  Conservation 16:263–273.  Miller, A. E., B. J. Brosi, K. N. Magnacca, G. C. Daily, and L. Pejchar. 2015. “Pollen carried by native and non‐ native bees in the large‐scale reforestation of pastureland in Hawaii: implications for pollination.” Pacific  Science 69(5):67–79.  Miller, J. C., and P. C. Hammond. 2007. Butterflies and Moths of Pacific Northwest Forests and Woodlands:  Rare, Endangered, and Management‐Sensitive Species. 243 pp.  Miller, Lee D., Donald J. Harvey, and Jacqueline Y. Miller. 1985. “Notes on the genus Euphyes with description  of a new subspecies (Lepidoptera: Hesperiidae).” The Florida Entomologist 68:323–335.  Minnerath, A., M. Vaughan, and E. Mader. 2016. Maritime Northwest Citizen Science Monitoring Guide for  Bees and Butterflies. 60 pp. The Xerces Society, Portland, OR.  Minnesota Department of Natural Resources. No date. “Atrytone arogos iowa (Scudder, 1868).” Minnesota  Department  of  Natural  Resources,  St.  Paul,  Minnesota.  Available:  https://www.dnr.state.mn.us/rsg/profile.html?action=elementDetail&selectedElement=IILEP70012.  Accessed: October 4, 2020.  Minnesota  Department  of Natural  Resources. No  date.  “Hesperia  assiniboia  (Lyman,  1892).” Minnesota  Department  of Natural  Resources,  St.  Paul, Minnesota.  Available:  https://www.dnr.state.mn.us/rsg/ profile.html?action=elementDetail&selectedElement=IILEP65190.   Minnesota Department of Natural Resources. No date.  “Hesperia  leonardus: Basis  for  Listing.” Available:  https://www.dnr.state.mn.us/rsg/profile.html?action=elementDetail&selectedElement=IILEP65060.  Minnesota Department of Natural Resources. No date. “Hesperia ottoe (W. H. Edwards, 1866).” Minnesota  Department  of Natural  Resources,  St.  Paul, Minnesota.  Available:  https://www.dnr.state.mn.us/rsg/ profile.html?action=elementDetail&selectedElement=IILEP65050.  

References and Other Resources  R-23 Minnesota Department of Natural Resources. No Date. “Hesperia uncas (W. H. Edwards, 1863).” Minnesota  Department  of Natural  Resources,  St.  Paul, Minnesota.  Available:  https://www.dnr.state.mn.us/rsg/ profile.html?action=elementDetail&selectedElement=IILEP65010.  Minnesota  Department  of  Natural  Resources.  No  date.  “Oarisma  garita  (Reakirt,  1866).”  Minnesota  Department  of  Natural  Resources,  St.  Paul,  Minnesota.  Available:  https://www.dnr.state.mn.us/rsg/profile.html?action=elementDetail&selectedElement=IILEP57020.  Minno, M. C., and M. Minno. 2006. Conservation of the Arogos Skipper, Atrytone arogos arogos (Lepidoptera:  Hesperiidae)  in Florida. p. 219‐222.  In R. F. Noss (ed.) Land of Fire and Water: The Florida Dry Prairie  Ecosystem.  Proc.  Florida  Dry  Prairie  Conf.,  Sebring,  FL.  October  5–7,  2006.  Available:  www.ces.fau.edu/fdpc/proceedings/3‐17145_p.21924_Min_FDPC_d.pdf.  Mitchell, T. S., L. Agnew, R. Meyer, K. L. Sikkink, K. S. Oberhauser, E. T. Borer, and E. C. Snell‐Rood. 2020.  “Traffic influences nutritional quality of roadside plants for monarch caterpillars.” Science of The Total  Environment 724(1):138045.  Mok,  J‐H, H. C. Landphair, and  J. R. Naderi. 2006. “Landscape  improvement  impacts on roadside safety  in  Texas.” Landscape and Urban Planning 78(3):263–274.  Monroe, E. M., K. D. Alexander, and H. B. Britten. 2016. “Still here after all these years: the persistence of the  Uncompahgre fritillary butterfly.” Journal of Insect Conservation 20:305–313.  Montana Natural Heritage Program. No date. “Garita Skipperling—Oarisma garita.” Montana Field Guide.  Available: http://fieldguide.mt.gov/speciesDetail.aspx?elcode=IILEP57020.  Montana  Natural  Heritage  Program.  No  date.  “Uncas  Skipper—Hesperia  uncas.” Montana  Field  Guide.  Available: http://fieldguide.mt.gov/speciesDetail.aspx?elcode=IILEP65010.  Mora Alvarez, B. X., R. Carrera‐Treviño, and K. A. Hobson. 2019. “Mortality of monarch butterflies (Danaus  plexippus) at two highway crossing ‘Hotspots’ during autumn migration in Northeast Mexico.” Frontiers  in Ecology and Evolution 7:273.  Morandin, L. A., and C. Kremen. 2013. “Bee preference for native versus exotic plants in restored agricultural  hedgerows.” Restoration Ecology 21(1):26–32.  Moranz, R. A. 2010. The Effects of Ecological Management on Tallgrass Prairie Butterflies and Their Nectar  Sources, Ph.D. Thesis. Oklahoma State University, Stillwater, Oklahoma.  Morris, M. G. 2000. “The effects of structure and its dynamics on the ecology and conservation of arthropods  in British grasslands.” Biological Conservation 95:121–226.  Morse, R. A., and N. W. Calderone. 2000. “The value of honey bees as pollinators of US crops in 2000.” Bee  Culture 128(3):1–15.  Morton, H. L., and J. O. Moffett. 1972. “Ovicidal and larvicidal effects of certain herbicides on honey bees.”  Environmental Entomology 1:611–614.  Motta, E. V. S., K. Raymann, and N. A. Moran. 2018. Glyphosate Perturbs the Gut Microbiota of Honey Bees.  Proceedings of the National Academy of Science, 115(41):10305–10310. 

References and Other Resources  R-24 Motta, E. V. S., M. Mak, T. K. De Jong, J. E. Powell, A. O’Donnell, K. J. Suhr, I. M. Riddington, and N. A. Moran.  2020. “Oral or Topical Exposure to Glyphosate in Herbicide Formulation Impacts the Gut Microbiota and  Survival Rates of Honey Bees.” Applied and Environmental Microbiology 86.  Munguira, M. L., and J. A. Thomas. 1992. “Use of road verges by butterfly and burnet populations, and the  effect of roads on adult dispersal and mortality.” Journal of Applied Ecology 29:316–329.  Munoz, P. T., F. P. Torres, and A. G. Megias. 2015. “Effects of roads on  insects: A review.” Biodiversity and  Conservation 24(3):659–682.  Murphy, D. D., K. E. Freas, and S. B. Weiss. 1990. “An environment‐metapopulation approach to population  viability analysis for a threatened invertebrate.” Conservation Biology 4(1):41–51.   Narango, D. L., D. W. Tallamy, and P. P. Marra. 2017. “Native plants improve breeding and foraging habitat  for an insectivorous bird.” Biological Conservation 213:42–50.  Narango, D. L., D. W. Tallamy, and P. P. Marra. 2018. Nonnative Plants Reduce Population Growth of an  Insectivorous Bird. Proceedings of the National Academy of Sciences, 115(45):11549–11554.  Nassauer, J. I., E. S. Dayrell, and Z. Wang. 2006. Perceptions of the View from the Road. AIMS II: A Statewide  Survey. June. 2008‐34. Prepared for the Minnesota Department of Transportation, St. Paul, Minnesota.  Available: https://www.lrrb.org/media/reports/200834.pdf  National Agricultural Statistic Service, United States Department of Agriculture. 2019. Statistical summary:  honey bees.   National Research Council. 2007. Status of Pollinators in North America. Washington, DC: National Academies  Press.  NatureServe. 2018. Conservation Status. Available: http://explorer.natureserve.org/ranking.htm.  NatureServe.  2020.  NatureServe  Explorer  (web  application).  NatureServe,  Arlington,  Virginia.  Available:  https://explorer.natureserve.org/.   Ne’eman, G., A. Dafni, and S. G. Potts. 2000. “The effect of fire on flower visitation rate and fruit set in four  core‐species in east Mediterranean scrubland.” Plant Ecology 146:97–104.  Nemec,  K.,  Stephenson, A., Gonzalez,  E.A.  and  Losch, M.,  2021.  “Local Decision‐makers’  Perspectives  on  Roadside Revegetation and Management in Iowa, USA.” Environmental Management 67(6):1060–1074.  New, T.R., Sands, D.P. and Taylor, G.S., 2021. Roles of roadside vegetation in insect conservation in Australia.  Austral Entomology 60(1):128‐137.  Noordijk, J., K. Delille, A. P. Schaffers, and K. V. Sýkora. 2009. “Optimizing grassland management for flower‐ visiting insects in roadside verges.” Biological Conservation 142:2097–2103.  Norcini, J. G. 2014. Madison County Energy Conservation Study 2012–2013 Survey of Roadside Vegetation.  Final  Report  to  Florida  Department  of  Transportation.  PR6365252  February.  107  pp.  Available:  https://fdotwww.blob.core.windows.net/sitefinity/docs/default‐source/research‐center/research‐ center/completed_proj/summary_emo/fdot‐pr6365252‐rpt.pdf?sfvrsn=95a9fecb_0.  

References and Other Resources  R-25 Norcini, J. G., J. H. Aldrich, M. Thetford, K. A. Klock‐Moore, M. L. Bell, and B. K. Harbaugh. 2001. “Growth,  flowering,  and  survival  of  black‐eyed  susan  from  different  regional  seed  sources.”  HortTechnology  11(1):26–30.  O’Dell, R. E., S. L. Young, and V. P. Claassen. 2007. “Native roadside perennial grasses persist a decade after  planting in the Sacramento Valley.” California Agriculture 61:79–84.  Oberts, G. L. 1986. “Pollutants associated with sand and silt applied to roads in Minnesota.” Water Resources  Bulletin 22:479–483.  Olaya‐Arenas, P., K. Hauri, M. E. Scharf and  I. Kaplan. 2020.  “Larval pesticide exposure  impacts monarch  butterfly performance.” Scientific Reports 10(1):1–12.  Ollerton, J., R. Winfree, and S. Tarrant. 2011. “How many flowering plants are pollinated by animals?” Oikos  120:321–326.  Olliff‐Yang, R. L., T. Gardali, and D. D. Ackerly. 2020. Mismatch Managed? Phenological Phase Extension as a  Strategy to Manage Phenological Asynchrony in Plant–Animal Mutualisms. Restoration Ecology 11:147.  Opler, P. A., and A. B. Wright. 1999. A Field Guide  to Western Butterflies. Second edition. Peterson Field  Guides. Houghton Mifflin Company, Boston, MA.  Oregon Department of  Fish  and Wildlife.  2016. Oregon Conservation  Strategy.  Salem, Oregon. Available:  https://www.oregonconservationstrategy.org/. Accessed: September 17, 2020.  Ornstein, Robert E., and Paul R. Ehrlich. 1989. New World, New Mind: Moving Toward Conscious Evolution.  New York: Doubleday.  Osborne,  K.  H.,  and  R.  A.  Redak.  2000.  Microhabitat  Conditions  Associated  with  the  Distribution  of  Postdiapause Larvae of Euphydryas editha quino (Lepidoptera: Nymphalidae).  Ottewell, K. M., S. C. Donnellan, A. J. Lowe, and D. C. Paton. 2009. “Predicting reproductive success of insect‐ versus bird‐pollinated scattered trees  in agricultural  landscapes.” Biological Conservation 142(4):888– 898.  Ouin,  A.,  S.  Aviron,  J.  Dover,  and  F.  Burel.  2004.  “Complementation/supplementation  of  resources  for  butterflies in agricultural landscapes.” Agriculture, Ecosystems & Environment 103:473–479.  Pacific  Northwest  Moths.  2020.  “Copablepharon  fuscum  Troubridge  &  Crabo,  1996.”  Available:  http://pnwmoths.biol.wwu.edu/browse/family‐noctuidae/subfamily‐noctuinae/tribe‐ noctuini/copablepharon/copablepharon‐fuscum/. Accessed: September 16, 2020.  Pan, A. D., and J. S. Wilson. 2020. “A scientific note on the behavior of the endangered Anthricinan yellow‐ faced bee (Hylaeus anthracinus) from South Kohala District, Hawai‘i, Hawai‘i.” Apidologie:1–4.  Parmesan, C., A. Williams‐Anderson, M. Moskwik, A. S. Mikheyev, and M. C. Singer. 2015. “Endangered Quino  checkerspot butterfly and climate change: Short‐term success but long‐term vulnerability?” Journal of  Insect Conservation 19:185–204.  Parr, T. W., and J. M. Way. 1988. “Management of roadside vegetation: the  long‐term effects of cutting.”  Journal of Applied Ecology 25:1073–1087. 

References and Other Resources  R-26 Patrick, B., and H. Patrick. 2012. Butterflies of the South Pacific (Vol. 240). Otago University Press. Dunedin,  New Zealand. 240 pp.  Patterson,  T.A., Grundel,  R., Dzurisin,  J.D.K.,  Knutson,  R.L., Hellmann,  J.J.,  2020.  Evidence  of  an  extreme  weather‐induced phenological mismatch and a local extirpation of the endangered Karner blue butterfly.  Conservation Science and Practice 2, e147.  Pelton, E. M., C. B. Schultz, S.  J.  Jepsen, S. H. Black, and E. E. Crone. 2019. “Western monarch population  plummets: status, probable causes, and recommended conservation actions.” Frontiers in Ecology and  Evolution 7:258.  Pelton, E., S. Jepsen, C. Schultz, C. Fallon, and S. H. Black. 2016. State of the monarch butterfly overwintering  sites  in  California.  The  Xerces  Society  for  Invertebrate  Conservation,  Portland,  OR.  Available:  https://www.xerces.org/sites/default/files/2018‐05/16‐015_01_XercesSoc_State‐of‐Monarch‐ Overwintering‐Sites‐in‐California_web.pdf.   Perkins,  R.  C.  L.  1899.  Hymenoptera  Aculeata.  In  David  Sharp  (Ed.),  Fauna  Hawaiiensis.  Vol.  1,  Part  1.  Cambridge University Press, Cambridge, United Kingdom. pp. 1–115.  Perkins, R. C. L. 1913.  Introduction. Pages  i–ccxxvii  In D. Sharp (Ed.), Fauna Hawaiiensis. Vol. 1. Cambridge  University Press, London.  Perugini, M., M. Manera, L. Grotta, M. Cesarina Abete, R. Tarasco, and M. Amorena. 2011. “Heavy metal (Hg,  Cr,  Cd,  and  Pb)  contamination  in  urban  areas  and  wildlife  reserves:  honeybees  as  bioindicators.”  Biological Trace Element Research 140(2):170–176.  Philip, K. W., and C. D. Ferris. 2016. Butterflies of Alaska, A Field Guide. Second edition. Alaska Entomological  Society, Fairbanks, AK.  Phillips, B. B., C. Wallace, B. R. Roberts, A. T. Whitehouse, K.  J. Gaston,  J. M. Bullock, L. V. Dicks, and  J. L.  Osborne.  2020.  “Enhancing  road  verges  to  aid  pollinator  conservation:  A  review.”  Biological  Conservation 250:108687.  Phillips, B. B., J. M. Bullock, K. J. Gaston, K. A. Hudson‐Edwards, M. Bamford, D. Cruse, L. V. Dicks, C. Falagan,  C. Wallace, and J. L. Osborne. 2021. “Impacts of multiple pollutants on pollinator activity in road verges.”  Journal of Applied Ecology 58(5):1017–1029.  Pickens, B. A., and K. V. Root. 2008. Factors Affecting Host‐plant Quality and Nectar Use for the Karner Blue  Butterfly: Implications for Oak Savanna Restoration.  Pogue, C. D., M. J. Monfils, D. L. Cuthrell, B. J. Heumann, and A. K. Monfils. 2016. “Habitat suitability modeling  of  the  federally  endangered  poweshiek  skipperling  in  Michigan.”  Journal  of  Fish  and  Wildlife  Management 7:359–368.  Pokorny, M. L., S. A. Dewey, and S. R. Radosevich. 2006. “Getting Started: Fundamentals of Nonindigenous  Plant Species Inventory/Survey.” In: Rew, L. J. and M. L. Pokorny (Eds.) Inventory and Survey Methods for  Nonindigenous  Plant  Species.  Available:  http://msuinvasiveplants.org/documents/archives_cism/ Inventory_and_survey_methods.pdf#page=10.  Polic, D., K. Fiedler, C. Nell, and A. Grill. 2014. “Mobility of ringlet butterflies in high‐elevation alpine grassland:  effects of habitat barriers, resources and age.” Journal of Insect Conservation 18(6):1153–1161. 

References and Other Resources  R-27 Pollard, E., D. O. Elias, M.  J.  Skelton,  and  J. A. Thomas. 1975.  “A method of  assessing  the  abundance of  butterflies in Monks Wood National Nature Reserve in 1973.” Entomol. Gaz 26:79–88.  Ponisio, L. C., L. K. M’Gonigle, K. C. Mace, J. Palomino, P. de Valpine, and C. Kremen. 2015. “Diversification  practices  reduce  organic  to  conventional  yield  gap.”  Proceedings  of  the  Royal  Society  B:  Biological  Sciences 282(1799):20141396.  Portman, Z. M., V. J. Tepedino, and A. D. Tripodi. 2019. “Persistence of an imperiled specialist bee and its rare  host plant in a protected area.” Insect Conservation and Diversity 12:183–192.  Possley, J., S. Hodges, E. Magnaghi, and J. Maschinski. 2016. “Distribution of Croton linearis in Miami‐Dade  County  preserves  with  potential  for  supporting  the  federally  endangered  butterflies  Strymon  acis  bartrami and Anaea troglodyta floridalis.” Natural Areas Journal 36:81–87.  Potter, A., J. Fleckenstein, and J. Feen. 2002. Mardon skipper range and distribution in Washington in relation  to state and federal highways with a habitat description and survey method guidelines. Final report to  Washington Department of Transportation.  Potts, S. G., J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and W. E. Kunin. 2010. “Global pollinator  declines: trends, impacts and drivers.” Trends in Ecology & Evolution 25(6):345–353.  Pratt,  G.  F.  2010.  “A  new  larval  food  plant,  Collinsia  concolor,  for  the  endangered  Quino  checkerspot,  Euphydryas editha quino.” Journal of the Lepidopterists’ Society 64:36–37.  Pratt, G. F., and J. F. Emmel. 2010. “Sites chosen by diapausing or quiescent stage quino checkerspot butterfly,  Euphydryas editha quino,  (Lepidoptera: Nymphalidae)  larvae.” Journal of  Insect Conservation 14:107– 114.  Pratt, L. W., J. R. VanDeMark, and M. Euaparadorn. 2010. Limiting factors of five rare plant species in mesic  forests, Hawai‘i Volcanoes National Park. 151 pp.  Preston, K. L., R. A. Redak, M. F. Allen, and  J. T. Rotenberry. 2012.  “Changing distribution patterns of an  endangered butterfly:  Linking  local extinction patterns and variable habitat  relationships.” Biological  Conservation 152:280–290.  Pyle, R. M. 2002. The Butterflies of Cascadia. Seattle Audubon Society, Seattle, WA. 420 pp.  Pyle, R. M., and C. LaBar. 2018. Butterflies of the Pacific Northwest. Timber Press Field Guide. Timber Press,  Portland, OR. 461 pp.  Quales, W. 2003. “Native plants and  integrated roadside vegetation management.”  IPM Practitioner 25(3‐ 4):1–9.  Quarles, III, H. D., R. B. Hanawalt, and W. E. Odum. 1974. “Lead in small mammals, plants, and soil at varying  distances from a highway.” Journal of Applied Ecology 11(3):937–949.  Ramalho, C. E., M. Byrne, and C. J. Yates. 2017. A Climate‐Oriented Approach to Support Decision‐Making for  Seed Provenance in Ecological Restoration. Frontiers in Ecology and Evolution 5:95.  Rao, R. S. P., and M. K. S. Girish. 2007. “Road kills: Assessing insect casualties using flagship taxon.” Current  Science 92(6):830–843. 

References and Other Resources  R-28 Rea, R. V. 2003. “Modifying roadside vegetation management practices to reduce vehicular collisions with  moose Alces alces.” Wildlife Biology 9(2):81–91.  Ries,  L., D. M. Debinski,  and M.  L. Wieland. 2001.  “Conservation  value of  roadside prairie  restoration  to  butterfly communities.” Conservation Biology 15:401–411.  Rightmyer,  M.  G.,  M.  Deyrup,  J.  S.  Ascher,  and  T.  Griswold.  2011.  “Osmia  species  (Hymenoptera,  Megachilidae) from the southeastern United States with modified facial hairs: taxonomy, host plants,  and conservation status.” ZooKeys:257–278.  Rigney, C. L. 2013. Habitat characterization and biology of the threatened Dakota skipper (Hesperia dacotae)  in Manitoba. University of Winnipeg.  Riotte, J. C. E. 1986. “Re‐evaluation of Manduca blackburni (Lepidoptera: Sphingidae).” Proceedings of the  Hawaiian Entomological Society 27:79–90.  Robins P., R. B. Holmes, and K. Laddish (Eds.). 2001. “Bring farm edges back to life!” Landowner Conservation  Handbook. Yolo County Resource Conservation District. Woodland, CA. Available: www.yolorcd.ca.gov.  101 pp.  Robinson, G. S., P. R. Ackery, I. J. Kitching, G. W. Beccaloni, and L. M. Hernández. 2010. HOSTS ‐ A Database  of  the  World’s  Lepidopteran  Hostplants.  Natural  History  Museum,  London.  Available:  http://www.nhm.ac.uk/hosts.   Royer, R. A., J. E. Austin, and W. E. Newton. 1998. “Checklist and ‘Pollard Walk’ butterfly survey methods on  public lands.” The American Midland Naturalist 140(2):358–371.  Royer, R. A., R. A. McKenney,  and W.  E. Newton.  2008.  “A  characterization of  non‐biotic  environmental  features of prairies hosting the Dakota skipper (Hesperia dacotae, Hesperiidae) across its remaining US  range.” Journal‐Lepidopterists Society 62:1.  Rubinoff, D. and M. San Jose. 2010. “Life history and host range of Hawaii’s Endangered Blackburn’s Sphinx  Moth (Manduca blackburni Butler).” Proceedings of the Hawaiian Entomological Society 42:53–59.  Rubinoff,  D.,  M.  San  Jose,  and  A.  Y.  Kawahara.  2012.  “Phylogenetics  and  species  status  of  Hawai‘i’s  endangered Blackburn’s Sphinx moth, Manduca blackburni (Lepidoptera: Sphingidae).” Pacific Science  66(1):31–41.  Rubinoff, D., M. San Jose, P. Johnson, R. Wells, K. Osborne, and J. J. Le Roux. 2015. “Ghosts of glaciers and the  disjunct distribution of a threatened California moth (Euproserpinus euterpe).” Biological Conservation  184:278–289.  Runkle, J., K. Kunkel, S. Champion, and D. Easterling. 2017. Nevada State Climate Summary. NOAA Technical  Report NESDIS 149‐NV.  Russell,  C.,  and  C.  Schultz.  2010.  “Effects  of  grass‐specific  herbicides  on  butterflies:  an  experimental  investigation to advance conservation efforts.” Journal of Insect Conservation 14:53‐63.    Russo,  L.,  J.  Keller,  A.  D.  Vaudo,  C. M.  Grozinger,  and  K.  Shea.  2019. Warming  Increases  Pollen  Lipid  Concentration  in an  Invasive Thistle, with Minor Effects on  the Associated Floral‐Visitor Community.  Insects 11. 

References and Other Resources  R-29 Rusterholz, H. P., and A. Erhardt. 1998. Effects of Elevated CO2 on Flowering Phenology and Nectar Production  of Nectar Plants Important for Butterflies of Calcareous Grasslands. Oecologia 113:341–349.  Saarinen, E. V., P. F. Reilly, and J. D. Austin. 2016. “Conservation genetics of an endangered grassland butterfly  (Oarisma poweshiek)  reveals historically high gene  flow despite  recent and  rapid  range  loss.”  Insect  conservation and diversity / Royal Entomological Society of London 9:517–528.  Saarinen, K., A. Valtonen, J. Jantunen, and S. Saarnio. 2005. “Butterflies and diurnal moths along road verges:  Does road type affect diversity and abundance?” Biological Conservation 23:403–412.  Sakai, A. K., W.  L. Wagner, and  L. A. Mehrhoff. 2002.  “Patterns of endangerment  in  the Hawaiian  flora.”  Systematic Biology 51(2):276–302.  Salvato, M. H.,  and H.  L.  Salvato.  2010.  “Notes  on  the  status  and  ecology  of Anaea  troglodyta  floridalis  (Nymphalidae) in Everglades National Park.” Journal of the Lepidopterists’ Society 64:91–97.  Salvato, M. H., and H. L. Salvato. 2010. “Notes on the status and ecology of Strymon acis bartrami (Lycaenidae)  in Everglades National Park.” Journal of the Lepidopterists’ Society 64:154–160.  Samways, M.  J., P. M. Caldwell, and R. Osborn. 1996.  “Ground‐living  invertebrate assemblages  in native,  planted and invasive vegetation in South Africa.” Agriculture, Ecosystems & Environment 59:19–32.  Sanford, M. P. 2006. “Conservation of the endangered Carson wandering skipper (Pseudocopaeodes eunus  obscurus Austin  and  Emmel)  in Western Great  Basin  saltgrass  communities.” Natural Areas  Journal  26:396–402. Available: https://www.fws.gov/nevada/protected_species/inverts/species/cws.html.  Satterfield,  D.  A.,  F.  X.  Villablanca,  J.  C. Maerz,  and  S.  Altizer.  2016.  “Migratory monarchs wintering  in  California  experience  low  infection  risk  compared  to monarchs  breeding  year‐round  on  non‐native  milkweed.” Integrative and Comparative Biology 56(2):343–352.  Saunders, D. A., R. J. Hobbs, and C. R. Margules. 1991. “Biological consequences of ecosystem fragmentation  – a review.” Conservation Biology 5:18–32. Schaffers, A. P., I. P. Raemakers, and K. V. Sykora. 2012. “Successful overwintering of arthropods in roadside  verges.” Journal of Insect Conservation 16(4):511–522.  Schonberg, L., S.  Jepsen, and S. H. Black. 2009. Petition  to  list  two species of Hawaiian yellow‐faced bees  Hylaeus  anthracinus  and Hylaeus  longiceps  as  endangered  under  the U.S.  Endangered  Species  Act.  Submitted by  the Xerces Society  for  Invertebrate Conservation  to  the U.S. Fish and Wildlife Service.  Portland, Oregon. 49 pp.  Schonberg,  L., S.  Jepsen, and S. H. Black. 2009. Petition  to  list one  species of Hawaiian yellow‐faced bee  Hylaeus assimulans as an endangered species under the U.S. Endangered Species Act. Submitted by the  Xerces Society for Invertebrate Conservation to the U.S. Fish and Wildlife Service. Portland, Oregon. 34  pp.  Schonberg,  L., S.  Jepsen, and S. H. Black. 2009. Petition  to  list one  species of Hawaiian yellow‐faced bee  Hylaeus facilis as an endangered species under the U.S. Endangered Species Act. Submitted by the Xerces  Society for Invertebrate Conservation to the U.S. Fish and Wildlife Service. Portland, Oregon. 38 pp. 

References and Other Resources  R-30 Schonberg,  L., S.  Jepsen, and S. H. Black. 2009. Petition  to  list one  species of Hawaiian yellow‐faced bee  Hylaeus hilaris  as  an endangered  species under  the U.S.  Endangered  Species Act.  Submitted by  the  Xerces Society for Invertebrate Conservation to the U.S. Fish and Wildlife Service. Portland, Oregon. 23  pp.  Schonberg, L., S.  Jepsen, and S. H. Black. 2009. Petition  to  list  two species of Hawaiian yellow‐faced bees  Hylaeus mana and Hylaeus kuakea as endangered under the U.S. Endangered Species Act. Submitted by  the Xerces Society for Invertebrate Conservation to the U.S. Fish and Wildlife Service. Portland, Oregon.  24 pp.  Schultz,  C.  B.  2001.  “Restoring  Resources  for  an  Endangered  Butterfly.”  The  Journal  of  Applied  Ecology  38:1007–1019.  Schultz, C. B., and J. A. Ferguson. 2019. “Demographic costs and benefits of herbicide‐based restoration to  enhance habitat for an endangered butterfly and a threatened plant.” Restoration Ecology 28:3, 564– 572.   Schultz, C. B., and K. M. Dlugosch. 1999. “Nectar and hostplant scarcity limit populations of an endangered  Oregon butterfly.” Oecologia 119(2):231–238.  Schultz, C. B., and P. C. Hammond. 2003. “Using population viability analysis to develop recovery criteria for  endangered insects: Case study of the Fender’s blue butterfly.” Conservation Biology 17:1372–1385.  Schultz, C. B., E. Henry, A. Carleton, T. Hicks, R. Thomas, A. Potter, M. Collins, M. Linders, C. Fimbel, S. Black,  H. E. Anderson, G. Diehl, S. Hamman, R. Gilbert, J. Foster, D. Hays, D. Wilderman, R. Davenport, E. Steel,  N. Page, P. L. Lilley, J. Heron, N. Kroeker, C. Webb, and B. Reader. 2011. “Conservation of Prairie‐Oak Butterflies in Oregon, Washington, and British Columbia.” Northwest Science: Official Publication of the  Northwest Scientific Association 85:361–388. Schultz, C. B., J. L. Zemaitis, C. C. Thomas, M. D. Bowers, and E. E. Crone. 2016. “Non‐target effects of grass‐ specific herbicides differ among species, chemicals and host plants in Euphydryas butterflies.” Journal of  Insect Conservation 20(5):867–877.  Schultz,  C.  B.,  L. M.  Brown,  E.  Pelton,  and  E.  E.  Crone.  2017.  “Citizen  science monitoring  demonstrates  dramatic declines of monarch butterflies in western North America.” Biological Conservation 214:343– 346.  Scott, J. A. 1986. The Butterflies of North America: A Natural History and Field Guide. Stanford University Press,  Stanford, CA.  Scott, J. A. 1992. The Butterflies of North America: A Natural History and Field Guide. Stanford University Press,  Stanford, CA. 668 pp.   Scott, J. A. 2014. Lepidoptera of North America. 13. Flower visitation by Colorado butterflies (40,615 records)  with a review of the literature on pollination of Colorado plants and butterfly attraction (Lepidoptera:  Hesperioidea  and  Papilionoidea).  Contributions  of  the  C.P. Gillette Museum  of Arthropod Diversity,  Colorado State University.   Scott, J. A. 2020. “Butterflies of the Southern Rocky Mountains Area, and Their Natural History and Behavior.”  Papilio 27:1–391. Available: https://mountainscholar.org/handle/10217/200723. Accessed: September  29, 2020. 

References and Other Resources  R-31 Scott,  J.  A.,  and  R.  E.  Stanford.  1981(82).  “Geographic  variation  and  ecology  of  Hesperia  leonardus  (Hesperiidae).” Journal of Research on the Lepidoptera 20:18–35.  Seidl, A. L. 1996. “Oviposition behavior and larval biology of the endangered Uncompahgre fritillary Boloria  acrocnema (Nymphalidae).” Journal of the Lepidopterists’ Society 50:290–296.  Selby, G. 2007. Great Basin Silverspot Butterfly  (Speyeria nokomis nokomis  [W.H. Edwards]): A Technical  Conservation Assessment.  Selby, G. 2007. Regal Fritillary (Speyeria idalia Drury): a Technical Conservation Assessment. February 9. USDA  Forest  Service,  Rocky  Mountain  Region.  Available:  http://www.fs.fed.us/r2/projects/scp/assessments/regalfritillary.pdf. Accessed: August 17, 2020.  Semmens, B. X., D. J. Semmens, W. E. Thogmartin, R. Wiederholt, L. López‐Hoffman, J. E. Diffendorfer, J. M.  Pleasants, K. S. Oberhauser, and O. R. Taylor. 2016. “Quasi‐extinction risk and population targets for the  Eastern, migratory population of monarch butterflies (Danaus plexippus).” Scientific Reports 6(1):1–7.  Severns,  P. M.  2008.  “Exotic  grass  invasion  impacts  fitness  of  an  endangered  prairie  butterfly,  Icaricia  icarioides fenderi.” Journal of Insect Conservation 12(6):651–661.  Severns, P. M. 2008. “Road crossing behavior of an endangered grassland butterfly, Icaricia icarioides fenderi  Macy (Lycaenidae), between a subdivided population.” Journal of the Lepidopterists’ Society 62:53–56.  Sgrò, C. M., A. J. Lowe, and A. A. Hoffmann. 2011. Building Evolutionary Resilience for Conserving Biodiversity  Under Climate Change. Evolutionary Applications 4:326–337.  Shanahan, M. 2022. “Honey Bees and Industrial Agriculture: What Researchers Are Missing, and Why It’s a  Problem.” Journal of Insect Science 22(1):14.  Shay, K. R. 2014. Pollination ecology of Hawaiian coastal plants. Ph. D. Dissertation. University of Hawaii at  Manoa, Honolulu, Hawaii. 76 pp.  Shochat, E., M. A. Patten, D. W. Morris, D. L. Reinking, D. H. Wolfe, and S. K. Sherrod. 2005. “Ecological traps  in isodars: effects of tallgrass prairie management on bird nest success.” Oikos 111(1):159–169.  Shuey, J. A. 1996. “Another new Euphyes from the southern United States coastal plain (Hesperiidae).” Journal  of the Lepidopterists’ Society. 50(1):46–53.  Shuey, J., E. Jacquart, S. Orr, F. Becker, A. Nyberg, R. Littiken, T. Anchor, and D. Luchik. 2016. Landscape‐scale  response  to  local  habitat  restoration  in  the  regal  fritillary  butterfly  (Speyeria  idalia)  (Lepidoptera:  Nymphalidae). Journal of Insect Conservation 20:773–780.  Simberloff, D., and P. Stiling. 1996. “How risky is biological control?” Ecology 77(7):1965–1974.  Sims, S. R., and A. M. Shapiro. 2016. “Reproductive strategies and  life history evolution of some California  Speyeria (Nymphalidae).” Journal of the Lepidopterists’ Society 70:114–120.  Singh, R., A. L. Levitt, E. G. Rajotte, E. C. Holmes, N. Ostiguy, D. Vanengelsdorp, W. I. Lipkin, C. W. Depamphilis,  A. L. Toth, and D. L. Cox‐Foster. 2010. “RNA viruses in hymenopteran pollinators: evidence of inter‐taxa virus  transmission  via  pollen  and  potential  impact  on  non‐Apis  hymenopteran  species.”  PLOS  One 5(12):e14357.

References and Other Resources  R-32 Skórka, P., M. Lenda, D. Moroń, K. Kalarus, and P. Tryjanowski. 2013. “Factors affecting road mortality and  the suitability of road verges for butterflies.” Biological Conservation 159:148–157.  Skórka, P., M. Lenda, D. Moroń, R. Martyka, P. Tryjanowski, and W. J. Sutherland. 2015. “Biodiversity collision  blackspots  in  Poland:  separation  causality  from  stochasticity  in  roadkills  of  butterflies.”  Biological  Conservation 187:154–163.  Snell‐Rood, E. C., A. Espeset, C.  J. Boser, W. A. White, and R. Smykalski. 2014. Anthropogenic Changes  in  Sodium Affect Neural and Muscle Development in Butterflies. Proceedings of the National Academy of  Sciences, 111(28):10221–10226.  Soderstrom, B., and M. Hedblom. 2007.  “Comparing movement of  four butterfly  species  in experimental  grassland strips.” Journal of Insect Conservation 11(4):333–342.  Sonntag, D., H. O. Gao, P. Morse, and M. O’Reilly. 2011. Energy and Emission Rates of Highway Mowing  Activities. Transportation Research Board 90th Annual Meeting, Washington, DC.  Sovell, J. R. 2018. Pawnee montane skipper monitoring study for the Upper South Platte watershed protection  and restoration project August 2017. Colorado Natural Heritage Program, Colorado State University, Fort  Collins, Colorado.  Spira, T. P. 2001. “Plant‐pollinator interactions: a threatened mutualism with implications for the ecology and  management of rare plants.” Natural Areas Journal 21(1):78–88.  Spomer, S. M., L. C. Higley, T. T. Orwig, G. L. Selby, and L. J. Young. 1993. “Clinal variation in Hesperia leonardus  (Hesperiidae)  in  the  Loess Hills  of  the Missouri  River  Valley.”  Journal  of  the  Lepidopterists’  Society  47:291–302.  St. Clair, A. B., P. W. Dunwiddie, J. B. Fant, T. N. Kaye, and A. T. Kramer. 2020. Mixing Source Populations  Increases Genetic Diversity of Restored Rare Plant Populations. Restoration Ecology 38:313.  Stark,  J. D., X. D. Chena, and C. S.  Johnson. 2012. “Effects of herbicides on Behr’s metalmark butterfly, a  surrogate species for the endangered butterfly, Lange’s metalmark.” Environmental Pollution 164:24– 27.  Starr  Environmental.  2020.  “Documented  plant  and  arthropod  observations  on  Hawaii.”  Available:  http://www.starrenvironmental.com/resources/. Accessed: September 2020.  Steffan‐Dewenter,  I., and C. Westphal. 2008. “The  interplay of pollinator diversity, pollination services and  landscape change.” Journal of Applied Ecology 45(3):737–741.  Steidle, Johannes LM, Thomas Kimmich, Michael Csader, and Oliver Betz. 2022. Negative impact of roadside  mowing on arthropod fauna and  its reduction with ‘arthropod‐friendly’ mowing technique. Journal of  Applied Entomology).  Stevens, L., R. Frankson, K. Kunkel, P‐S. Shin, and W. Sweet. 2017. Hawaii State Climate Summary. NOAA  Technical Report NESDIS 149‐HI.  Stoner, K. J. L., and A. Joern. 2004. “Landscape vs. local habitat scale influences to insect communities from  tallgrass prairie remnants.” Ecological Applications 14:1306–1320. 

References and Other Resources  R-33 Straw, E. A., E. N. Carpentier, and M. J. F. Brown. 2021. “Roundup causes high levels of mortality following  contract  exposure  in  bumble  bees.”  Journal  of  Applied  Ecology  58,  6:  1167–1176.  Available:  https://doi.org/10.1111/1365‐2664.13867.   Sugden, E. A. 1985. “Pollinators of Astragalus monoensis Barneby  (Fabaceae): new host records; potential  impact of sheep grazing.” Great Basin Naturalist 45:299–312.  Summerville, K. S., and T. O. Crist. 2002. “Effects of timber harvest on forest Lepidoptera: community, guild,  and species responses.” Ecological Applications 12(3):820–835.  Svensson,  B.,  J.  Lagerlöf,  and  B.  G.  Svensson.  2000.  “Habitat  preferences  of  nest‐seeking  bumble  bees  (Hymenoptera: Apidae) in an agricultural landscape.” Agriculture, Ecosystems & Environment 77(3):247– 255.  Swaileh, K. M., R. M. Hussein, and S. Abu‐Elhaj. 2004. “Assessment of heavy metal contamination in roadside  surface  soil  and  vegetation  from  the  West  Bank.”  Archives  of  Environmental  Contamination  and  Toxicology 47(1):23–30.  Swain, D. L., B. Langenbrunner, J. David Neelin, and A. Hall. 2018. Increasing Precipitation Volatility in Twenty‐ First‐Century California. Nature Climate Change 8:427–433.  Swengel, A. B., and  S. R.  Swengel. 1999.  “Observations of prairie  skippers  (Oarsima poweshiek, Hesperia  dacotae, H. ottoe, H. loenardus pawnee, and Atrytone argos Iowa) [Lepidoptera: Hesperiidae) in Iowa,  Minnesota, and North Dakota during 1988–1997.” The Great Lakes Entomologist 32:267–292.  Swengel, A. B., and S. R. Swengel. 2018. “Patterns of  long‐term population trends of three  lupine‐feeding  butterflies in Wisconsin.” Diversity 10:31.  Swengel, S. R., D. Schlicht, F. Olsen, and A. B. Swengel. 2011. “Declines of prairie butterflies in the midwestern  USA.” Journal of Insect Conservation 15:327–339.  Swezey,  O.  H.  1910.  “The  Feeding  Habits  of  Hawaiian  Lepidoptera.”  Proceedings  of  the  Hawaiian  Entomological Society 2(3):131–143.  Swezey, O. H. 1954. Forest entomology in Hawaii. Bernice P. Bishop Museum Special Publication 44. 266 pp.  Swezey, O. H. and E. H. Bryan. 1929. “Further notes on the  forest  insects of Molokai.” Proceedings of the  Hawaiian Entomological Society 7(2):293–314.  Swezey, O. H., and F. X. Williams. 1932.  “Some Observations on Forest  Insects at  the Nauhi Nursery and  Vicinity on Hawaii.” Proceedings of the Hawaiian Entomological Society 8(1):179–190.  Symon, D. E. 1999. Solanaceae in: Manual of the Flowering Plants of Hawaii. W. L. Wagner, D. R. Herbst, and  S. H. Sohmer, (eds.). University of Hawaii Press and Bishop Museum Press, Honolulu. Bishop Museum  Special Publications. pp. 1251–1278.  Tabashnik, B. E., W. D. Perreira,  J. S. Strazanac, and S. L. Montgomery. 1992.  “Population ecology of  the  Kamehameha butterfly  (Lepidoptera: Nymphalidae).” Annals of  the Entomological Society of America  85(3):282–285.  Tallamy, D. W., and K. J. Shropshire. 2009. “Ranking  lepidopteran use of native versus  introduced plants.”  Conservation Biology 23(4):941–947. 

References and Other Resources  R-34 Talley, T. S., and M. Holyoak. 2009. The Effects of Highways and Highway Construction Activities on Valley  Elderberry  Longhorn  Beetle  Habitat.  Final  Report  FHWA/CA09‐0925.  Prepared  for  the  California  Department  of  Transportation.  Available:  https://dot.ca.gov/‐/media/dot‐media/programs/research‐ innovation‐system‐information/documents/f0016602‐construction‐impacts‐valley‐elderberry‐ longhorn‐beetle.pdf.   Talley,  T.  S.,  E.  Fleishman, M.  Holyoak,  D.  D. Murphy,  and  A.  Ballard.  2007.  “Rethinking  a  rare‐species  conservation  strategy  in  an  urban  landscape:  The  case  of  the  valley  elderberry  longhorn  beetle.”  Biological Conservation 135:21–32.  Talley, T. S., M. Holyoak, and D. A. Piechnik. 2006. “The effects of dust on the  federally threatened valley  elderberry longhorn beetle.” Environmental Management 37:647–658.  Tania, Sultana Quader. 2020. “Public Perception of Different Planting Techniques using Augmented Reality.”  Electronic  Theses  and  Dissertations.  2041.  Available:  https://digitalcommons.georgiasouthern.edu/etd/2041.  Taron,  D.,  and  L.  Ries.  2015.  “Butterfly  monitoring  for  conservation.”  In:  Daniels,  J.  C.  (Ed.)  Butterfly  Conservation in North America. pp. 35–57. Springer, Dordrecht.  Tepedino, V. J., and Z. M. Portman. 2021. “Intensive monitoring for bees in North America: indispensable or  improvident?”  Insect  Conservation  and  Diversity  14(5):535–542.  Available:  https://doi.org/10.1111/ icad.12509.  Tepedino, V. J., J. Mull, T. L. Griswold, and G. Bryant. 2014. “Reproduction and pollinator of the endangered  dwarf  bear‐poppy  Arctomecon  humilis  (Papaveraceae)  across  a  quarter  century:  unraveling  of  a  pollination web?” Western North American Naturalist 74:311–324.  Tewksbury, J. J., D. J. Levey, N. M. Haddad, S. Sargent, J. L. Orrock, A. Weldon, B. J. Danielson, J. Brinkerhoff,  E.  I. Damschen,  and  P.  Townsend.  2002.  Corridors Affect  Plants, Animals,  and  Their  Interactions  in  Fragmented Landscapes. Proceedings of the National Academy of Sciences, 99(20):12923–12926.  The  Urban Wildlands  Group,  Inc.  2005.  Icaricia  shasta  charlestonensis  petition  to  be  listed  under  the  Endangered Species Act.  Thogmartin, W. E., L. López‐Hoffman, J. Rohweder, J. Diffendorfer, R. Drum, D. Semmens, S. Black, I. Caldwell,  D. Cotter, P. Drobney, and L. L. Jackson. 2017. “Restoring monarch butterfly habitat in the Midwestern  US: ‘all hands on deck.’” Environmental Research Letters 12(7):074005.  Thom, M. D., and  J. D. Daniels. 2017. “Patterns of microhabitat and  larval host‐plant use by an  imperiled  butterfly in northern Florida.” Journal of Insect Conservation 21:39–52.   Thom, M. D., J. D. Daniels, L. N. Kobziar, and J. R. Colburn. 2015. “Can butterflies evade fire? Pupa location  and heat tolerance in fire prone habitats of Florida.” PLOS ONE 10(5):1–22.   Thomas,  J. A. 1984.  “Conservation of butterflies  in  temperate  countries: past efforts and  lessons  for  the  future.” Symposia of the Royal Entomological Society of London 11:333–353.  Thomas, R. C., and C. B. Schultz. 2016. “Resource Selection in an Endangered Butterfly: Females Select Native  Nectar Species.” The Journal of Wildlife Management 80:171–180. 

References and Other Resources  R-35 Thompson, D. B., K. McKelvey, P. van Els, G. Andrew, P. Jacoby‐Garrett, M. Glenn, C. Kallstrom, K. L. Pilgrim,  and  P.  A.  Opler.  2020.  “Conserve  the  eco‐evolutionary  dynamic,  not  the  subspecies:  phenological  divergence and gene flow between temporal cohorts of Euphilotes ancilla endemic to southern Nevada.”  Conservation Genetics 21:341–357.  Thomson, D. M. 2016. “Local bumble bee decline linked to recovery of honey bees, drought effects on floral  resources.” Ecology Letters 19:1247–1255.  Thorp, R. W., S. Jepsen, S. F. Jordan, E. Evans, and S. H. Black. 2010. Petition to  list Franklin’s bumble bee  Bombus  franklini  (Frison),  1921  as  an  Endangered  Species  under  the  US  Endangered  Species  Act.  Available: https://xerces.org/sites/default/files/2019‐10/bombus‐franklini‐petition.pdf.  Tilman, D.,  P. B. Reich,  and  J. M. H. Knops.  2006. Biodiversity  and  Ecosystem  Stability  in  a Decade‐Long  Grassland Experiment. Nature 441:629‐632.  Tinsley, J. M., M. T. Simmons, and S. Windhager. 2006. “The establishment success of native versus non‐native  herbaceous seed mixes on a revegetated roadside in Central Texas.” Ecological Engineering 26:231–240.  Tonietto, R. K. and D. J. Larkin. 2018. “Habitat restoration benefits wild bees: A meta‐analysis.” Journal of  Applied Ecology 55(2):582–590.  Topp, H. H. 1990. “Traffic safety, usability and streetscape effects of new design principles for major urban  roads.” Transportation 16:297–310.  Tracy, J. L., T. Kantola, K. A. Baum, and R. N. Coulson. 2019. “Modeling fall migration pathways and spatially  identifying  potential  migratory  hazards  for  the  eastern  monarch  butterfly.” Landscape  Ecology 34(2):443–458.  Tscharntke, T., A. M. Klein, A. Kruess,  I. Steffan‐Dewenter, and C. Thies. 2005. “Landscape perspectives on  agricultural intensification and biodiversity–ecosystem service management.” Ecology Letters 8(8):857– 874.  Tuley, N. C. 1878.  “Description of  a new  species of butterfly  from  the  Sandwich  Islands.” Entomologist’s  Monthly Magazine 15:9–10.  Tuskes, P. M., and J. F. Emmel. 1981. “The life history and behavior of Euproserpinus euterpe (Sphingidae).”  Journal of the Lepidopterists’ Society 35.  Tuttle, J. P. 2007. The Hawk Moths of North America. Wedge Entomological Research Foundation. Allen Press.  Lawrence, Kansas. 253 pp.  Tyser, R. W., and C. A. Worley. 1992. “Alien flora in grasslands adjacent to road and trail corridors in Glacier  National Park, Montana (USA).” Conservation Biology 6(2):253–262.  U.S. Department of Agriculture Forest Service (USDA USFS) 2016. Tebuthiuron: Human Health and Ecological  Risk  Assessment  Final  Report.  Available:  https://www.fs.fed.us/foresthealth/pesticide/pdfs/Tebuthiuron.pdf.   U.S. Department of Transportation. 2022. U.S. Department of Transportation Strategic Plan for FY 2022‐2026.  April.  Available:  https://www.transportation.gov/sites/dot.gov/files/2022‐04/US_DOT_FY2022‐ 26_Strategic_Plan.pdf.  

References and Other Resources  R-36 U.S. Environmental Protection Agency (EPA). 2017. Triclopyr: Draft Ecological Risk Assessment for Registration  Review. Washington, DC: U.S. Environmental Protection Agency, Office of Chemical Safety and Pollution  Prevention, Environmental Fate and Effects Division. Available: https://downloads.regulations.gov/EPA‐ HQ‐OPP‐2014‐0576‐0026/content.pdf.  U.S. Environmental Protection Agency  (EPA). 2019. Fluazifop‐p‐butyl: Draft Ecological Risk Assessment  for  Registration Review. Washington, DC: U.S. Environmental Protection Agency, Office of Chemical Safety  and  Pollution  Prevention,  Environmental  Fate  and  Effects  Division.  Available:  https://downloads.regulations.gov/EPA‐HQ‐OPP‐2014‐0779‐0017/content.pdf.  U.S.  Environmental  Protection  Agency  (EPA).  2020.  Oxadiazon:  Draft  Ecological  Risk  Assessment  for  Registration Review. Washington, DC: U.S. Environmental Protection Agency, Office of Chemical Safety  and  Pollution  Prevention,  Environmental  Fate  and  Effects  Division.  Available:  https://downloads.regulations.gov/EPA‐HQ‐OPP‐2014‐0782‐0017/content.pdf.  U.S.  Fish  and Wildlife  Service. No  date.  “Desmocerus  californicus  dimorphus:  valley  elderberry  longhorn  beetle.”  Available:  https://www.fws.gov/species/valley‐elderberry‐longhorn‐beetle‐desmocerus‐ californicus‐dimorphus.   U.S.  Fish  and  Wildlife  Service.  No  date.  “Lycaeides  argyrognomon  lotis.”  Available:  https://www.fws.gov/species/lotis‐blue‐lycaeides‐argyrognomon‐lotis.   U.S.  Fish  and  Wildlife  Service.  No  date.  “Pseudocopaeodes  eunus  obscurus.”  Available:  https://www.fws.gov/species/carson‐wandering‐skipper‐pseudocopaeodes‐eunus‐obscurus.  U.S. Fish and Wildlife Service. No date. E. editha taylori candidate assessment.  U.S. Fish and Wildlife Service. No date. Fender’s blue recovery plan.  U.S. Fish and Wildlife Service. No date. Saint Francis’ Satyr (Neonympha mitchellii francisci) 5‐Year Review.  Available: https://www.fws.gov/southeast/wildlife/insects/saint‐francis‐satyr/.  U.S. Fish and Wildlife Service. No date. Schaus Swallowtail Butterfly: Heraclides aristodemus ponceanus.  U.S. Fish and Wildlife Service. 1976. Determination That Six Species of Butterflies are Endangered Species.  Service  Region  8,  Pacific  Southwest  San  Francisco  Bay‐Delta  Fish  and Wildlife  Office,  Sacramento,  California. 41 Federal Register 22041.  U.S. Fish and Wildlife Service. 1984. Endangered and threatened wildlife and plants: Review of invertebrate  wildlife for listing as endangered or threatened species. Federal Register 49:21664–21673.  U.S.  Fish  and Wildlife  Service.  1994.  Endangered  and  threatened  wildlife  and  plants:  determination  of  endangered  or  threatened  status  for  24  plants  from  the  Island  of  Kauai,  Hawaii.  Federal  Register  59(38):9304–9329.  U.S.  Fish  and Wildlife  Service.  1994.  Endangered  and  threatened  wildlife  and  plants;  determination  of  endangered or threatened status for 21 plants for the Island of Hawaii, State of Hawaii. Federal Register  59(43):10305–10325.  U.S. Fish and Wildlife Service. 1995. Recovery Plan for the Kauai Plant Cluster. Portland, Oregon. 270 pp.  U.S. Fish and Wildlife Service. 1996. Recovery Plan for the Big Island Plant Cluster. Portland, Oregon. 202+ pp. 

References and Other Resources  R-37 U.S.  Fish  and Wildlife  Service.  1998.  Pawnee  montane  skipper  butterfly  (Hesperia  leonardus montana)  recovery plan. Denver, Colorado.  U.S. Fish and Wildlife Service. 1998. Recovery Plan for El Segundo Blue Butterfly (Euphilotes battoides allyni).  U.S. Fish and Wildlife Service. 2003. Endangered and threatened wildlife and plants; designation of critical  habitat for Blackburn’s sphinx moth, final rule. Federal Register 68(111):34710–34766.  U.S. Fish and Wildlife Service. 2005. Recovery Plan for the Blackburn’s Sphinx Moth (Manduca blackburni).  Portland, Oregon. 125 pp.  U.S.  Fish  and Wildlife  Service.  2005.  Species Assessment  and  Listing  Priority  Form  for Cyclargus  thomasi  bethunebakeri, The Miami Blue Butterfly. Unpublished Document. March 2005.  U.S.  Fish  and Wildlife  Service.  2006.  Smith’s  blue  butterfly  (Euphilotes  enoptes  smithi).  5  year  review:  summary and evaluation.  U.S. Fish and Wildlife Service. 2006. Valley elderberry longhorn beetle (Desmocerus californicus dimorphus).  5‐year evaluation: summary and review.  U.S. Fish and Wildlife Service. 2007. Biological Opinion of the Formal Section 7 Consultation for the Clinton  Keith Road Extension Project, Riverside County, California (1‐6‐07‐F‐4357.3).  U.S.  Fish  and Wildlife  Service.  2007.  Formal  Section  7 Consultation  for  the Clinton Keith Road  Extension  Project, Riverside County, California (1‐6‐07‐F‐4357.3). Reference Number FWS‐WRIV‐4357.3. Carlsbad,  California.   U.S. Fish and Wildlife Service. 2007. Kern primrose sphinx moth (Euproserpinus euterpe): 5‐Year Review.  U.S. Fish and Wildlife Service. 2008. Candidate assessment for Dakota skipper (Oarisma poweshiek).  U.S. Fish and Wildlife Service. 2008. Delhi Sands Flower‐loving Fly (Rhaphiomidas terminatus abdominalis). 5‐ year review: summary and evaluation.   U.S. Fish and Wildlife Service. 2008. El Segundo Blue Butterfly  (Euphilotes battoides allyni) 5‐Year Review:  Summary and Evaluation.  U.S. Fish and Wildlife Service. 2008. Hawaiian  Islands Plants: Listed  species, as designated under  the U.S.  Endangered.  Endangered  and  Threatened Wildlife  and  Plants;  Review  of  Native  Species  That  Are  Candidates for Listing as Endangered or Threatened; Annual Notice of Findings on Resubmitted Petitions;  Annual Description of Progress on Listing Actions; Proposed Rule Species Act. 50 CFR Part 17. 70 pp.  U.S. Fish and Wildlife Service. 2008. Hesperia dacotae candidate assessment.  U.S. Fish and Wildlife Service. 2009. Bay checkerspot butterfly (Euphydryas editha bayensis) 5‐Year Review.  U.S. Fish and Wildlife Service. 2009. Callippe silverspot butterfly: 5 year review.  U.S. Fish and Wildlife Service. 2009. Mitchell’s satyr butterfly (Neonympha mitchellii mitchellii). 5 year review.  U.S. Fish and Wildlife Service. 2009. Myrtle’s silverspot butterfly (Speyeria zerene myrtleae) 5‐Year Review.  U.S.  Fish  and Wildlife  Service. 2009. Uncompahgre  Fritillary Butterfly  (Boloria  acrocnema) 5  year  review:  summary and evaluation. 

References and Other Resources  R-38 U.S. Fish and Wildlife Service. 2010. San Bruno Elfin Butterfly (Callophrys mossii bayensis) and Mission Blue  Butterfly (Icaricia icarioides missionensis) 5‐Year Review: Summary and Evaluation.  U.S.  Fish  and Wildlife  Service.  2010.  Species  Assessment  and  Listing  Priority  Assignment  Form:  Anaea  troglodyta  floridalis.  Available:  https://ecos.fws.gov/docs/candidate/assessments/2010/ r4/I087_I01.pdf.   U.S.  Fish  and Wildlife  Service.  2011.  Lotis  blue  butterfly  (Lycaeides  argyrognomon  lotis).  5‐year  review:  summary and evaluation.  U.S. Fish and Wildlife Service. 2011. Pawnee montane skipper (Hesperia leonardus montana) 5 year review:  summary and evaluation. Colorado Field Office, Lakewood, CO.  U.S. Fish and Wildlife Service. 2012. Endangered and Threatened Wildlife and Plants; Endangered Status for  23  Species on Oahu and Designation of Critical Habitat  for 124  Species;  Final Rule.  Federal Register  77(180):57648–57862.  U.S. Fish and Wildlife Service. 2012. Endangered and Threatened Wildlife and Plants; Listing 15 Species on  Hawaii  Island  as  Endangered  and Designating  Critical Habitat  for  3  Species;  Proposed  Rule.  Federal  Register 77(201):63928–64018.  U.S. Fish and Wildlife Service. 2012. Karner Blue Butterfly (Lycaeides melissa samuelis) 5‐Year Review.  U.S. Fish and Wildlife Service. 2014. Endangered and Threatened Wildlife and Plants; Endangered Status for  the  Florida  Leafwing  and  Bartram’s  Scrub‐Hairstreak  Butterflies;  Final  Rule.  Federal  Register  79(155):47222‐47244.  U.S. Fish and Wildlife Service. 2014. Palos Verdes Blue Butterfly (Glaucopsyche lygdamus palosverdesensis) 5‐ Year Review.  U.S.  Fish and Wildlife  Service. 2015. Recovery Plan  for  the Behren’s  Silverspot Butterfly  (Speyeria  zerene  behrensii).   U.S. Fish and Wildlife Service. 2015. U.S. Fish and Wildlife Service Species Assessment and Listing Priority  Assignment Form: Rattlesnake‐master Borer Moth (Papaipema eryngii).   U.S. Fish and Wildlife Service. 2016. Endangered and threatened wildlife and plants: Endangered Status for  49 Species from the Hawaiian Islands. Federal Register 81(190):67786–67857.  U.S. Fish and Wildlife Service. 2016. Endangered Status for 49 Species from the Hawaiian Islands. September  30, 2016. Federal Register 81(190):67786–67860.  U.S. Fish and Wildlife Service. 2018. Species status assessment report for the frosted elfin (Callophrys irus),  Version 1.2. April. Cortland, NY.  U.S.  Fish  and Wildlife  Service.  2018. U.S.  Federal  Endangered  and  Threatened  Species by Calendar  Year.  Environmental  Conservation  Online  System.  Available:    https://ecos.fws.gov/ecp/report/species‐ listings‐by‐year‐totals. Accessed: October 18, 2018.  U.S. Fish and Wildlife Service. 2019. Recovery Plan Amendment for Palos Verdes Blue Butterfly.  U.S. Fish and Wildlife Service. 2019. Recovery plan for Laguna Mountains Skipper (Pyrgus ruralis lagunae).  

References and Other Resources  R-39 U.S. Fish and Wildlife Service. 2019. Recovery plan for San Bruno Elfin Butterfly (Callophrys mossii bayensis)  and Mission Blue Butterfly (Icaricia icarioides missionensis). Region 8, Sacramento, CA.  U.S. Fish and Wildlife Service. 2019. Recovery Plan for Three Endangered Species Endemic to Antioch Dunes,  California: Lange’s metalmark butterfly (Apodemia mormo langei), Oenothera deltoides subsp. howellii  (Antioch Dunes evening‐primrose), and Erysimum capitatum var. angustatum (Contra Costa wallflower).  U.S. Fish and Wildlife Service Region 8, Pacific Southwest San Francisco Bay‐Delta Fish and Wildlife Office.  Sacramento, California.  U.S. Fish and Wildlife Service. 2019. Revised recovery plan for valley elderberry longhorn beetle (Desmocerus  californicus dimorphus).   U.S. Fish and Wildlife Service. 2019. Species Status Assessment for the Sand Verbena Moth (Copablepharon  fuscum).   U.S.  Fish  and  Wildlife  Service.  2019.  Transmittal  –  Regional  Forester  Special  Status  Species  List,  with  enclosures. Available:  http://www.fs.fed.us/r6/sfpnw/issssp/agency‐policy/. Accessed August 7, 2020.   U.S. Fish and Wildlife Service. 2020. Lange’s metalmark butterfly (Apodemia mormo langei) 5‐year review.   U.S. Fish and Wildlife Service. 2020. Species Status Assessment Report for the Rattlesnake‐master Borer Moth  (Papaipema eryngii). Version 1.1.  U.S. Fish and Wildlife Service. 2021. Species status assessment report for Speyeria nokomis nokomis. Grand  Junction, Colorado.  U.S. Fish and Wildlife Service. 2022. “Threatened and Endangered Pollinators.” Retrieved June 2022.  U.S.  Forest  Service  and Washington Office  Enterprise  Program.  2019.  Persistence  analysis  for  species  of  conservation concern. Inyo National Forest, Region 5 Regional Office.   United States Global Change Research Program (USGCRP). 2018. Impacts, Risks, and Adaptation in the United  States: Fourth National Climate Assessment, Volume II. D. R. Reidmiller, C.W. Avery, D.R. Easterling, K.E.  Kunkel,  K.L.M.  Lewis,  T.K. Maycock,  and  B.C.  Stewart  (eds.). U.S. Global  Change  Research  Program,  Washington, DC. doi: 10.7930/NCA4.2018.  University of California  Statewide  Integrated Pest Management Program. 2022. Bee Precaution Pesticide  Ratings (and studies cited within): https://www2.ipm.ucanr.edu/beeprecaution/. Accessed: April 2022.  University  of Hertfordshire  Agriculture &  Environment  Research Unit  (AERU).  2022.  Pesticide  Properties  Database. Available: http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm. Accessed: April 2022.  Valiente‐Banuet,  A.,  F.  Molina‐Freaner,  A.  Torres,  M.  C.  Arizmendi,  and  A.  Casas.  2004.  “Geographic  differentiation  in  the  pollination  system  of  the  columnar  cactus  Pachycereus  pecten‐aboriginum.”  American Journal of Botany 91:850–855.  Valtonen, A., and K. Saarinen. 2005. “A highway intersection as an alternative habitat for a meadow butterfly:  effect  of  mowing,  habitat  geometry  and  roads  on  the  ringlet  (Aphantopus  hyperantus).”  Annales  Zoologici Fennici 42(5):545–556.  Valtonen, A., K. Saarinen, and J. Jantunen. 2006. “Effect of different mowing regimes on butterflies and diurnal  moths on road verges.” Animal Biodiversity and Conservation 29:133–148. 

References and Other Resources  R-40 Valtonen, A., K. Saarinen, and J. Jantunen. 2007. “Intersection reservations as habitats for meadow butterflies  and diurnal moths: Guidelines  for planning and management.”  Landscape and Urban Planning 79.3‐ 4:201–209.  Van Hoose, Natalie. 2021. “Scientists discover nest, new northern  range of Florida’s  rare blue calamintha  bee.”  Florida  Museum  of  Natural  History.  Available:  https://www.floridamuseum.ufl.edu/science/discover‐nest‐northern‐range‐blue‐calamintha‐bee/.   Vaughan, D. M., and M. D. Shepherd. 2005. Species Profile: Callophrys comstocki. In Shepherd, M. D., D. M.  Vaughan, and S. H. Black (Eds). Red List of Pollinator Insects of North America. CD‐ROM Version 1 (May  2005). Portland, OR: The Xerces Society for Invertebrate Conservation.  Von der Lippe, M., and I. Kowarik. 2007. “Long‐Distance Dispersal of Plants by Vehicles as a Driver of Plant  Invasions.” Conservation Biology 21(4):986–996.  Wagner, W. L., D. R. Herbst, and S. H. Sohmer. 1999. Manual of the Flowering Plants of Hawai‘i, Vols. 1 and  2. University of Hawai‘i and Bishop Museum Press. Honolulu, Hawaii. xviii + 1919 pp.  Waite,  Marilyn.  2013.  “SURF  Framework  for  a  Sustainable  Economy.”  Journal  of  Management  and  Sustainability 3(4):25. doi:10.5539/jms.v3n4p25. ISSN 1925‐4733.  Wang, T. Y. 2007. A Survey of  the Grasslands of  the Northeast Ridge  (Guadalupe Hills) as Habitat  for  the  Mission Blue Butterfly  (Icaricia  icarioides missionensis) and  the Callippe  Silverspot  (Speyeria  callippe  callippe).  Warchola, N., C. Bastianelli, C. B. Schultz, and E. E. Crone. 2015. “Fire increases ant‐tending and survival of  the Fender’s blue butterfly larvae.” Journal of Insect Conservation 19:1063–1073.  Warner, R. E. 1992. “Nest ecology of grassland passerines on road rights‐of‐way in central Illinois.” Biological  Conservation 59(1):1–7.  Warner, R. E. 1994. “Agricultural land use and grassland habitat in Illinois: future shock for midwestern birds?”  Conservation Biology 8(1):147–156.  Warren, A. D. 2005. Butterflies of Oregon: Their Taxonomy, Distribution, and Biology. Lepidoptera of North  America 6. Contributions of the C.P. Gillette Museum of Arthropod Diversity. Colorado State University,  Fort Collins, Colorado. 408 pp.  Warren, M. S. 1993. “A review of butterfly conservation in central southern Britain: II. Site management and  habitat selection of key species.” Biological Conservation 64(1):37–49.  Warren, R., N. W. Arnell, and R. Nicholls. 2008. “Regional impacts of climate change.” In: Cuff, D. J., and A. S.  Goudie (Eds.) The Oxford Companion to Global Change, pp. 352–358. Oxford University Press, USA.  Warshauer, F. R., J. D. Jacobi, and J. Price. 2009. Native coastal flora and plant communities in Hawai‘i: Their  composition,  distribution,  and  status. Hawai‘i  Cooperative  Studies Unit  Technical  Report HCSU‐014.  University of Hawai‘i at Hilo. 108 pp.  Washington Department of Fish and Wildlife. 2015. Washington’s State Wildlife Action Plan: 2015 Update.  Washington Department of Fish and Wildlife, Olympia, Washington, USA.  Washington  Natural  Heritage  Program.  2017.  Animal  Species  with  Ranks.  Available:  https://www.dnr.wa.gov/publications/amp_nh_animals_ranks.pdf. Accessed: August 7, 2020. 

References and Other Resources  R-41 Washington State Department of Agriculture. 2009. Human Health and Ecological Effects Risk Assessment:  Imazpyr.  Available:  https://agr.wa.gov/getmedia/c7759568‐f7f2‐41e3‐91ab‐7e3cf5395fba/ 2009amechumanhealthecologicaleffectsriskassessmentimazapyr.pdf.  Washington State Department of Transportation (WSDOT). 2022. Roadside Manual. Engineering and Regional  Operations. Available: https://www.wsdot.wa.gov/publications/manuals/fulltext/m25‐30/roadside.pdf.  Waterbury, B., A. Potter, and L. K. Svancara. 2019. “Monarch Butterfly Distribution and Breeding Ecology in  Idaho and Washington.” Frontiers in Ecology and Evolution 7:172.  Weber, P. 1936. “Notes and Exhibitions.” Proceedings of the Hawaiian Entomological Society 9(2):145.  Weber, P. G., S. Preston, M. J. Dlugos, and A. P. Nelson. 2008. “The effects of field mowing on adult butterfly  assemblages in central New York state.” Natural Areas Journal 28(2):130–143.  Weiss, S. B. 1999. Cars, cows, and checkerspot butterflies: nitrogen deposition and management of nutrient‐ poor grasslands for a threatened species. Conservation Biology 13(6):1476–1486.  Weiss, S. B., L. Naumovich, and C. Niederer. 2015. Assessment of the past 30 years of habitat management  and covered  species monitoring associated with  the San Bruno Mountain habitat conservation plan.  Prepared for the San Mateo County Parks Department.  Wepprich, T., J. R. Adrion, L. Ries, J. Wiedmann, and N. M. Haddad. 2019. “Butterfly abundance declines over  20 years of systematic monitoring in Ohio, USA.” PLOS ONE 14:e0216270.  Westbrooks, R. G. 1998. Invasive Plants: Changing the Landscape of America: Fact Book. Federal Interagency  Committee for the Management of Noxious and Exotic Weeds, Washington, DC. 109 pp.  White, A., J. B. Fant, M. Skinner, K. Havens, and A. T. Kramer. 2018. “Restoring species diversity: Assessing  capacity in the United States native plant industry.” Restoration Ecology 26:605–611.  WildEarth Guardians and The Xerces Society for Invertebrate Conservation. 2010. Petition submitted to the  U.S. Secretary of the Interior Acting through the U.S. Fish and Wildlife Service. Petition to List the Sand  Verbena Moth (Copablepharon fuscum) under the Endangered Species Act. 19 pp.  WildEarth Guardians. 2011. Petition to list the Euphilotes ancilla purpura and Euphilotes ancilla cryptica under  the U.S. Endangered Species Act.  WildEarth Guardians. 2013. Petition to list the Great Basin silverspot (Speyeria nokomis nokomis) under the  Endangered Species Act.  Williams, D. W., L. L. Jackson, and D. D. Smith. 2007. “Effects of frequent mowing on survival and persistence  of forbs seeded into a species‐poor grassland.” Restoration Ecology 15(1):24–33.  Williams,  E.  H.  1981.  “Thermal  influences  on  oviposition  in  the montane  butterfly  Euphydryas  gillettii.”  Oecologia 50:342–346.  Williams,  E. H.  2012.  “Population  loss  and  gain  in  the  rare butterfly  Euphydryas gillettii  (Nymphalidae).”  Journal of the Lepidopterists’ Society 66:147–155.  Williams,  E.  H.,  and  M.  D.  Bowers.  1987.  “Factors  affecting  host‐plant  use  by  the  montane  butterfly  Euphydryas gillettii (Nymphalidae).” The American Midland Naturalist 118:153–161. 

References and Other Resources  R-42 Williams, E. H., C. E. Holdren, P. R. Ehrlich. 1981. “The life history and ecology of Euphydryas gillettii Barnes  (Nymphalidae).” Journal of the Lepidopterists’ Society 38:1–12.  Williams, F. X. 1928. “The Kamehameha Butterfly, Vanessa tammeamea Esch.” Proceedings of the Hawaiian  Entomological Society 7(1):164–169.  Williams, F. X. 1947. “Notes and Exhibitions for the Year 1946.” Proceedings of the Hawaiian Entomological  Society 13(1):1–31.  Williams, F. X. 1947. “Notes and Exhibitions: Protoparce quinquemaculata blackburni (Butler).” Proceedings  of the Hawaiian Entomological Society 13:10.  Williams, N. M., and C. Kremen. 2007. “Resource distribution among habitats determine solitary bee offspring  production in a mosaic landscape.” Ecological Applications 17:910–921.  Williams, N. M., D. Cariveau, R. Winfree, and C. Kremen. 2011. “Bees in disturbed habitats use, but do not  prefer, alien plants.” Basic and Applied Ecology 12(4):332–341.  Williams, N. M., E. E. Crone, H. R. T’ai, R. L. Minckley, L. Packer, and S. G. Potts. 2010. “Ecological and  life‐ history  traits predict bee  species  responses  to environmental disturbances.” Biological Conservation  143(10):2280–2291.  Williams,  P. H.,  R. W.  Thorp,  L.  L. Richardson,  and  S. R.  Colla.  2014.  Bumble Bees  of North America: An  Identification Guide. Princeton University Press, Princeton, NJ. doi:10.2307/j.ctt6wpzr9.  Willis, K. J., editor. 2017. Climate Change – Which Plants Will Be the Winners? Royal Botanic Gardens, Kew.  Wilsey, B. 2020. Restoration in the Face of Changing Climate: Importance of Persistence, Priority Effects, And  Species Diversity. Restoration Ecology 365:76.  Wilson, E. E., C. S. Sidhu, K. E. LeVan, and D. A. Holway. 2010. “Pollen foraging behaviour of solitary Hawaiian  bees revealed through molecular pollen analysis.” Molecular Ecology 19(21):4823–4829.  Winfree, R.  2010.  “The  conservation  and  restoration of wild bees.” Annals of  the New  York Academy of  Sciences 1195(1):169–197.  Wolf, Amy T., Watson, Jay C., Hyde, Terrell J., Carpenter, Susan G., and Jean, Robert P. (n.d.). Floral Resources  Used by the Endangered Rusty Patched Bumble Bee (Bombus affinis) in the Midwestern United States.  Wood, E. M., A. M. Pidgeon, C. Gratton, and T. T. Wilder. 2011. “Effects of oak barrens habitat management  for  Karner  blue  butterfly  (Lycaeides  samuelis)  on  the  avian  community.”  Biological  Conservation  144:3117–3126.  Wooley, R. L., and R. E. Stanford. 1991. “Oviposition behavior and nectar sources of the Pawnee montane  skipper, Hesperia Leonardus Montana (Hesperiidae).” Journal of the Lepidopterists’ Society 45:239–240.  Wu, Y‐T., C.‐H. Wang, X.‐D. Zhang, B. Zhao, L.‐F. Jiang, J.‐K. Chen, and B. Li. 2009. “Effects of saltmarsh invasion  by Spartina alterniflora.” Biological Invasions 11:635–649.  Wynhoff,  I.  1998.  “Lessons  from  the  reintroduction  of  Maculinea  teleius  and  M.  nausithous  in  the  Netherlands.” Journal of Insect conservation 2(1):47–57.  Xerces Society and Monarch  Joint Venture. 2019. Roadside habitat  for monarchs: Milkweeds of Arkansas,  Louisiana, and Mississippi. Xerces Society, Portland, OR. 

References and Other Resources  R-43 Xerces Society and Monarch Joint Venture. 2019. Roadside habitat for monarchs: Milkweeds of Florida. Xerces  Society, Portland, OR.  Xerces Society and Monarch  Joint Venture. 2019. Roadside habitat  for monarchs: Milkweeds of  Iowa and  Minnesota. Xerces Society, Portland, OR.  Xerces Society and Monarch Joint Venture. 2019. Roadside habitat for monarchs: Milkweeds of Kansas and  Missouri. Xerces Society, Portland, OR.  Xerces Society and Monarch Joint Venture. 2019. Roadside habitat for monarchs: Milkweeds of Oklahoma  and Texas. Xerces Society, Portland, OR.  Xerces Society and Monarch  Joint Venture. 2019. Roadside habitat  for monarchs: Milkweeds of the Great  Lakes. Xerces Society, Portland, OR  Xerces Society and Monarch  Joint Venture. 2019. Roadside habitat  for monarchs: Milkweeds of  the Mid‐ Atlantic. Xerces Society, Portland, OR.  Xerces Society and Monarch Joint Venture. 2019. Roadside habitat for monarchs: Milkweeds of the Northeast.  Xerces Society, Portland, OR.  Xerces Society and Monarch Joint Venture. 2019. Roadside habitat for monarchs: Milkweeds of the Southeast.  Xerces Society, Portland, OR.  Xerces Society. 2016. Monarch nectar plants: Florida. Xerces Society, Portland, OR.  Xerces Society. 2016. Monarch nectar plants: Mid‐Atlantic. Xerces Society, Portland, OR.  Xerces Society. 2016. Monarch nectar plants: Midwest. Xerces Society, Portland, OR.  Xerces Society. 2016. Monarch nectar plants: Northeast. Xerces Society, Portland, OR.  Xerces Society. 2016. Monarch nectar plants: Southeast. Xerces Society, Portland, OR.  Xerces Society. 2016. Monarch nectar plants: Southern Plains. Xerces Society, Portland, OR.  Xerces Society. 2017. Protecting California’s Butterfly Groves: Management Guidelines for Monarch Butterfly  Overwintering  Habitat.  The  Xerces  Society  for  Invertebrate  Conservation.  Available:  https://xerces.org/sites/default/files/2018‐05/17‐040_01_ProtectingCaliforniaButterflyGroves.pdf.   Xerces Society. 2018. Managing  for monarchs  in  the west: best management practices  for conserving  the  monarch  butterfly  and  its  habitat.  The  Xerces  Society  for  Invertebrate  Conservation,  Portland, OR.  Available: www.xerces.org.  Yang,  Y., D.  Tilman, G.  Furey, C.  Lehman.  2019.  “Soil  carbon  sequestration  accelerated by  restoration of  grassland biodiversity.” Nature Communications 10.  Zalucki, M. P., A. R. Clarke, and S. B. Malcolm. 2002. Ecology and behavior of first instar larval Lepidoptera.  Annual Review of Entomology 47:361–393.  Zielin, S. B., and Portland State University. Department of Environmental Science and Management. 2010.  Exploring Mitigation Options  to Reduce Vehicle‐caused Mortality  for  the Oregon  Silverspot Butterfly,  Speyeria zerene hippolyta, along Highway 101 at the Siuslaw National Forest. 

References and Other Resources  R-44 Zimmerman, E. C. 1948.  Insects of Hawaii: a manual of  the  insects of  the Hawaiian  Islands,  including an  enumeration of the species and notes on their origin, distribution, hosts, parasites, etc. University of  Hawaii Press, Honolulu, HI. 222 pp.  Zimmerman,  E.  C.  1958.  Insects  of Hawaii, Volume  7, Macrolepidoptera. Honolulu, Hawaii, University  of  Hawaii Press. 549 pp.  Ziska, L. H., J. S. Pettis, J. Edwards, J. E. Hancock, M. B. Tomecek, A. Clark, J. S. Dukes, I. Loladze, and H. Wayne  Polley. 2016. Rising Atmospheric CO2  is Reducing the Protein Concentration of a Floral Pollen Source  Essential for North American Bees. Proc. R. Soc. B 283:20160414.  Zuefle, M. E., W. P. Brown, and D. W. Tallamy. 2008. “Effects of non‐native plants on native insect community  of Delaware.” Biological Invasions 10:1159–1169. 

A-1 Appendix A Decision Support for Compliance with the Endangered Species Act: Listed Pollinators If there is a listed pollinator species in the area that will impact a project or general work, the questions below can help in developing proactive strategies as alternatives to the more traditional Section 7 consultation when dealing with listed species. Select as many questions as apply. Under the proposed project, is “take” (impact) of a listed species reasonably certain to occur, and is the project proponent a non-federal entity? If so, consider complying with the federal Endangered Species Act (ESA) through Section 10, a voluntary process, and developing a Habitat Conservation Plan (HCP) in order to maintain more control of the outcome while investing a reasonable amount of time and resources upfront and overseeing the process through to the end. Go Further: The HCP is the applicant’s document, so the applicant can control its content and approach. In addition, the Section 10 permit process allows for coverage of non-listed species under an HCP and provides No Surprises assurances throughout the duration of the permit. This can be advantageous for long-term planning. Species likely to become listed over the permit duration, if covered by the HCP, require no new restrictions if the species becomes listed as long as the permittee is properly implementing the HCP and Incidental Take Permit. Is the potential presence of listed species in or adjacent to existing rights-of-way preventing investment in roadside vegetation management strategies that could otherwise improve roadside habitat for pollinators? If so, consider use of a Safe Harbor Agreement (SHA) to provide formal assurances that future land use restrictions would not result from investment in management activities that increase habitat value and/or the local abundance of the listed species covered under the permits. Go Further: Recognized conservation actions benefiting listed species under a SHA include development and testing of new habitat management techniques. Under this experimental component of the agreement, new management activities can be developed and inform conservation measures benefiting listed species implemented under a Recovery Crediting System (RCS). Management actions undertaken through a SHA can be transferred to an RCS following termination of the SHA. For a specific geography or project, are there multiple listed species expected to be impacted, or a single listed species? If there are multiple listed species, consider investing in a compliance strategy, such as an HCP, wherein different conservation measures can be bundled together to provide regulatory coverage for take of a number of listed species under a single permit.

Appendix A. Decision Support for Compliance with the Endangered Species Act: Listed  Pollinators A-2 Go Further: HCPs are the most comprehensive compliance strategy available to non- federal parties to conserve the ecosystems and natural processes upon which listed species depend, ultimately contributing to their recovery. HCPs can apply to both listed and non-listed species, including those that are candidates or have been proposed for listing. Conservation measures implemented under other identified compliance strategies can be transferred or rolled-up to an HCP. Are there established recovery plans for the listed species of interest? If so, the conservation actions identified in the recovery plan provide a framework from which to build an appropriate and recognizable conservation strategy to be implemented under an RCS. Go Further: Conservation measures benefiting listed species implemented under an approved RCS can be expanded in scope to address pollinator species proposed for listing or candidates for listing on non-federal land through development of a Candidate Conservation Agreement with Assurances (CCAA). Implementation of management activities identified under a CCAA that complements an existing RCS allows for provisioning of more comprehensive regulatory coverage from a multispecies context. Are some of the suggested changes to maintenance activities to benefit listed pollinators also viewed as potential cost-saving measures? If so, creation of a SHA allows for transportation agencies to invest in maintenance activities that may result in cost savings, such as shifting the timing and frequency of mowing, but also real benefits to pollinators without fear of retribution for attracting or increasing the amount or distribution of the listed species on managed lands. Go Further: Recognized conservation actions benefiting listed species under a SHA include development and testing of new habitat management techniques. Under this experimental component of the agreement, new management activities can be developed and inform conservation measures benefiting listed species implemented under an RCS. Management actions undertaken through a SHA can be transferred to an RCS following termination of the SHA. Are the same listed or at-risk species likely to be impacted by reoccurring construction or management activities? If listed or at-risk species are likely to be continually impacted by future activities, investing early in development of an HCP, if there are multiple species deserving coverage, may be worth pursuing, or consider an RCS, to generate a bank of credits for both permanent and temporary impacts on listed species. Go Further: Conservation measures benefiting listed species implemented under an approved RCS may be expanded in scope to address conservation actions identified by a state resource agency for at-risk species through development of a Prelisting Conservation Agreement (PCA). When working in concert, an RCS and PCA can lead to the generation of credits that can be “banked” and shared among agencies to address future impacts on multiple species. Are the conservation needs for a listed species poorly understood? If so, there may be value in exploring the opportunities presented by a SHA, which allows for experimentation and knowledge building while providing assurances that whether

Appendix A. Decision Support for Compliance with the Endangered Species Act: Listed  Pollinators A-3 agencies are successful or not in benefiting listed species through their actions, they will not be penalized. Go Further: Recognized conservation actions benefiting listed species under a SHA include development and testing of new habitat management techniques. Under this experimental component of the agreement, new management activities can be developed and inform conservation measures benefiting listed species implemented under an RCS. Management actions undertaken through a SHA can be transferred to an RCS following termination of the SHA. Is the species endemic to a small area or does it occur at a single site? If so, an HCP may be most appropriate for addressing the range of conditions that need to be addressed to assure long-term protection and recovery of the species, recognizing that the potential for impacts on the species associated with road construction and maintenance activities is very localized and likely not to be repeated in other geographies, thus limiting the geographic extent of the value of conservation actions. Go Further: HCPs are the most comprehensive compliance strategy available to non- federal parties to conserve the ecosystems and natural processes upon which listed species depend, ultimately contributing to their recovery. HCPs can apply to both listed and non-listed species, including those that are candidates or have been proposed for listing. Conservation measures implemented under other identified compliance strategies can be transferred or rolled-up to an HCP. Is offsite mitigation an option? If so, the creation of mitigation and conservation banks on their own, or as part of an RCS or HCP, creates lasting credits for local impacts on listed species that can be transferred or sold to other agencies in time. Go Further: Conservation measures benefiting listed species implemented under an approved RCS may be expanded in scope to address conservation actions identified by a state resource agency for at-risk species through development of a PCA. When working in concert, an RCS and PCA can lead to the generation of credits that can be “banked” and shared among agencies to address future impacts on multiple species. Is the existing or future road network present in wildfire-prone landscapes? If so, explore opportunities to earn credits through an HCP or RCS by installing road- hardening measures, such as concrete pavement, in rights-of-ways (ROWs) to reduce ignition rates and protect high value pollinator habitat harboring listed species in the neighboring natural areas bordering the road network. Go Further: HCPs are the most comprehensive compliance strategy available to non- federal parties to conserve the ecosystems and natural processes upon which listed species depend, ultimately contributing to their recovery. HCPs can apply to both listed and non-listed species, including those that are candidates or have been proposed for listing. Conservation measures implemented under other identified compliance strategies can be transferred or rolled-up to an HCP. More about ESA compliance is included in Chapter 4, Native Pollinators and the Federal Endangered Species Act: Compliance Strategies for State Departments of Transportation, of this guide.

B-1 Appendix B Decision Support for Voluntary Actions and Regulatory Assurances: Imperiled Pollinators and the Endangered Species Act If there is an imperiled pollinator species in the area that may become listed, the questions below can help in developing voluntary strategies to mitigate present-day and future risks to at-risk species and regulatory assurances. Select as many questions as apply. Are at-risk pollinator species present in the planning area? If so, a Candidate Conservation Agreement with Assurances (CCAA) provides assurances to transportation agencies who invest early in the application of recognized conservation actions, such as the abandonment of an otherwise once planned road extension, within a planning area encompassing a larger road network that benefit single or multiple pollinator species considered to be at-risk for future listing. Go Further: If conservation measures implemented under a CCAA are consistent with a conservation strategy for a species established by a state resource agency, the CCAA can be terminated and management actions transferred to a Prelisting Conservation Agreement (PCA). Transference would lead to the generation of credits for use as mitigation or as a compensatory measure for the detrimental impact of an action undertaken within a specified “service area” after the species is listed as threatened or endangered. Are the same at-risk species likely to be impacted by reoccurring construction or management activities? If at-risk species are likely to be continually impacted by future activities, investing early in development of a PCA, to generate a bank of credits for both permanent and temporary impacts on at-risk species, may be worth pursuing. Will at-risk species possibly be harmed by future activities? If so, by working with state and federal agencies, a transportation agency can create credits under a PCA by implementing conservation measures benefiting a state-recognized at-risk species at select locations across their service area, providing assurances the agency will have the ability to mitigate for future impacts on the species following a federal listing. Go Further: Credits generated under a PCA can be used as mitigation or as a compensatory measure for the detrimental impact of an action undertaken within a specified “service area” after the species is listed as threatened or endangered. Are there established state-sponsored conservation plans for at-risk species of interest? If so, the conservation plans are to serve as the preferred source for identifying the conservation strategies to be implemented under a PCA to receive credits for future impacts on at-risk species following federal listing.

Appendix B. Decision Support for Voluntary Actions and Regulatory Assurances: Imperiled  Pollinators and the Endangered Species Act B-2 Are there federal lands neighboring present-day rights-of-way or future project areas containing recognized habitat for at-risk species of interest? If so, consider reaching out to neighboring federal agencies to explore the possibility of linking a CCAA with a Candidate Conservation Agreement (CCA) to establish a comprehensive conservation plan for at-risk species allowing for greater consistency in management actions, and thus effectiveness, across a larger regional landscape consisting of both federal and non-federal properties. Go Further: Primarily developed to cover activities on federal lands, a CCA can be written to perform the function of an overarching conservation plan for a single, or multiple, species. A conservation plan can serve to link a CCA for federal property together with preventative measures taken under a CCAA implemented on adjoining non-federal lands, allowing enrollees to seamlessly implement conservation measures to address the needs of at-risk species. Is the existing or future road network present in wildfire-prone landscapes? If so, explore opportunities to earn credits through a Habitat Conservation Plan (HCP) or PCA by installing road-hardening measures, such as concrete pavement, in rights-of-way to reduce ignition rates and protect high value pollinator habitat harboring at-risk species in the neighboring natural areas bordering the road network. Go Further: HCPs are the most comprehensive compliance strategy available to non- federal parties to conserve the ecosystems and natural processes upon which listed species depend, ultimately contributing to their recovery. HCPs can apply to both listed and non-listed species, including those that are candidates or have been proposed for listing. Conservation measures implemented under other identified compliance strategies can be transferred or rolled-up to an HCP. More information about voluntary Endangered Species Act actions is included in Chapter 4, Native Pollinators and the Federal Endangered Species Act: Compliance Strategies for State Departments of Transportation, of this guide.

C-1 Appendix C Bee and Bee Group Recognition C.1 Recognizing Bees Distinguishing floral visitors such as butterflies, beetles, and moths from bees is fairly straightforward, but separating bees from wasps or flies can be more difficult (Figure C-1 and Table C-1). Figure C-1. Common floral visitors: butterfly (top left), bee (top center), wasp (top right), beetle (bottom left), moth (bottom center), fly (bottom right).

Appendix C. Bee and Bee Group Recognition C-2 Table C-1. Key characteristics of bees, and the flies and wasps that can be mistaken for them. Floral  Visitor  Wings  Body Shape,  Size  Hairs on Body  Body Color  Body Patterns  Pollen‐Carrying Structures  Antennae  Bees  4 wings   (2 pairs)  Robust body,  constricted  waist  Hairy bodies,  often with a  fuzzy  appearance  Black, brown,  orange, red, or  metallic green  blue, or copper  Some species have  stripes of hairs on  abdomen  Female bees carry pollen on  their bodies in corbicula  (concave pollen basket) or  scopa (specialized longer  hairs on hind legs or long  hairs underside of  abdomen)  Slender, long antennae,  typically with a distinct  elbow  Wasps  4 wings  (2 pairs)  Slender body,  constricted  waist  Not hairy  Black, brown,  red, orange,  yellow, or  metallic blue or  green  Stripes on exoskeleton  (not stripes of hairs)  None  Slender, long antennae  Flies  2 wings  (1 pair)  Robust body,  no constricted  waist  Usually  without many  hairs  Black, brown,  yellow, metallic  blue or green  Stripes on exoskeleton  (not stripes of hairs)  None  Short, thick antennae 

Appendix C. Bee and Bee Group Recognition C-3 C.2 Recognizing Bee Groups Bees are difficult to identify to species or family without having pinned specimens. But bee richness at a site can be measured by identifying bees to groups based on their morphology (also known as morphogroups), which use characteristics that can be seen in the field to categorize bees. See Appendix E, Bumble Bee Recognition and Photography, for characteristics of bumble bees. Note that honey bees are not native to North America. When sampling for bees, distinguishing between honey bees and native bees is the most important observation one can make. C.2.1 Honey Bees Key Characteristics (Figure C-2):  Size and shape: Medium to large with torpedo-shaped bodies  Color and hair: Amber-brown to nearly black; moderately fuzzy thorax and head, with less hairy legs and abdomen  Stripes: Abdomen tri-toned with black, pale, and orange-brown stripes  Corbicula: Concave flattened plates, fringed by a few long hairs, on hind legs to carry moist pollen Notes: Makes buzzing sound when flying and often flies methodically from flower the flower. Figure C-2. Honey bees.

Appendix C. Bee and Bee Group Recognition C-4 C.2.2 Chap Leg Bees Key Characteristics (Figure C-3):  Size and shape: Medium to large, robust  Color and hair: Dark with white, yellow, or brown hairs; often hairy—especially on thorax—with short, dense, velvety hair  Stripes: Often with bands of pale hair on abdomen  Scopa: Carries dry pollen on noticeably longer, dense hairs on lower hind legs, but pollen is often on the whole body Notes: Antennae are typically longer than most other bees, especially on males. The legs of males are not as hairy as those of females because males do not transport pollen. Some fly fast (usually in smooth motions that almost look like they are tracing a figure 8) and can visit flowers rapidly. Figure C-3. Chap leg bees. C.2.3 Medium Dark Bees Key Characteristics (Figure C-4):  Size and shape: Small to large; relatively narrow to moderately robust  Color and hair: Dull, dark-bodied; thorax and face are moderately hairy  Stripes: May have bands of pale hair on abdomen  Scopa: Carries pollen on upper hind legs and back of thorax (armpits)  Other notable feature: Face may have two hairy depressions between the eyes (Andrena) or be heart-shaped (Colletes) Notes: Among the first to emerge in early spring. Nest in the ground, often in large aggregations. Figure C-4. Medium dark bees.

Appendix C. Bee and Bee Group Recognition C-5 C.2.4 Green Sweat Bees Key Characteristics (Figure C-5):  Size and shape: Medium sized, narrow bodied  Color and hair: Bright metallic green; abdomen can be green like the thorax, or dark with stripes; body covered in pale hairs that are less noticeable  Stripes: Some have yellow-and-black striped abdomens  Scopa: Carries dry pollen on hairs on hind legs, less noticeable than other bees unless covered in dry pollen Notes: Relatively fast flying and numerous. Antennae are short on females and longer on males. Figure C-5. Green sweat bees. C.2.5 Striped Sweat Bees Key Characteristics (Figure C-6):  Size and shape: Small to medium, narrow bodied  Color and hair: Usually dark with bands of pale hairs on abdomen  Stripes: Stripes on abdomen may appear faint and vary in color from creamy to dark gray  Scopa: Brush of hair on upper part of hind legs, sometimes loaded with pollen Notes: May crawl around the base of flowers or inside flowers. Fast moving; sometimes with jagged movements. Figure C-6. Striped sweat bees.

Appendix C. Bee and Bee Group Recognition C-6 C.2.6 Tiny Dark Bees Key Characteristics (Figure C-7):  Size and shape: Tiny and narrow bodied  Color and hair: Can be dull black/brown, pale golden, metallic black/brown or blue/green; sometimes with white or yellow markings on face; body sparsely covered in pale hairs that are less noticeable, but some with dense patches of hair on abdomen  Stripes: Faint stripes on abdomen, if any  Scopa: Small carpenter bees (Ceratina) and sweat bees (Halictus) have brushes of pollen collecting hairs on hind leg; yellow-faced bees (Hylaeus) carry pollen in a crop, and lack external scopa Notes: Often crawl deep into flowers. Can move fast—some with jagged movements. Figure C-7. Tiny dark bees. C.2.7 Hairy Belly Bees Key Characteristics (Figure C-8):  Size and shape: Small to medium and typically very robust; often with a broad head and strong jaws used to cut leaves for nesting materials  Color and hair: Black with thorax and head covered in silver, white, or yellow hairs OR black with yellow markings on exoskeleton  Stripes: Abdomen has light hairs that create stripes, or markings are on exoskeleton  Scopa: Females carry dry pollen on thick hairs on underside of abdomen Notes: When visiting flowers, these bees often elevate abdomen, revealing pollen underneath. Figure C-8. Hairy belly bees.

Appendix C. Bee and Bee Group Recognition C-7 C.2.8 Metallic Hairy Belly Bees Key Characteristics (Figure C-9):  Size and shape: Small to medium, stout, robust bodies  Color and hair: Metallic green, blue, or bluish black; brushes of hair beneath abdomen— no prominent hair bands  Stripes: None  Scopa: Females carry dry pollen loads on underside of abdomen Notes: Among the first bees seen during the pollinating season. Most are observed in early spring and summer. As their name suggests, some species of Mason Bees gather mud and pebbles to construct their nests. These bees are also often called Orchard Bees, due to their frequent pollination of fruit tree blossoms. Figure C-9. Metallic hairy belly bees.

D-1 Appendix D Butterfly and Butterfly Group Recognition D.1 Recognizing Butterflies Butterflies can be distinguished from moths by the way they hold their wings at rest and by their antennae. Butterflies hold their wings open or vertically closed over their bodies, while moths tend to hold their wings flat. Butterfly antennae are club-shaped at the tips, while moth antennae either taper to a point or have a feathery appearance. D.2 Recognizing Butterfly Groups With practice, butterflies can be identified to family by observing characteristics such as size, color, wing patterns, and flight patterns. The following sections describe common characteristics of common butterfly families. D.2.1 Skippers Key Characteristics (Figure D-1):  Short wings  Must flap rapidly to gain flight  Bodies are compact and broad  Antennae are often short, with hooked bulb at the end  Fairly small, usually brown or orange  Fly in speedy, skipping, stop-and-go manner  Often hold their wings separated partially making two V’s Figure D-1. Skippers are smaller butterflies with brown and orange coloring.

Appendix D. Butterfly and Butterfly Group Recognition D-2 D.2.2 Swallowtails Key Characteristics (Figure D-2):  Large butterflies  Swift, sailing flight pattern  Unhooked antenna  Less wing loading, allowing them to soar  Can possess hind wing extensions (tails) Figure D-2. Swallowtails are large butterflies that are usually black, yellow, and/or white. D.2.3 Whites and Sulphurs Key Characteristics (Figure D-3):  Predominantly yellow or white in most species  Bright orange wingtips and striking black marginal patterns are common Figure D-3. Whites and sulphurs are often white or yellow.

Appendix D. Butterfly and Butterfly Group Recognition D-3 D.2.4 Gossamer-Winged Key Characteristics (Figure D-4):  Many of the smallest and brightest butterflies  Brightly colored (can shimmer in sunshine) in blues, greens, or coppers  May be dotted with bold spots or checkers  Glittering, silky wings Figure D-4. Gossamer-winged butterflies are often smaller and have striking colors on the upper sides of their wings. D.2.5 Brush-Footed Key Characteristics (Figure D-5):  Various shades of orange, red, brown, and black are common among brush-footed butterflies  The front pair of legs is reduced to tiny, brush like appendages held tightly beneath the thorax, so they appear to have only four legs Figure D-5. Brush-footed butterflies are commonly colored orange, red, and black, with only four clearly visible legs.

E-1 Appendix E Bumble Bee Recognition and Photography E.1 Recognizing Bumble Bees Family: Apidae, Genus: Bombus E.1.1 Identification  Size and shape: Medium to very large, robust (workers and males are smaller than queens)  Color and hair: Mostly black with yellow, orange, or brown markings; entire body is fuzzy  Stripes: Hair can form yellow, black, orange, or brown stripes or markings  Pollen-carrying structures: Females have flattened plate on upper hind leg surrounded by long, stiff hairs (known as a corbicula) for carrying moist clumps of pollen. E.1.2 Notes Bumble bees make a low buzzing sound when flying. Several flies are excellent bumble bee mimics, but they have short stubby antennae, large eyes that meet in the middle of their face, and skinny hind legs. E.1.3 Look-Alikes In addition to flies that mimic bumble bees, there are numerous native bee species that appear similar to bumble bees. Large carpenter bees look very similar to bumble bees, but they are shinier (less hairy), especially on the abdomen. Figure E-1. Key characteristics of bumble bees.

Appendix E. Bumble Bee Recognition and Photography E-2 E.2 Photographing Bumble Bees  If photographing bumble bees while they are foraging, the following can be helpful:  Wait at a group of flowers instead of following a bumble bee around  Do not be afraid to get close to the bees when they are on flowers (they pose no risk of stinging while foraging unless one grabs their bodies)  Use a camera with a macro setting; digital SLRs and point-and-shoots have the most flexibility with macro settings, but cameras in smartphones can be used if no other option is available  Take photos from several different angles, aiming for shots that show the bee’s back (dorsal view), one side, and face If photographing chilled bees, the following can be helpful:  Choose a clean, solid background surface on which to photograph a chilled bee (e.g., white printer paper); it can be hard to see details of bees within vials, so it is best to take the bee out of the vial for photos; if the bee has been chilled for 5–10-plus minutes, it will not be able to fly off for several minutes until it warms up significantly  Take photos of different angles of the bee: top, back, side, face, and hind leg  Take photos in full sun; make sure to focus on the bee  Release the bee in a warm, shady spot More details and examples can be found at:  https://www.bumblebeewatch.org/photo-tips/ https://www.nebraskabumblebeeatlas.org/photo-tips.html

Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin Get This Book
×
 Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Transportation agencies can make a difference for imperiled pollinators by managing existing roadside vegetation and designing new revegetation plantings with habitat needs in mind. This can generate public support for the agency and help to mitigate the negative ecological effects of roads.

NCHRP Web-Only Document 362: Pollinator Habitat Conservation Along Roadways, Volume 4: Great Basin, from TRB's National Cooperative Highway Research Program, is part of a 16-volume series, with each volume focused on a specific region of the United States, and is intended to provide relevant guidance to rights-of-way owners and operators for roadside vegetation management practices that support pollinators, as well as strategies that are compliant with the federal Endangered Species Act.

Supplemental to the document are a Dataset of Great Basin Accessory Materials, a Communications Toolbox, a Conduct of Research Report, and a Video.

All the other volumes are available on the webpage for NCHRP Web-Only Document 362: Pollinator Habitat Conservation Along Roadways, Volume 1: Alaska.

The other volumes are:

Volume 1: Alaska

Volume 2: California

Volume 3: Florida

Volume 5: Great Lakes

Volume 6: Hawaii

Volume 7: Inland Northwest

Volume 8: Maritime Northwest

Volume 9: Mid-Atlantic

Volume 10: Midwest

Volume 11: Northeast

Volume 12: Northern Plains

Volume 13: Rocky Mountains

Volume 14: Southeast

Volume 15: Southern Plains

Volume 16: Southwest

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!