National Academies Press: OpenBook
Page i
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2023. Ruggedness of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/27421.
×
Page R1
Page ii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2023. Ruggedness of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/27421.
×
Page R2
Page iii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2023. Ruggedness of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/27421.
×
Page R3
Page iv
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2023. Ruggedness of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/27421.
×
Page R4
Page v
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2023. Ruggedness of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/27421.
×
Page R5
Page vi
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2023. Ruggedness of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/27421.
×
Page R6
Page vii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2023. Ruggedness of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/27421.
×
Page R7
Page viii
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2023. Ruggedness of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/27421.
×
Page R8
Page ix
Suggested Citation:"Front Matter." National Academies of Sciences, Engineering, and Medicine. 2023. Ruggedness of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures. Washington, DC: The National Academies Press. doi: 10.17226/27421.
×
Page R9

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

NCHRP W e b - O n l y D o c u m e n t 3 8 9 R u g g e d n e s s o f L a b o r a t o r y T e s t s t o A s s e s s C r a c k i n g R e s i s t a n c e o f A s p h a l t M i x t u r e s Fuj ie Zhou Sheng Hu Dave Newcomb Texas A& M Transportation Institute The Texas A& M University System College Station, TX C o n d u c t o f R e s e a r c h R e p o r t f o r N C H R P P r o j e c t 0 9 - 5 7 A – P h a s e I I I S u b m i t t e d O c t o b e r 2 0 2 2 © 2 0 2 3 b y t h e N a t i o n a l A c a d e m y o f S c i e n c e s . N a t i o n a l A c a d e m i e s o f S c i e n c e s , E n g i n e e r i n g , a n d M e d i c i n e a n d t h e g r a p h i c a l l o g o a r e t r a d e m a r k s o f t h e N a t i o n a l A c a d e m y o f S c i e n c e s . A l l r i g h t s r e s e r v e d . NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM S y s t e m a t i c , w e l l - d e s i g n e d , a n d i m p l e m e n t a b l e r e s e a r c h i s t h e m o s t e f f e c t i v e w a y t o s o l v e m a n y p r o b l e m s f a c i n g s t a t e d e p a r t m e n t s o f t r a n s p o r t a t i o n ( D O T s ) a d m i n i s t r a t o r s a n d e n g i n e e r s . O f t e n , h i g h w a y p r o b l e m s a r e o f l o c a l o r r e g i o n a l i n t e r e s t a n d c a n b e s t b e s t u d i e d b y s t a t e D O T s i n d i v i d u a l l y o r i n c o o p e r a t i o n w i t h t h e i r s t a t e u n i v e r s i t i e s a n d o t h e r s . H o w e v e r , t h e a c c e l e r a t i n g g r o w t h o f h i g h w a y t r a n s p o r t a t i o n r e s u l t s i n i n c r e a s i n g l y c o m p l e x p r o b l e m s o f w i d e i n t e r e s t t o h i g h w a y a u t h o r i t i e s . T h e s e p r o b l e m s a r e b e s t s t u d i e d t h r o u g h a c o o r d i n a t e d p r o g r a m o f c o o p e r a t i v e r e s e a r c h . R e c o g n i z i n g t h i s n e e d , t h e l e a d e r s h i p o f t h e A m e r i c a n A s s o c i a t i o n o f S t a t e H i g h w a y a n d T r a n s p o r t a t i o n O f f i c i a l s ( A A S H T O ) i n 1 9 6 2 i n i t i a t e d a n o b j e c t i v e n a t i o n a l h i g h w a y r e s e a r c h p r o g r a m u s i n g m o d e r n s c i e n t i f i c t e c h n i q u e s — t h e N a t i o n a l C o o p e r a t i v e H i g h w a y R e s e a r c h P r o g r a m ( N C H R P ) . N C H R P i s s u p p o r t e d o n a c o n t i n u i n g b a s i s b y f u n d s f r o m p a r t i c i p a t i n g m e m b e r s t a t e s o f A A S H T O a n d r e c e i v e s t h e f u l l c o o p e r a t i o n a n d s u p p o r t o f t h e F e d e r a l H i g h w a y A d m i n i s t r a t i o n ( F H W A ) , U n i t e d S t a t e s D e p a r t m e n t o f T r a n s p o r t a t i o n , u n d e r A g r e e m e n t N o . 6 9 3 J J 3 1 9 5 0 0 0 3 . COPYRIGHT INFORMATION A u t h o r s h e r e i n a r e r e s p o n s i b l e f o r t h e a u t h e n t i c i t y o f t h e i r m a t e r i a l s a n d f o r o b t a i n i n g w r i t t e n p e r m i s s i o n s f r o m p u b l i s h e r s o r p e r s o n s w h o o w n t h e c o p y r i g h t t o a n y p r e v i o u s l y p u b l i s h e d o r c o p y r i g h t e d m a t e r i a l u s e d h e r e i n . C o o p e r a t i v e R e s e a r c h P r o g r a m s ( C R P ) g r a n t s p e r m i s s i o n t o r e p r o d u c e m a t e r i a l i n t h i s p u b l i c a t i o n f o r c l a s s r o o m a n d n o t - f o r - p r o f i t p u r p o s e s . P e r m i s s i o n i s g i v e n w i t h t h e u n d e r s t a n d i n g t h a t n o n e o f t h e m a t e r i a l w i l l b e u s e d t o i m p l y T R B , A A S H T O , A P T A , F A A , F H W A , F T A , G H S A , o r N H T S A e n d o r s e m e n t o f a p a r t i c u l a r p r o d u c t , m e t h o d , o r p r a c t i c e . I t i s e x p e c t e d t h a t t h o s e r e p r o d u c i n g t h e m a t e r i a l i n t h i s d o c u m e n t f o r e d u c a t i o n a l a n d n o t - f o r - p r o f i t u s e s w i l l g i v e a p p r o p r i a t e a c k n o w l e d g m e n t o f t h e s o u r c e o f a n y r e p r i n t e d o r r e p r o d u c e d m a t e r i a l . F o r o t h e r u s e s o f t h e m a t e r i a l , r e q u e s t p e r m i s s i o n f r o m C R P . DISCLAIMER T h e o p i n i o n s a n d c o n c l u s i o n s e x p r e s s e d o r i m p l i e d i n t h i s r e p o r t a r e t h o s e o f t h e r e s e a r c h e r s w h o p e r f o r m e d t h e r e s e a r c h . T h e y a r e n o t n e c e s s a r i l y t h o s e o f t h e T r a n s p o r t a t i o n R e s e a r c h B o a r d ; t h e N a t i o n a l A c a d e m i e s o f S c i e n c e s , E n g i n e e r i n g , a n d M e d i c i n e ; t h e F H W A ; o r t h e p r o g r a m s p o n s o r s . T h e T r a n s p o r t a t i o n R e s e a r c h B o a r d d o e s n o t d e v e l o p , i s s u e , o r p u b l i s h s t a n d a r d s o r s p e c i f i c a t i o n s . T h e T r a n s p o r t a t i o n R e s e a r c h B o a r d m a n a g e s a p p l i e d r e s e a r c h p r o j e c t s w h i c h p r o v i d e t h e s c i e n t i f i c f o u n d a t i o n t h a t m a y b e u s e d b y T r a n s p o r t a t i o n R e s e a r c h B o a r d s p o n s o r s , i n d u s t r y a s s o c i a t i o n s , o r o t h e r o r g a n i z a t i o n s a s t h e b a s i s f o r r e v i s e d p r a c t i c e s , p r o c e d u r e s , o r s p e c i f i c a t i o n s . T h e T r a n s p o r t a t i o n R e s e a r c h B o a r d , t h e N a t i o n a l A c a d e m i e s , a n d t h e s p o n s o r s o f t h e N a t i o n a l C o o p e r a t i v e H i g h w a y R e s e a r c h P r o g r a m d o n o t e n d o r s e p r o d u c t s o r m a n u f a c t u r e r s . T r a d e o r m a n u f a c t u r e r s ’ n a m e s a p p e a r h e r e i n s o l e l y b e c a u s e t h e y a r e c o n s i d e r e d e s s e n t i a l t o t h e o b j e c t o f t h e r e p o r t . T h e i n f o r m a t i o n c o n t a i n e d i n t h i s d o c u m e n t w a s t a k e n d i r e c t l y f r o m t h e s u b m i s s i o n o f t h e a u t h o r ( s ) . T h i s m a t e r i a l h a s n o t b e e n e d i t e d b y T R B .

e National Academy of Sciences was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, non- governmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for outstanding contributions to research. Dr. Marcia McNutt is president. e National Academy of Engineering was established in 1964 under the charter of the National Academy of Sciences to bring the practices of engineering to advising the nation. Members are elected by their peers for extraordinary contributions to engineering. Dr. John L. Anderson is president. e National Academy of Medicine (formerly the Institute of Medicine) was established in 1970 under the charter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. Dr. Victor J. Dzau is president. e three Academies work together as the National Academies of Sciences, Engineering, and Medicine to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. e National Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine. Learn more about the National Academies of Sciences, Engineering, and Medicine at www.nationalacademies.org. e Transportation Research Board is one of seven major program divisions of the National Academies of Sciences, Engineering, and Medicine. e mission of the Transportation Research Board is to mobilize expertise, experience, and knowledge to anticipate and solve complex transportation-related challenges. e Board’s varied activities annually engage about 8,500 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. e program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation. Learn more about the Transportation Research Board at www.TRB.org.

C O O P E R A T I V E R E S E A R C H P R O G R A M S CRP STAFF FOR NCHRP WEB-ONLY DOCUMENT 389 Waseem Dekelbab, Deputy Director, Cooperative Research Programs, and Manager, National Cooperative Highway Research Program Edward T. Harrigan, Senior Program Officer (retired) Roberto Barcena, Senior Program Officer Anthony P. Avery, Senior Program Assistant Natalie Barnes, Director of Publications Heather DiAngelis, Associate Director of Publications Jennifer J. Weeks, Publishing Projects Manager NCHRP PROJECT 09-57A PANEL Field of Materials and Construction—Area of Bituminous Materials Jeff S. Uhlmeyer, QES Pavements, Olympia, WA (Chair) Thomas A. Bennert, Rutgers University, Piscataway, NJ Peter C. Capon, Rieth-Riley Construction Company, Inc., Bristol, IN Gisel Carrasco, Texas Department of Transportation, Austin, TX Dale Steven Decker, Dale S. Decker, LLC, Eagle, CO Ervin L. Dukatz, Jr., Flyereld Consulting, LLC, La Crosse, WI Hyung Suk Lee, Applied Research Associates, Inc., Champaign, IL Murari Man Pradhan, Arizona Department of Transportation, Phoenix, AZ Richard B. Duval, FHWA Liaison Dave J. Mensching, FHWA Liaison J. Richard Willis, National Asphalt Pavement Association Liaison AUTHOR ACKNOWLEDGMENTS The research reported herein was performed under NCHRP Project 09-57A— Phase III by the Texas A&M Transportation Institute (TTI), a member of The Texas A&M University System. Dr. Fujie Zhou, senior research engineer at TTI, served as the principal investigator. The other authors of this report are Dr. Sheng Hu, associate research engineer, and Dr. David Newcomb, senior research engineer at TTI. NCHRP Project 09-57A—Phase III assessed the availability of materials and performance data of the field sections identified by NCHRP 09-57. The research team thanks the Long-Term Pavement Performance team and Materials Reference Library team of the Federal Highway Administration for their time and efforts in support of the assessment.

iv CONTENTS List of Figures ............................................................................................................................... vi List of Tables .............................................................................................................................. viii Summary ........................................................................................................................................ 1 Chapter 1. Introduction ............................................................................................................... 2 Background .............................................................................................................................. 2 Research Objective .................................................................................................................. 2 Report Organization ................................................................................................................. 3 Chapter 2. Literature Review ...................................................................................................... 4 Introduction .............................................................................................................................. 4 Field Validation of IDEAL-CT ............................................................................................... 4 IDEAL-CT for Fatigue Cracking ........................................................................................ 4 IDEAL-CT for Reflective Cracking ................................................................................... 7 IDEAL-CT for Top-Down Cracking ................................................................................ 10 IDEAL-CT for Thermal Cracking .................................................................................... 15 Summary of IDEAL-CT Validation ................................................................................. 17 Field Validation of DCT ........................................................................................................ 18 National Pooled Fund Study: DCT for Thermal Cracking ............................................... 18 Cracking Performance Database from Four States: DCT for Thermal Cracking ............. 22 Illinois Tollway Test Sections: DCT for Multiple Modes of Cracking ............................ 26 FHWA ALF Sections: DCT for Fatigue Cracking ........................................................... 34 Summary of DCT Validation ............................................................................................ 34 Field Validation of IFIT ......................................................................................................... 35 FHWA ALF Sections: IFIT for Fatigue Cracking ............................................................ 35 Illinois Asphalt Overlay Sections: IFIT for Reflective Cracking ..................................... 36 NCAT Test Track Sections: IFIT for Top-Down Cracking.............................................. 38 Missouri Test Sections: IFIT for Multi-Mode Cracking................................................... 40 Summary of IFIT Validation ............................................................................................ 44 Field Validation of OT ........................................................................................................... 45 FHWA ALF Sections: OT for Fatigue Cracking .............................................................. 45 NCAT Test Track Sections: OT for Top-Down Cracking................................................ 47 Texas In-Service Road Sections: OT for Fatigue Cracking.............................................. 48 Summary of OT Validation .............................................................................................. 52 Summary and Conclusions .................................................................................................... 53 Chapter 3. Assessment of the Availability of Materials and Performance Data of Field Sections Identified in NCHRP 09-57 ............................................................................. 55 Introduction ............................................................................................................................ 55 Assessment of the Availability of Materials and Performance Data of 2008 MnROAD Field Sections ............................................................................................................. 55 Availability of Mix Design Information of MnROAD Field Sections ............................. 55 Availability of Asphalt Materials of the 2008 MnROAD Field Sections ......................... 56 Availability of Performance Data of the 2008 MnROAD Field Sections ........................ 57 Availability of Other Necessary Information of the 2008 MnROAD Field Sections ....... 59 Overall Assessment of MnROAD Field Sections ............................................................. 63

v Assessment of the Availability of Materials and Performance Data of LTPP Field Sections ...................................................................................................................... 65 Availability of Asphalt Mix Design Information for the 40 LTPP Field Sections ........... 65 Availability of Asphalt Materials for the 40 LTPP Field Sections ................................... 69 Availability of Performance Data of the 40 LTPP Field Sections .................................... 70 Availability of Other Necessary Information for the 40 LTPP Field Sections ................. 72 Overall Assessment of the 40 LTPP Field Sections ......................................................... 74 Summary and Conclusions .................................................................................................... 76 Chapter 4. Identification of Alternative Field Sections and Recommendations for Validating Cracking Tests .............................................................................................. 77 Introduction ............................................................................................................................ 77 Alternative Field Sections with SPS10 .................................................................................. 77 Recommendations for Field Validation of Laboratory Cracking Tests ................................. 81 Recommended Candidate Field Sections.......................................................................... 81 Recommended Candidate Laboratory Cracking Tests ..................................................... 81 Recommended Steps for Validating Candidate Laboratory Cracking Tests .................... 81 Summary and Conclusions .................................................................................................... 82 Chapter 5. Conclusions and Recommendations ....................................................................... 87 Conclusions............................................................................................................................ 87 Recommendations .................................................................................................................. 87 Future Research ..................................................................................................................... 88 References .................................................................................................................................... 89 Appendix A: Performance Data of the Nine MnRoad Field Sections .................................. A-1 Appendix B: Pavement Structure of the Nine MnRoad Field Sections ............................... B-1 Appendix C: Performance Data of the 40 LTPP Field Sections ........................................... C-1 Appendix D: Pavement Structure of the 40 LTPP Field Sections ........................................ D-1 Appendix E: Climate Data of the 40 LTPP Field Sections ................................................... E-1 Appendix F: Traffic Data of the 40 LTPP Field Sections ......................................................F-1 Appendix G: Performance Data of the Alternative SPS10 Field Sections .......................... G-1 Appendix H: Pavement Structure of the Alternative SPS10 Field Sections........................ H-1 Appendix I: Climate Data of the Alternative SPS10 Field Sections ...................................... I-1 Appendix J: Traffic Data of the Alternative SPS10 Field Sections ....................................... J-1

vi LIST OF FIGURES Figure 1. Correlation between IDEAL-CT and FHWA ALF Full-Scale Fatigue Cracking (Zhou et al. 2019). ................................................................................................................... 6 Figure 2. IDEAL-CT Results of SH 15 Plant Mixes (Zhou et al. 2019). ....................................... 7 Figure 3. Fatigue Cracking Development Observed on SH 15, Texas (Zhou et al. 2019). ............ 7 Figure 4. Correlation between IDEAL-CT and LTPP SPS10 Reflective Cracking Rate (Zhou 2019). ........................................................................................................................... 9 Figure 5. Reflective Cracking Development Observed on US 62, Texas (Zhou et al. 2019). .................................................................................................................................... 10 Figure 6. IDEAL-CT Results of US 62 Mixes (Zhou et al. 2019)................................................ 10 Figure 7. Cross-Section of Cracking Group Test Sections on the NCAT Test Track (West et al. 2021). ................................................................................................................. 11 Figure 8. Chart of Statistical Comparisons of CTIndex among Mixtures with Performance Groupings (West et al. 2021). ............................................................................................... 14 Figure 9. Correlations of CTIndex with Field Performance for the Lab and Plant Samples Subject to Different Aging Conditions (West et al. 2021). .................................................... 14 Figure 10. Thermal Cracking Development History for Cells 20, 21, and 22: (a) Driving Lane, and (b) Passing Lane (Zhou et al. 2019). .................................................................... 16 Figure 11. IDEAL-CT Results of MnROAD Cells 20, 21, and 22 (Zhou et al. 2019). ................. 17 Figure 12. Correlations of DCT Fracture Energy with Transverse Cracking Length (Marasteanu et al. 2007). ....................................................................................................... 20 Figure 13. Updated Correlations of DCT Fracture Energy with Transverse Cracking (Marasteanu et al. 2012). ....................................................................................................... 21 Figure 14. DCT Fracture Energy vs. Field Transverse Cracking (Buttlar et al. 2019). ................ 26 Figure 15. DCT Fracture Energy Result of Plant Mixes (Buttlar et al. 2021). ............................. 31 Figure 16. DCT Fracture Energy Result of Field Cores, Top Lift (Buttlar et al. 2021). .............. 31 Figure 17. DCT Fracture Energy Result of Field Cores, Bottom vs. Top Lift (Buttlar et al. 2021). .................................................................................................................................... 31 Figure 18. Steps in DCT Threshold Development (Buttlar et al. 2021). ...................................... 32 Figure 19. Flowchart to Develop DCT Threshold for SMA Friction Surface Mixtures (Buttlar et al. 2021). .............................................................................................................. 33 Figure 20. Relationship between DCT Fracture Energy and ALF Cycles (Ozer et al. 2018). .................................................................................................................................... 34 Figure 21. Relationship between FI and ALF Passes (Ozer et al. 2018). ..................................... 36 Figure 22. Relationship between FI of Field Cores and ALF Passes (Bennert et al. 2019). ........ 36 Figure 23. Relationship between FI and Transverse (Reflective) Cracking (Al-Qadi et al. 2017). .................................................................................................................................... 38 Figure 24. Chart of Statistical Comparisons of FI among Mixtures with Performance Groupings (West et al. 2021). ............................................................................................... 40 Figure 25. Correlations of FI with Field Performance for the Lab and Plant Samples Subject to Different Aging Conditions (West et al. 2021). ................................................... 40 Figure 26. FI vs. PASER Deterioration Rate and Aging Years (Buttlar et al. 2020). .................. 42 Figure 27. Correlation between FI and PASER Deterioration Rate (Buttlar et al. 2020). ............ 43 Figure 28. Relationship between OT and FHWA ALF Passes (Ozer et al. 2018). ...................... 46 Figure 29. Relationship between OT (Field Cores) and ALF Cycles (Bennert et al. 2019). ........ 46

vii Figure 30. Chart of Statistical Comparisons of OT β among Mixtures with Performance Groupings (West et al. 2021). ............................................................................................... 48 Figure 31. Correlations of OT β with Field Performance for the Lab and Plant Samples Subject to Different Aging Conditions (West et al. 2021). ................................................... 48 Figure 32. Field Performance vs. OT Results: (a) Number of Cycles and (b) Crack Progression Rate β (Garcia et al. 2017). ............................................................................... 52 Figure 33. FHWA LTPP InfoPave™: Non-LTPP Test Sections. .................................................. 58 Figure 34. Cell 15 of MnROAD Test Section: Cracking Data from the Driving Lane. ............... 59 Figure 35. Fatigue Cracking Development of LTPP Section 28-0805. ........................................ 71 Figure 36. Top-Down Longitudinal Cracking Development of LTPP Section 35-0903. ............. 71 Figure 37. Thermal Transverse Cracking Development of LTPP Section 04-A901. ................... 72 Figure 38. Cracking Development of SPS10 Section 12-AA01. .................................................. 80

viii LIST OF TABLES Table 1. FHWA ALF Experimental Design (Zhou et al. 2019). .................................................... 5 Table 2. Asphalt Mixtures and Reflective Cracking Performance of LTPP SPS10 Test Sections on SH 66, Oklahoma (Zhou 2019). .......................................................................... 8 Table 3. Surface Mixtures Used in the Texas US 62 Sections. ...................................................... 9 Table 4. Mixtures and Top-Down Cracking Performance of NCAT Test Sections (West et al. 2021). ........................................................................................................................... 12 Table 5. IDEAL-CT Results (CTIndex) of NCAT Test Sections (West et al. 2021). ..................... 13 Table 6. Summary of IDEAL-CT Validation Results. ................................................................. 18 Table 7. Test Sections Recommended by the National Pooled Fund Study—Phase I (Marasteanu et al. 2007)........................................................................................................ 19 Table 8. LTPP Low Pavement Temperatures at 50 Percent Reliability Level of the Test Sections (Marasteanu et al. 2007). ........................................................................................ 19 Table 9. Mixture Binder Types, DCT Fracture Energies, and Field Transverse Cracking Results of the Test Sections (Marasteanu et al. 2007). ......................................................... 20 Table 10. Recommended DCT Fracture Energy Thresholds (Marasteanu et al. 2012). ............... 21 Table 11. Description of Field Test Sections (Buttlar et al. 2019). .............................................. 22 Table 12. DCT Fracture Energy vs. Transverse Cracking Length of Test Sections (Buttlar et al. 2019). ........................................................................................................................... 24 Table 13. Illinois Tollway Sections Overlaid in 2018 (Buttlar et al. 2021).................................. 27 Table 14. Existing Sections for Coring (Buttlar et al. 2021). ....................................................... 28 Table 15. Asphalt Mixture Information of Plant Mix Overlaid in 2018 (Buttlar et al. 2021). .................................................................................................................................... 29 Table 16. Asphalt Mixture Information of Field Cores, Top Lift (Buttlar et al. 2021). ............... 30 Table 17. Asphalt Mixture Information of Field Cores, Bottom Lift (Buttlar et al. 2021)........... 30 Table 18. DCT Thresholds at −12℃ for Illinois Tollway Mixtures (Buttlar et al. 2021). ........... 33 Table 19. Summary of DCT Validation Results. .......................................................................... 35 Table 20. Asphalt Mixtures of Illinois Overlay Sections (Al-Qadi et al. 2017). .......................... 37 Table 21. IFIT Results (FI) of NCAT Test Sections (West et al. 2021). ...................................... 39 Table 22. Field Cracking Performance of Missouri Test Sections (Buttlar et al. 2020)............... 41 Table 23. Binder and RAP/RAS Information of Missouri Test Sections (Buttlar et al. 2020). .................................................................................................................................... 41 Table 24. IFIT Results of Missouri Test Sections (Buttlar et al. 2020). ....................................... 42 Table 25. Parameters Used for the FI Threshold Development (Buttlar et al. 2020). .................. 43 Table 26. Recommended FI Thresholds for Mainline and Shoulder, non-SMA Mixtures (Buttlar et al. 2020). .............................................................................................................. 44 Table 27. Summary of IFIT Validation Results............................................................................ 44 Table 28. OT Results (β) of NCAT Test Sections (West et al. 2021). ......................................... 47 Table 29. Texas Field Test Sections (Garcia et al. 2017). ............................................................ 50 Table 30. Traffic and Mixture Information of Texas Sections (Garcia et al. 2017). .................... 51 Table 31. Summary of OT Validation. ......................................................................................... 53 Table 32. Summary of Validation Results of the Four Cracking Tests. ....................................... 54 Table 33. Aggregates and RAP Used in Cells 15–18 and 24. ...................................................... 56 Table 34. Aggregates and RAP Used in Cells 20 and 21. ............................................................ 56 Table 35. Aggregates Used in Cells 83 and 84. ............................................................................ 56

ix Table 36. Raw Materials’ Availability of the 2008 MnROAD: Cells 15–18, 20, 21, and 24. .......................................................................................................................................... 57 Table 37. Raw Materials’ Availability of the 2008 MnROAD: Cells 83 and 84. ........................ 57 Table 38. Plant Mixtures’ Availability of the 2008 MnROAD Field Sections. ........................... 57 Table 39. Description of Items Included in MnROAD Weather Database. ................................. 60 Table 40. Pavement Structural Information from MnROAD Field Sections: Cells 15–18. ......... 61 Table 41. Traffic Data from MnROAD Field Sections: Cells 15–18 and 20–21. ........................ 62 Table 42. Traffic Data of MnROAD Field Section: Cell 24. ........................................................ 62 Table 43. Summary of Availability of Materials, Pavement Performance, and Other Information from MnROAD Field Sections. ........................................................................ 64 Table 44. LTPP Field Sections for Validating Thermal, Fatigue, and Top-Down Cracking. ............................................................................................................................... 65 Table 45. Asphalt Mix Design Information of the 40 LTPP Field Sections................................. 66 Table 46. Mix Compositions of the 40 LTPP Field Sections. ...................................................... 67 Table 47. Aggregate Gradations of the Asphalt Mixes Used on the 40 LTPP Field Sections. ................................................................................................................................ 68 Table 48. Materials Availability of the 40 LTPP Field Sections. ................................................. 69 Table 49. Pavement Structure of LTPP Section 28-0805. ............................................................ 72 Table 50. Climate Information of LTPP Section 35-0903. ........................................................... 73 Table 51. Traffic Information of LTPP Section 04-A901. ........................................................... 73 Table 52. Overall Assessment of the 40 LTPP Field Sections. .................................................... 75 Table 53. Alternative Field Test Sections Identified. ................................................................... 78 Table 54. Materials Availability of Alternative Field Test Sections with SPS10. ....................... 79 Table 55. Final 48 Candidate LTPP Field Sections for Validating Cracking Tests. .................... 83 Table 56. Candidate Field Sections for Validating Traffic-Related Cracking Tests. ................... 84 Table 57. Candidate Field Sections for Validating Thermal Cracking Tests. .............................. 85 Table 58. Three Levels of Cracking Tests for Field Validation. .................................................. 86

Next: Summary »
Ruggedness of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Cracking and durability issues of asphalt pavements have been primary concerns of departments of transportation the last two decades. Several modes of asphalt pavement cracking exist—fatigue, top-down, reflective, and thermal—and all are influenced by thermal loading, traffic loading, or a combination of both.

NCHRP Web-Only Document 389: Ruggedness of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures, from TRB's National Cooperative Highway Research Program, documents existing field validation efforts for these four modes of cracking.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!