National Academies Press: OpenBook

Effects of Past Global Change on Life (1995)

Chapter: CAUSE OF MASS EXTINCTION IN DEEP SEA

« Previous: ASSOCIATION BETWEEN MASS EXTINCTION AND OCEANIC WARMING
Suggested Citation:"CAUSE OF MASS EXTINCTION IN DEEP SEA." National Research Council. 1995. Effects of Past Global Change on Life. Washington, DC: The National Academies Press. doi: 10.17226/4762.
×
Page 101

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

TERMINAL PALEOCENE MASS EXTINCTION IN THE DEEP SEA: ASSOCIATION WITH GLOBAL WARMING 101 about 35% of the Late Paleocene species at Site 690B became completely extinct. Figure 5.3 Changes in oxygen and carbon isotope composition of the planktonic foraminifers A. praepentacamerata and Subbotina patagonica, and in simple diversity of benthic foraminiferal assemblages at high stratigraphic resolution over the latest Paleocene mass extinction. The abrupt decrease in diversity reflects the mass extinction. Arrow at left indicates the last appearance of Stensioina beccariiformis, a distinctive foraminifer of the Paleocene. (Figure modified after Kennett and Stott, 1991.) CAUSE OF MASS EXTINCTION IN DEEP SEA It is clear that the mass extinction was restricted to the deep-sea biota deeper than the continental shelf or the thermocline. The lack of major extinctions in the oceanic planktonic and shallow water benthic communities strongly suggests that the extinctions were not caused by an extraterrestrial impact with the Earth, as has been implicated for the terminal Cretaceous extinctions (Alvarez et al., 1980). An intrinsic oceanic cause is considered more likely (Kennett and Stott, 1991). The process that caused the mass extinction must have had the capacity to strongly affect the vast volume of the deep ocean in an interval of less than 3000 yr. Indeed, the extinctions may well have taken place at the rate of replacement time of the oceans, currently about 1000 yr, although this was possibly slightly slower during the early Paleogene. The superposition of the abrupt, negative δ13C and δ18O shifts upon similar, more gradual trends during the Late Paleocene (-60 Ma) to Early Eocene (-55 Ma) (Figure 5.1) suggests the involvement of a climatic threshold event similar to the oxygen isotopic shift near the Eocene-Oligocene boundary, although in an opposite sense (Kennett and Shackleton, 1976). The speed and magnitude of the associated temperature increase imply global warming with strong positive feedback mechanisms, not just warming restricted to the oceans. Indeed, isotopic fluctuations in the marine carbonate record are closely tracked by the terrestrial records provided by paleosol carbonates and mammalian tooth enamel (Koch et al., 1992). Three main hypotheses have been proposed to account for this mass extinction. These are (1) the rapid warming of deep waters (Miller et al., 1987); (2) an oxygen deficiency in deep waters resulting from the sudden warming and change in deep- sea circulation (Kennett and Barker, 1990; Kennett and Stott, 1990a; Thomas, 1990, 1992; Katz and Miller, 1991); and (3) a sharp drop in surface ocean biological productivity that reduced the supply of organic matter, the food source of deep-sea benthic organisms, initiating a cascading trend of food chain collapse (Shackleton et al., 1985; Shackleton, 1986; Rea et al., 1990; Stott, 1992). If this had occurred, significant changes in oceanic plankton would be expected as well. There is no suggestion that this happened in the carbonate groups. It is also likely that reductions in abundance would have occurred in the infaunal deep-sea benthic foraminiferal assemblages. Indeed, Thomas (1990) showed that during the mass extinction, an increase occurred in the abundance of small infaunal species. Apparently these types of benthic foraminifera occur where there is availability of sedimentary organic carbon. Therefore, it is more likely that a greater

Next: CAUSE OF OCEANOGRAPHIC AND CLIMATE CHANGE »
Effects of Past Global Change on Life Get This Book
×
Buy Hardback | $65.00 Buy Ebook | $49.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

What can we expect as global change progresses? Will there be thresholds that trigger sudden shifts in environmental conditions—or that cause catastrophic destruction of life?

Effects of Past Global Change on Life explores what earth scientists are learning about the impact of large-scale environmental changes on ancient life—and how these findings may help us resolve today's environmental controversies.

Leading authorities discuss historical climate trends and what can be learned from the mass extinctions and other critical periods about the rise and fall of plant and animal species in response to global change. The volume develops a picture of how environmental change has closed some evolutionary doors while opening others—including profound effects on the early members of the human family.

An expert panel offers specific recommendations on expanding research and improving investigative tools—and targets historical periods and geological and biological patterns with the most promise of shedding light on future developments.

This readable and informative book will be of special interest to professionals in the earth sciences and the environmental community as well as concerned policymakers.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!