National Academies Press: OpenBook
« Previous: 8 Looking Ahead
Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
×

Appendix A

References

Aguilar-Gaxiola, S., S. M. Ahmed, A. Anise, A. Azzahir, K. E. Baker, A. Cupito, M. Eder, T. D. Everette, K. Erwin, M. Felzien, E. Freeman, D. Gibbs, E. Greene-Moton, S. Hernández-Cancio, A. Hwang, F. Jones, G. Jones, M. Jones, D. Khodyakov, J. L. Michener, B. Milstein, D. S. Oto-Kent, M. Orban, B. Pusch, M. Shah, M. Shaw, J. Tarrant, N. Wallerstein, J. M. Westfall, and R. Zaldivar. 2022. Assessing Meaningful Community Engagement: A Conceptual Model to Advance Health Equity Through Transformed Systems for Health: Organizing Committee for Assessing Meaningful Community Engagement in Health & Health Care Programs & Policies. NAM Perspectives 2022. Commentary. Washington DC: National Academy of Medicine. https://doi.org/10.31478/202202c.

Alberio, R., T. Kobayashi, and M. A. Surani. 2021. Conserved features of non-primate bilaminar disc embryos and the germline. Stem Cell Reports 16(5):1078–1092.

Brinster, R. L. 2002. Germline stem cell transplantation and transgenesis. Science 296(5576):2174–2176. https://doi.org/10.1126/science.1071607.

CDC (Centers for Disease Control and Prevention). 1997. Principles of community engagement. CDC/ATSDR Committee on Community Engagement.

CDC. 2022. 2020 Assisted reproductive technology fertility clinic and national summary report. U.S. Department of Health and Human Services.

Clarke, L. 2023. This biohacking company is using a crypto city to test controversial gene therapies. MIT Technology Review. https://www.technologyreview.com/2023/02/13/1068330/minicircle-prospera-honduras-biohacking-follistatin-gene-therapy/

Clouthier, D. E., M. R. Avarbock, S. D. Maika, R. E. Hammer, and R. L. Brinster. 1996. Rat spermatogenesis in mouse testis. Nature 381:418–421. https://doi.org/10.1038/381418a0.

Domar, A. D., P. C. Zuttermeister, and R. Friedman. 1993. The psychological impact of infertility: A comparison with patients with other medical conditions. Journal of Psychosomatic Obstetrics and Gynaecology 14(Suppl):45–52.

Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
×

Goldmann, J. M., V. B. Seplyarskiy, W. S. Wong, T. Vilboux, P. B. Neerincx, D. L. Bodian, B. D. Solomon, J. A. Veltman, J. F. Deeken, C. Gilissen, and J. E. Niederhuber. 2018. Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence. Nature Genetics 50(4):487–492. https://doi.org/10.1038/s41588-018-0071-6.

Goriely, A. 2016. Decoding germline de novo point mutations. Nature Genetics 48(8):823–824. https://doi.org/10.1038/ng.3629.

Gruhn, W. H., W. W. C. Tang, S. Dietmann, J. P. Alves-Lopes, C. A. Penfold, F. C. K. Wong, N. B. Ramakrishna, and M. A. Surani. 2023. Epigenetic resetting in the human germ line entails histone modification remodeling. Science Advances 9(3):eade1257. https://doi.org/10.1126/sciadv.ade1257.

Gyobu-Motani, S., Y. Yabuta, K. Mizuta, Y. Katou, I. Okamoto, M. Kawasaki, A. Kitamura, T. Tsukiyama, C. Iwatani, H. Tsuchiya, T. Tsujimura, T. Yamamoto, T. Nakamura, and M. Saitou. 2023. Induction of fetal meiotic oocytes from embryonic stem cells in cynomolgus monkeys. The EMBO Journal 42(9):e112962. https://doi.org/10.15252/embj.2022112962.

Handel, M. A., J. J. Eppig, and J. C. Schimenti. 2014. Applying “gold standards” to in-vitro-derived germ cells. Cell 157(6):1257–1261. https://doi.org/10.1016/j.cell.2014.05.019.

Hasaart, K. A. L., F. Manders, J. Ubels, M. Verheul, M. J. van Roosmalen, N. M. Groenen, R. Oka, E. Kuijk, S. M. C. de S. Lopes, and R. van Boxtel. 2022. Human induced pluripotent stem cells display a similar mutation burden as embryonic pluripotent cells in vivo. iScience 25(2):103736. https://doi.org/10.1016/j.isci.2022.103736.

Hayashi, K., O. Hikabe, Y. Obata, and Y. Hirao. 2017. Reconstitution of mouse oogenesis in a dish from pluripotent stem cells. Nature Protocols 12(9):1733–1744. https://doi.org/10.1038/nprot.2017.070.

Hikabe, O., N. Hamazaki, G. Nagamatsu, Y. Obata, Y. Hirao, N. Hamada, S. Shimamoto, T. Imamura, K. Nakashima, M. Saitou, and K. Hayashi. 2016. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539(7628):299–303. https://doi.org/10.1038/nature20104.

Hill, P. W. S., H. G. Leitch, C. E. Requena, Z. Sun, R. Amouroux, M. Roman-Trufero, M. Borkowska, J. Terragni, R. Vaisvila, S. Linnett, H. Bagci, G. Dharmalingham, V. Haberle, B. Lenhard, Y. Zheng, S. Pradhan, and P. Hajkova, P. 2018. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature 555(7696):322–396. https://doi.org/10.1038/nature25964.

Hua, R., and M. Liu. 2021. Sexual dimorphism in mouse meiosis. Frontiers in Cell and Developmental Biology 9. https://www.frontiersin.org/articles/10.3389/fcell.2021.670599.

Hwang, Y. S., S. Suzuki, Y. Seita, J. Ito, Y. Sakata, H. Aso, K. Sato, B. P. Hermann, and K. Sasaki. 2020. Reconstitution of prospermatogonial specification in vitro from human induced pluripotent stem cells. Nature Communications 11(1):Article 5656. https://doi.org/10.1038/s41467-020-19350-3.

Irie, N., L. Weinberger, W. W. C. Tang, T. Kobayashi, S. Viukov, Y. S. Manor, S. Dietmann, J. H. Hanna, and M. A. Surani. 2015. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160(1):253–268. https://doi.org/10.1016/j.cell.2014.12.013.

Ishii, T., and Saitou, M. 2017. Promoting in vitro gametogenesis research with a social understanding. Trends in Molecular Medicine 23(11):P985–P988. https://doi.org/10.1016/j.molmed.2017.09.006.

Kanatsu-Shinohara, M., N. Ogonuki, K. Inoue, H. Miki, A. Ogura, S. Toyokuni, and T. Shinohara. 2003. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biology of Reproduction 69(2):612–616. https://doi.org/10.1095/biolreprod.103.017012.

Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
×

Kobayashi, T., H. Zhang, W. W. C. Tang, N. Irie, S. Withey, D. Klisch, A. Sybirna, S. Dietmann, D. A. Contreras, R. Webb, C. Allegrucci, R. Alberio, and M. A. Surani. 2017. Principles of early human development and germ cell program from conserved model systems. Nature 546(7658):416–420. https://doi.org/10.1038/nature22812.

Kobayashi, T., A. Castillo-Venzor, C. A. Penfold, M. Morgan, N. Mizuno, W. W. C. Tang, Y. Osada, M. Hirao, F. Yoshida, H., Sato, H. Nakauchi, M. Hirabayashi, and M. A. Surani. 2021. Tracing the emergence of primordial germ cells from bilaminar disc rabbit embryos and pluripotent stem cells. Cell Reports 37(2):109812. https://doi.org/10.1016/j.celrep.2021.109812.

Kojima, Y., K. Sasaki, S. Yokobayashi, Y. Sakai, T. Nakamura, Y. Yabuta, F. Nakaki, S. Nagaoka, K. Woltjen, A. Hotta, T. Yamamoto, and M. Saitou. 2017. Evolutionarily distinctive transcriptional and signaling programs drive human germ cell lineage specification from pluripotent stem cells. Cell Stem Cell 21(4):517–532.e5. https://doi.org/10.1016/j.stem.2017.09.005.

Kubota, H., M. R. Avarbock, and R. L. Brinster. 2004. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences 101(47):16489–16494. https://doi.org/10.1073/pnas.0407063101.

Kuijk, E., M. Jager, B. van der Roest, M. D. Locati, A. Van Hoeck, J. Korzelius, R. Janssen, N. Besselink, S. Boymans, R. van Boxtel, and E. Cuppen. 2020. The mutational impact of culturing human pluripotent and adult stem cells. Nature Communications 11(1):2493. https://doi.org/10.1038/s41467-020-16323-4.

Lei, Q., X. Lai, J. Eliveld, S. M. Chuva de Sousa Lopes, A. M. M. van Pelt, and G. Hamer. 2020. In vitro meiosis of male germline stem cells. Stem Cell Reports 15(5):1140–1153. https://doi.org/10.1016/j.stemcr.2020.10.006.

Maher, G. J., S. J. McGowan, E. Giannoulatou, C. Verrill, A. Goriely, and A. O. M. Wilkie. 2016. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes. Proceedings of the National Academy of Sciences 113(9):2454–2459. https://doi.org/10.1073/pnas.1521325113.

Maher, G. J., H. K. Ralph, Z. Ding, N. Koelling, H. Mlcochova, E. Giannoulatou, P. Dhami, D. S. Paul, S. H. Stricker, S. Beck, G. McVean, A. O. M. Wilkie, and A. Goriely. 2018. Selfish mutations dysregulating RAS-MAPK signaling are pervasive in aged human testes. Genome Research 28(12):1779–1790. https://doi.org/10.1101/gr.239186.118.

Marks, P. 2019. The FDA’s regulatory framework for chimeric antigen receptor-T cell therapies. Clinical and Translational Science 12(5):428–430. https://doi.org/10.1111/cts.12666.

Martyn, I., T. Y. Kanno, A. Ruzo, E. D. Siggia, and A. H. Brivanlou. 2018. Self-organization of a human organizer by combined WNT and nodal signalling. Nature 558(7708):132–135. https://doi.org/10.1038/s41586-018-0150-y.

Meyer, M. N., T. Tan, D. J. Benjamin, D. Laibson, and P. Turley. 2023. Public views on polygenic screening of embryos. Science 379(6632):541–543. https://doi.org/10.1126/science.ade1083.

Mizuta, K., Y. Katou, B. Nakakita, A. Kishine, Y. Nosaka, S. Saito, C. Iwatani, H. Tsuchiya, I. Kawamoto, M. Nakaya, T. Tsukiyama, M. Nagano, Y. Kojima, T. Nakamura, Y. Yabuta, A. Horie, M. Mandai, H. Ohta, and M. Saitou. 2022. Ex vivo reconstitution of fetal oocyte development in humans and cynomolgus monkeys. The EMBO Journal 41(18):e110815. https://doi.org/10.15252/embj.2022110815.

Murakami, K., N. Hamazaki, N. Hamada, G. Nagamatsu, I. Okamoto, H. Ohta, Y. Nosaka, Y. Ishikura, T. S. Kitajima, Y. Semba, Y. Kunisaki, F. Arai, K. Akashi, M. Saitou, K. Kato, and K. Hayashi. 2023. Generation of functional oocytes from male mice in vitro. Nature 615(7954):900–906. https://doi.org/10.1038/s41586-023-05834-x.

Nagano, M., J. R. McCarrey, and R. L. Brinster. 2001. Primate spermatogonial stem cells colonize mouse testes. Biology of Reproduction 64(5):1409–1416. https://doi.org/10.1095/biolreprod64.5.1409.

Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
×

Nagano, M., P. Patrizio, and R. L. Brinster. 2002. Long-term survival of human spermatogonial stem cells in mouse testes. Fertility and Sterility 78(6):1225–1233. https://doi.org/10.1016/S0015-0282(02)04345-5.

Ogawa, T., I. Dobrinski, M. R. Avarbock, and R. L. Brinster. 2000. Transplantation of male germ line stem cells restores fertility in infertile mice. Nature Medicine 6(1):29–34. https://doi.org/10.1038/71496.

Ohinata, Y., H. Ohta, M. Shigeta, K. Yamanaka, T. Wakayama, and M. Saitou. 2009. A signaling principle for the specification of the germ cell lineage in mice. Cell 137(3):571–584. https://doi.org/10.1016/j.cell.2009.03.014.

Orwig, K. E., T. Shinohara, M. R. Avarbock, and R. L. Brinster. 2002. Functional analysis of stem cells in the adult rat testis. Biology of Reproduction 66(4):944–949. https://doi.org/10.1095/biolreprod66.4.944.

Saitou, M., and K. Hayashi. 2021. Mammalian in vitro gametogenesis. Science 374(6563):eaaz6830. https://doi.org/10.1126/science.aaz6830.

SART (Society of Assisted Reproductive Technology). 2023. Preliminary National Summary Report for 2021. https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?reportingYear=2021.

Sasaki, K., and M. Sangrithi. 2023. Developmental origins of mammalian spermatogonial stem cells: New perspectives on epigenetic regulation and sex chromosome function. Molecular and Cellular Endocrinology 573:111949. https://doi.org/10.1016/j.mce.2023.111949.

Sasaki, K., S. Yokobayashi, T. Nakamura, I. Okamoto, Y. Yabuta, K. Kurimoto, H. Ohta, Y. Moritoki, C. Iwatani, H. Tsuchiya, S. Nakamura, K. Sekiguchi, T. Sakuma, T. Yamamoto, T. Mori, K. Woltjen, M. Nakagawa, T. Yamamoto, K. Takahashi, S. Yamanaka, and M. Saitou. 2015. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17(2):178–194. https://doi.org/10.1016/j.stem.2015.06.014.

Sasaki, K., T. Nakamura, I. Okamoto, Y. Yabuta, C. Iwatani, H. Tsuchiya, Y. Seita, S. Nakamura, N. Shiraki, T. Takakuwa, T. Yamamoto, and M. Saitou. 2016. The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Developmental Cell 39(2):169–185. https://doi.org/10.1016/j.devcel.2016.09.007.

Seita, Y., Cheng, J. R. McCarrey, N. Yadu, I. H. Cheeseman, A. Bagwell, C. N. Ross, I. Santana Toro, L.-H. Yen, S. Vargas, C. S. Navara, B. P. Hermann, and K. Sasaki. 2023. Efficient generation of marmoset primordial germ cell–like cells using induced pluripotent stem cells. eLife 12, e82263. https://doi.org/10.7554/eLife.82263.

Shinohara, T., M. Kato, M. Takehashi, J. Lee, S. Chuma, N. Nakatsuji, M. Kanatsu-Shinohara, and M. Hirabayashi. 2006. Rats produced by interspecies spermatogonial transplantation in mice and in vitro microinsemination. Proceedings of the National Academy of Sciences 103(37):13624–13628. https://doi.org/10.1073/pnas.0604205103.

Tang, W. W. C., S. Dietmann, N. Irie, H. G. Leitch, V. I. Floros, C. R. Bradshaw, J. A. Hackett, P. F. Chinnery, and M. A. Surani. 2015. A unique gene regulatory network resets the human germline epigenome for development. Cell 161(6):1453–1467. https://doi.org/10.1016/j.cell.2015.04.053.

Tang, W. W. C., T. Kobayashi, N. Irie, S. Dietmann, and M. A. Surani. 2016. Specification and epigenetic programming of the human germ line. Nature Reviews Genetics 17(10):585–600. https://doi.org/10.1038/nrg.2016.88.

Thompson, O., F. von Meyenn, Z. Hewitt, J. Alexander, A. Wood, R. Weightman, S. Gregory, F. Krueger, S. Andrews, I. Barbaric, P. J. Gokhale, H. D. Moore, W. Reik, M. Milo, S. Nik-Zainal, K. Yusa, and P. W. Andrews. 2020. Low rates of mutation in clinical grade human pluripotent stem cells under different culture conditions. Nature Communications 11(1):1528. https://doi.org/10.1038/s41467-020-15271-3.

Tran, K. T. D., H. Valli-Pulaski, A. Colvin, and K. E. Orwig. 2022. Male fertility preservation and restoration strategies for patients undergoing gonadotoxic therapies. Biology of Reproduction 107(2):382–405. https://doi.org/10.1093/biolre/ioac072.

Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
×

Warmflash, A., B. Sorre, F. Etoc, E. D. Siggia, and A. H. Brivanlou. 2014. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nature Methods 11(8):847–854. https://doi.org/10.1038/nmeth.3016.

WHO (World Health Organization). 2023. Infertility prevalence estimates: 1990–2021. https://www.who.int/publications/i/item/978920068315.

Yamaji, M., Y. Seki, K. Kurimoto, Y. Yabuta, M. Yuasa, M. Shigeta, K. Yamanaka, Y. Ohinata, and M. Saitou. 2008. Critical function of PRDM14 for the establishment of the germ cell lineage in mice. Nature Genetics 40(8):1016–1022. https://doi.org/10.1038/ng.186.

Yamashiro, C., K. Sasaki, Y. Yabuta, Y. Kojima, T. Nakamura, I. Okamoto, S. Yokobayashi, S. Murase, Y. Ishikura, K. Shirane, H. Sasaki, T. Yamamoto, and M. Saitou. 2018. Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362(6412):356–360. https://doi.org/10.1126/science.aat1674.

Yoshino, T., T. Suzuki, G. Nagamatsu, H. Yabukami, M. Ikegaya, M. Kishima, H. Kita, T. Imamura, K. Nakashima, R. Nishinakamura, M. Tachibana, M. Inoue, Y. Shima, K. Morohashi, and K. Hayashi. 2021. Generation of ovarian follicles from mouse pluripotent stem cells. Science 373(6552):eabe0237. https://doi.org/10.1126/science.abe0237.

Zhou, Q., M. Wang, Y. Yuan, X. Wang, R. Fu, H. Wan, M. Xie, M. Liu, X. Guo, Y. Zheng, G. Feng, Q. Shi, X.-Y. Zhao, J. Sha, and Q. Zhou. 2016. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18(3):330–340. https://doi.org/10.1016/j.stem.2016.01.0.

Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
×

This page intentionally left blank.

Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
×
Page 117
Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
×
Page 118
Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
×
Page 119
Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
×
Page 120
Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
×
Page 121
Suggested Citation:"Appendix A: References." National Academies of Sciences, Engineering, and Medicine. 2023. In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop. Washington, DC: The National Academies Press. doi: 10.17226/27259.
×
Page 122
Next: Appendix B: Workshop Task and Agenda »
In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop Get This Book
×
 In Vitro–Derived Human Gametes as a Reproductive Technology: Scientific, Ethical, and Regulatory Implications: Proceedings of a Workshop
Buy Paperback | $23.00 Buy Ebook | $18.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Current assisted reproductive technologies such as in vitro fertilization (IVF) do not enable all prospective parents to have genetically related children. The National Academies Board on Health Sciences Policy hosted a workshop in April 2023 to explore the development of in vitro-derived human eggs and sperm from pluripotent stem cells through a process known as in vitro gametogenesis (IVG). Speakers emphasized the impacts of the potential biotechnology on research and reproductive medicine should clinical IVG ever be approved, along with the many social, ethical, legal, and technical considerations its development raises. This proceedings document summarizes workshop discussions.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!