National Academies Press: OpenBook
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

Contaminated Sediments in Ports and Waterways

Cleanup Strategies and Technologies

Committee on Contaminated Marine Sediments

Marine Board

Commission on Engineering and Technical Systems

National Research Council

NATIONAL ACADEMY PRESS
Washington, D.C.
1997

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

NATIONAL ACADEMY PRESS
2101 Constitution Avenue, N.W. Washington, DC 20418

NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the panel responsible for the report were chosen for their special competencies and with regard for appropriate balance.

This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee consisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.

The program described in this report is supported by Cooperative Agreement No. DTMA91-94-G-00003 between the Maritime Administration of the U.S. Department of Transportation and the National Academy of Sciences. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the organizations or agencies that provided support for the project.

Library of Congress Cataloging-in-Publication Data

Contaminated sediments in ports and waterways : clean-up strategies and technologies / Committee on Contaminated Marine Sediments, Marine Board, Commission on Engineering and Technical Systems, National Research Council.

p. cm.

Includes bibliographical references and index.

ISBN 0-309-05493-1 (alk. paper)

1. Contaminated sediments—Management. 2. Marine sediments. 3. Harbors. 4. Waterways. I. National Research Council (U.S.). Committee on Contaminated Marine Sediments.

TD878.C665 1997

363.739’4—dc21 96-52050

CIP

Copyright © 1997 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

COMMITTEE ON CONTAMINATED MARINE SEDIMENTS

HENRY J. BOKUNIEWICZ, co-chair,

State University of New York at Stony Brook

KENNETH S. KAMLET, co-chair,

Linowes and Blocher, Silver Spring, Maryland

W. FRANK BOHLEN,

University of Connecticut, Groton

J. FREDERICK GRASSLE,

Rutgers University, New Brunswick, New Jersey

DONALD F. HAYES,

University of Utah, Salt Lake City

JAMES R. HUNT,

University of California, Berkeley

DWAYNE G. LEE,

Parsons Infrastructure and Technology Group, Pasadena, California

KENNETH E. MCCONNELL,

University of Maryland, College Park

SPYROS P. PAVLOU,

URS Greiner, Inc., Seattle. Washington

RICHARD K. PEDDICORD,

EA Engineering, Science, and Technology, Hunt Valley, Maryland

PETER SHELLEY,

Conservation Law Foundation, Inc., Boston, Massachusetts

RICHARD SOBEL,

Clean Sites, Inc., Alexandria. Virginia

LOUIS J. THIBODEAUX,

Louisiana State University, Baton Rouge

JAMES G. WENZEL,

NAE, Marine Development Associates, Inc., Saratoga, California

LILY Y. YOUNG,

Rutgers University, New Brunswick, New Jersey

Liaison Representatives

SABINE APITZ,

Naval Command, Control, and Ocean Surveillance Center, San Diego, California

CHARLES C. CALHOUN,

U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

MILES CROOM,

National Marine Fisheries Service, Silver Spring, Maryland

ROBERT ENGLER,

U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi

KENNETH HOOD,

Environmental Protection Agency, Washington, D.C.

EVIE KALKETENIDOU,

Maritime Administration. Washington, D.C.

DANIEL LEUBECKER,

Maritime Administration, Washington, D.C.

FRANK MANHEIM,

U.S. Geological Survey, Woods Hole, Massachusetts

JANET MORTON,

U.S. Geological Survey, Reston, Virginia

ANNA PALMISANO,

Office of Naval Research, Arlington, Virginia

CARL SOBREMISANA,

Maritime Administration, Washington, D.C.

MARK SPRENGER,

Environmental Protection Agency, Edison, New Jersey

CRAIG VOGT,

Environmental Protection Agency, Washington, D.C.

LARRY ZARAGOZA,

Environmental Protection Agency, Washington, D.C.

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

Staff

JOSEPH L. ZELIBOR, JR., Study Director

KRISTIN CHURCHILL, Program Associate

DELPHINE D. GLAZE, Administrative Assistant (since June 1995)

RICKY PAYNE, Administrative Assistant

SHARON RUSSELL, Administrative Assistant

LAURA OST, Editor

WYETHA B TURNEY, Production Assistant

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

MARINE BOARD

JAMES M. COLEMAN, NAE, chair,

Louisiana State University, Baton Rouge

JERRY A. ASPLAND, vice-chair,

California Maritime Academy, Vallejo

BERNHARD J. ABRAHAMSSON,

University of Wisconsin, Superior

BROCK B. BERNSTEIN,

EcoAnalysis, Ojai, California

LILLIAN C. BORRONE,

NAE, Port Authority of New York and New Jersey

SARAH CHASIS,

Natural Resources Defense Council, New York

CHRYSSOSTOMOS CHRYSSOSTOMIDIS,

Massachusetts Institute of Technology, Cambridge

BILIANA CICIN-SAIN,

University of Delaware, Newark

BILLY L. EDGE,

Texas A&M University, College Station

JOHN W. FARRINGTON,

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

MARTHA GRABOWSKI,

LeMoyne College and Rensselaer Polytechnic Institute, Cazenovia, New York

JAMES D. MURFF,

Exxon Production Research Company, Houston, Texas

M. ELISABETH PATÉ-CORNELL,

NAE, Stanford University, Stanford, California

DONALD W. PRITCHARD,

NAE, State University of New York at Stony Brook and Severna Park, Maryland

STEVEN T. SCALZO,

Foss Maritime Company, Seattle, Washington

MALCOLM L. SPAULDING,

University of Rhode Island, Narragansett

KARL K. TUREKIAN,

NAS, Yale University, New Haven, Connecticut

ROD VULOVIC,

Sea-Land Service, Charlotte, North Carolina

E G. "SKIP" WARD,

Shell Offshore, Houston, Texas

Staff

CHARLES A BOOKMAN, Director

DONALD W. PERKINS, Associate Director

DORIS C. HOLMES, Staff Associate

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. William A. Wulf is interim president of the National Academy of Engineering

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr Bruce M Alberts and Dr. William A. Wulf are chairman and interim vice chairman, respectively, of the National Research Council.

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

Preface

BACKGROUND

Contaminated marine sediments threaten ecosystems, marine resources, and human health. Sediment contamination also can have major economic impacts when controversies over risks and costs of sediment management interfere with the regular and periodic need to dredge major ports Approximately 95 percent (by weight), or 1.4 billion tons, of total U.S. trade passes through dredged ports (Maritime Administration, 1994).

In a previous report, the National Research Council (NRC) (1989) examined the extent and significance of contaminated marine sediments, the state of practice of cleanup and remediation, and management strategies. Although contamination was a serious concern at many sites, the report found that remedial action was rare. Several barriers to remediation were identified, including insufficient data for the comprehensive listing and prioritization of contaminated sites, the lack of widely accepted techniques for identifying and assessing contamination in marine sediments, poor documentation of direct risks to human health and the ecosystem, a dearth of new U.S.-developed dredging technology, and legal limitations on the direct use of foreign technology. The report concluded that periodic reviews of site assessment procedures and cleanup technologies were needed and that management decisions should be based on a comparison of risks, costs, and benefits to both the environment and public health.

The 1989 NRC report enhanced public understanding of the widespread and important, but poorly quantified, problem of contaminated sediments and suggested how it might be addressed. The report assisted several states, the Environmental Protection Agency (EPA), the National Oceanic and Atmospheric

Page viii Cite
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

Administration (NOAA), and the U.S. Army Corps of Engineers (USACE) to address the issue of contaminated sediments in the context of other responsibilities. The U.S. Congress responded by mandating, in the Water Resources Development Act of 1992 (P.L. 102-580), an inventory of contaminated sediment sites.

There are four principal reasons to manage contaminated marine sediments: (1) to identify and clean up threats to public health and wildlife; (2) to meet water and environmental quality standards; (3) to identify and clean up sites that have the potential to cause wider environmental harm; and (4) to ameliorate dredging controversies, particularly concerning the designation of disposal sites for contaminated dredged material. A strategy for achieving these objectives must strike a balance among various risks and among risks, costs, and benefits. Choices that must be made from a wide range of tactics are hampered by substantial uncertainties. The present study is an attempt to assist in the decision making and to address the key management and technology issues associated with the remediation of contaminated marine sediments.

SCOPE OF THE STUDY

After discussions with the EPA, NOAA, USACE, and the U.S. Navy, the NRC convened a committee under the auspices of the Marine Board to assess the nation's capability for remediating contaminated marine sediments and to chart a course for the development of management strategies. The objectives of the study were:

  • to assess the best management practices and current and emerging remediation technologies that have been tried for reducing adverse environmental impacts of contaminated sediments. These approaches include biological, chemical, and physical methods, such as removal technologies, in situ and ex situ treatment, containment (including capping), and natural recovery. Methods were to be reviewed with regard to scientific and engineering feasibility, practicality, cost, efficiency, and effectiveness.
  • to appraise interim control measures for contaminated sediment sites. Interim control methods can be technology-based (e.g., systems that halt the deposition or spread of contaminants) or management-oriented (e.g., controlling other uses of contaminated areas). Interim control measures were to be identified and appraised to determine their applicability to classes of problems, their affordability, and their practicality.
  • to examine how information about risks, costs, and benefits can be used to guide decision making concerning the management of contaminated sediments
  • to assess existing knowledge and to identify research that is critical for enhancing the use of existing technologies in contaminated sediment management and in developing new technologies
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

The committee determined that the effectiveness of contaminated sediment management practices and remediation technologies is influenced by a number of external factors, including laws and regulations, site assessment methods, and efforts to control the source(s) of contamination. Therefore, the committee judged it necessary to include these topics in its assessment, but only to the extent that they support best management practices. Evaluating the significance of natural spatial and temporal variations and identifying "clean" versus "contaminated" sediments are outside the purview of this study. Also, a detailed comparison of the biogeochemical and biological ''availability" of contaminants with a concentration-driven process is beyond the scope of this report. These are, however, important topics that might be addressed elsewhere.

The study was carried out by a carefully constituted committee and staff. Committee members were selected to ensure a wide range of expertise and to include a broad spectrum of viewpoints. Members represented the fields of coastal, geotechnical, and systems engineering; site remediation and bioremediation; port engineering and operations; aquatic toxicology; physical, chemical, geological, and biological oceanography; geology; environmental law and policy; and economics. (Biographies of the committee members are provided in Appendix A.) In keeping with NRC policy, potential biases that might accompany expertise vital to the study were not excluded.

There is no universally accepted definition of a "contaminated" sediment. The 1989 NRC report defined the term to mean a sediment that contains chemical concentrations that pose a known or suspected threat to the environment or human health. The methods for determining if a risk exists are imperfect, so the "acceptable" level of contamination is subject to debate. Regulatory agencies, from the local to the international level, have adopted or are producing both qualitative and quantitative definitions of contaminated sediments. For purposes of this report, the committee assumed that methodological thresholds for determining when contamination exists are available and are used. The committee did not assess the adequacy of standard practices beyond pointing out how they may influence risk management.

STUDY METHOD

The full committee met seven times over a three-year period. The committee reviewed relevant reports and was briefed on federal activities related to contaminated sediments. Information was solicited from expert researchers and practitioners from federal, regional, state, and local government agencies; port authorities; industry; and public interest groups. The committee also visited the U.S. Army Engineer, Waterways Experiment Station (WES) in Vicksburg, Mississippi, where the committee was briefed on research activities, and to the Port of Tacoma in Washington, where the committee solicited expert testimony

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

regarding an ongoing dredging and remediation project. The committee also held workshops on sediment removal and remediation technologies (Thoma, 1994) and on interim control measures.

In addition to the full committee meetings, various committee members developed particular aspects of the report either on their own or by working in small groups. Two committee members prepared a review of the regulatory framework for contaminated sediments (Appendix B), while others developed the case histories of six ongoing or recently completed remediation projects (summarized in Appendix C). Committee members with special expertise prepared primers on the application of two decision-making tools to improve contaminated sediments management (Appendix D and Appendix E).

REPORT ORGANIZATION

The audience for this report includes federal, state, and local government agencies; U.S. Congress and congressional staff; policymakers and project managers; members of the technical community associated with the various aspects of the remediation of contaminated sediments; and other members of the marine or coastal community, including the general public, who have a stake in the decision-making process.

Chapter 1 outlines the forces driving the remediation of contaminated sediments, the risk management process, and the unique challenges to be overcome—all factors that affect the choice of management techniques and technologies. Chapter 2 describes a conceptual management approach to the problem, from the identification of a contaminated site through the long-term monitoring of project results, as well as tools for assessing trade-offs among risks, costs, and benefits that can improve decision making.

In chapters 3, 4, and 5, specific topics are examined with the aim of enhancing the prospects for success. Chapter 3 discusses two important influences on decision making-regulatory realities and stakeholder interests—that must be mastered by project proponents. Chapter 4 describes how proper attention to site-specific considerations, including source control and site assessment, can support cost-effective management The heart of the report is Chapter 5, which contains an assessment of interim and long-term controls and technologies on the basis of maturity, applicability, effectiveness, limitations, cost, and research needs.

Chapter 6 synthesizes the information and analyses in the previous chapters and presents conclusions and recommendations. The appendices include a review of the regulatory framework for contaminated sediments (Appendix B), a summary of the case studies (Appendix C), a primer on the use of cost-benefit analysis to improve management (Appendix D), and a description of decision analysis and its application in a test case (Appendix E).

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

ACKNOWLEDGMENTS

The committee wishes to thank the many individuals who contributed their time and effort to this project, whether in the form of presentations at meetings, correspondence, or telephone calls. Invaluable assistance was provided to both the committee and the Marine Board staff by representatives of federal and state agencies as well as private companies in various sectors.

In particular, the committee acknowledges the support of the following individuals: Sabine Apitz, U.S. Navy, Naval Command, Control and Ocean Surveillance Center; Charles C. Calhoun, U.S. Army Engineer Waterways Experiment Station (WES); Miles Croom, NOAA, National Marine Fisheries Service; Robert Engler, U.S. Army Engineer WES; Kenneth Hood, EPA, Office of Research and Development; Evie Kalketenidou, Maritime Administration (MARAD), Office of Port and Intermodal Development; Daniel Leubecker, MARAD, Office of Technology Assessment; Frank Manheim, U.S Geological Survey (USGS), Branch of Atlantic Marine Geology; Janet Morton, USGS, Office of Energy and Marine Geology; Anna Palmisano, U.S. Navy, Office of Naval Research, Biological Science and Technology Program; Carl Sobremisana, MARAD, Office of Port and Intermodal Development; Betsy Southerland, EPA, Office of Science and Technology (OST); Mark Sprenger, EPA, Office of Emergency and Remedial Response, Craig Vogt, EPA, Office of Wetlands, Oceans, and Watersheds; Larry Zaragoza, EPA, Office of Solid Waste and Emergency Remedial Response; and Christopher Zarba, EPA, OST.

For assistance with technical aspects of the report, special thanks also go to Steve Garbaciak and James Hahnenberg of the EPA; Dan Averett, James Clausner, Norm Francingues, C. R. Lee, Jan Miller, Michael Palermo, and Joe Wilson of the USACE; Greg Hartman, Greg Hartman Associates; Ancil Taylor, Bean Dredging Corporation; and Ian Orchard and Carol Ancheta, Environment Canada.

Finally, the chairmen recognize members of the committee, not only for their hard work during meetings and in reviewing drafts of this report but also for gathering information and writing sections of the report.

REFERENCES

Maritime Administration (MARAD). 1994. A Report to Congress on the Status of the Public Ports of the United States, 1992-1993. MARAD Office of Ports and Domestic Shipping. Washington, D.C.: U.S. Department of Transportation


National Research Council (NRC). 1989. Contaminated Marine Sediments Assessment and Remediation. Washington, D.C.: National Academy Press


Thoma, G. 1994. Summary of the Workshop on Contaminated Sediment Handling, Treatment Technologies, and Associated Costs held April 21-22, 1994. Background paper prepared for the Committee on Contaminated Marine Sediments, Marine Board. National Research Council. Washington, D. C.

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
This page in the original is blank.
Page xiii Cite
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

Boxes, Figures, and Tables

BOXES

2-1

 

Evaluating Sediment Contamination: Effects-Based Testing and Sediment Quality Criteria,

 

38

4-1

 

Basic Tenets of Site Assessment,

 

69

5-1

 

Importance of Cost in Technology Assessment,

 

81

5-2

 

Process of Defining a Remediation System,

 

86

5-3

 

Selecting Ex Situ Controls,

 

117

D-1

 

Simplified Examples of Cost-Benefit Calculations,

 

250

FIGURES

1-1

 

Regulation of contaminated sediments,

 

17

1-2

 

Volume and costs of dredging by the USACE and industry, 1963 to 1994,

 

20

2-1

 

Conceptual overview of the management of contaminated sediments,

 

31

2-2

 

Conceptual illustration of the trade-offs involved in cost-benefit analysis,

 

40

4-1

 

Conceptual site assessment protocol,

 

68

5-1

 

Process of defining a remediation system,

 

83

5-2

 

Remediation technologies subsystem structure,

 

85

5-3

 

Conceptual illustration of containment, disposal, and natural recovery technologies,

 

131

D-1

 

Conceptual illustration of the trade-offs involved in cost-benefit analysis,

 

242

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

D-2

 

Example of cost-benefit analysis with discrete projects,

 

245

D-3

 

Costs and benefits of reducing body burden,

 

246

E-1

 

Predicted average PCB concentration as a function of area dredged (to a depth of I meter), assuming sediments are dredged in order of decreasing PCB concentration,

 

269

E-2

 

Influence diagram of a test case,

 

273

E-3

 

Expected values of alternative dredged-volume decisions,

 

278

E-4

 

Dredged-volume decision analysis,

 

279

E-5

 

Expected values of alternative dredged-value decisions with modified model parameters,

 

281

E-6

 

Effect of modified model parameters on maximum dredged volume decision,

 

282

E-7

 

Switchover analysis for the annual resource damage cost,

 

283

TABLES

S-1

 

Comparative Analysis of Technology Categories,

 

13

1-1

 

Time Lapse between Identification of a Problem and Implementation of a Solution: Examples from Six Case Histories,

 

26

5-1

 

Natural Recovery,

 

93

5-2

 

In-Place Capping,

 

96

5-3

 

Immobilization (solidification/stabilization),

 

98

5-4

 

In Situ Chemical Treatment,

 

98

5-5

 

In Situ Bioremediation,

 

101

5-6

 

Soil Washing and Physical Separation,

 

119

5-7

 

Chemical Separation and Thermal Desorption,

 

122

5-8

 

Immobilization,

 

124

5-9

 

Thermal and Chemical Destruction,

 

126

5-10

 

Ex Situ Bioremediation,

 

128

5-11

 

Confined Disposal Facility,

 

133

5-12

 

Contained Aquatic Disposal,

 

135

5-13

 

Landfills,

 

138

5-14

 

Qualitative Comparison of the State of the Art in Remediation Technologies,

 

143

5-15

 

Comparative Analysis of Technology Categories,

 

144

B-1

 

Interrelationships of Sediment Regulatory Authorities in Selected Scenarios,

 

215

C-1

 

Selection and Evaluation Criteria for Six Case Histories,

 

226

Page xvii Cite
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

Acronyms


ARAR

applicable or relevant and appropriate regulatory requirement

ARCS

Assessment and Remediation of Contaminated Sediments


CAD

contained aquatic disposal

CDF

confined disposal facility

CERCLA

Comprehensive Environmental Response, Cleanup. and Liability Act

CFR

Code of Federal Regulations

CRADA

cooperative research and development agreement

CWA

Clean Water Act

CZMA

Coastal Zone Management Act


D&D

dredging and disposal (or placement)

DMMP

dredged material management plan

DOE

Department of Energy

DOI

Department of the Interior


EA

environmental assessment

EIS

environmental impact statement

EPA

Environmental Protection Agency

ESA

Endangered Species Act


FDA

Food and Drug Administration

FONSI

finding of no significant impact

Page xviii Cite
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

GDP

gross domestic product

GPS

global positioning system


LA

load allocation


MBDS

Massachusetts Bay Disposal Site

MCY

millions of cubic yards

MPRSA

Marine Protection, Research and Sanctuaries Act

MT

metric tons


NAAQS

national ambient air quality standards

NEPA

National Environmental Policy Act

NOAA

National Oceanic and Atmospheric Administration

NPL

National Priorities List

NRC

National Research Council

NSI

National Sediment Inventory


OMC

Outboard Motor Corporation

OST

Office of Science and Technology (EPA)


PCB

polychlorinated biphenyl


RCRA

Resource Conservation and Recovery Act

RHA

Rivers and Harbors Act

ROD

record of decision

R&D

research and development


SARA

Superfund Amendments and Reauthorization Act

SITE

Superfund Innovative Technology Evaluations

SQC

sediment quality criteria


TCLP

toxic characteristics leaching procedure

TMDL

total maximum daily load


USACE

U.S. Army Corps of Engineers

USGS

U.S. Geological Survey


WES

U.S. Army Engineer, Waterways Experiment Station

WLA

waste load allocation

WRDA

Water Resources Development Act

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×




Contaminated Sediments in Ports and Waterways

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×

Port of Mobile

Dredging enables ports to maintain adequate depths in harbors and channels and thereby attract commercial shipping, which provides goods, jobs, and other benefits for area residents. The photograph shows a hydraulic dredge drawing up sediment from a shipping channel in Mobile, Alabama.

Photograph courtesy of U S Army Corps of Engineers

Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page xxii Cite
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
This page in the original is blank.
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R1
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R2
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R3
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R4
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R5
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R6
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R7
Page viii Cite
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R8
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R9
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R10
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R11
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R12
Page xiii Cite
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R13
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R14
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R15
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R16
Page xvii Cite
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R17
Page xviii Cite
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R18
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R19
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R20
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R21
Page xxii Cite
Suggested Citation:"Front Matter." National Research Council. 1997. Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies. Washington, DC: The National Academies Press. doi: 10.17226/5292.
×
Page R22
Next: Executive Summary »
Contaminated Sediments in Ports and Waterways: Cleanup Strategies and Technologies Get This Book
×
Buy Hardback | $68.00 Buy Ebook | $54.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Contaminated marine sediments threaten ecosystems, marine resources, and human health. They can have major economic impacts when controversies over risks and costs of sediment management interfere with needs to dredge major ports.

Contaminated Sediments in Ports and Waterways examines management and technology issues and provides guidance that will help officials make timely decisions and use technologies effectively. The book includes recommendations with a view toward improving decision making, developing cost-effective technologies, and promoting the successful completion of cleanup projects.

The volume assesses the state of practice and research and development status of both short-term and longer-term remediation methods. The committee provides a conceptual overview for risk-based contaminated sediment management that can be used to develop plans that address complex technological, political, and legal issues and the interests of various stakeholders. The book emphasizes the need for proper assessment of conditions at sediment sites and adequate control of contamination sources.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!