National Academies Press: OpenBook

Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests (1997)

Chapter: F: Sampling and Analytic Methods for Zinc Cadmium Sulfide

« Previous: E: Public Meeting Agendas
Suggested Citation:"F: Sampling and Analytic Methods for Zinc Cadmium Sulfide." National Research Council. 1997. Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests. Washington, DC: The National Academies Press. doi: 10.17226/5739.
×

APPENDIX F
SAMPLING AND ANALYTIC METHODS FOR ZINC CADMIUM SULFIDE

Suggested Citation:"F: Sampling and Analytic Methods for Zinc Cadmium Sulfide." National Research Council. 1997. Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests. Washington, DC: The National Academies Press. doi: 10.17226/5739.
×

SAMPLING AND ANALYTIC METHODS FOR ZINC CADMIUM SULFIDE

THE CONCENTRATIONS OF airborne fluorescent particles of ZnCdS in the Army atmospheric-dispersion studies were measured with impingement and filtration methods. Two of those methods are thoroughly described by Leighton and others (1965), but the methods used at specific locations are not described in detail in Army risk-assessment documents.

FILTER SAMPLING

Leighton and others (1965) describes the use of membrane filters for collection of ZnCdS samples in atmospheric-dispersion experiments. The cellulose acetate-nitrate membrane filters are mounted in an open-faced holder with a cowl. The filter is dyed to provide a dark background for counting particles under ultraviolet illumination, and most of the collected particles are deposited on the smooth upper surface of the filter. Both 25-mm- and 50-mm-diameter filters are used; they have deposition areas of 2 and 13 cm2, respectively. The flow rate is typically about 5 L/min per square centimeter of deposition area. Collec-

Suggested Citation:"F: Sampling and Analytic Methods for Zinc Cadmium Sulfide." National Research Council. 1997. Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests. Washington, DC: The National Academies Press. doi: 10.17226/5739.
×

tion efficiency of the filters is virtually 100%. (Collection efficiency is the number of particles deposited on the collection medium from an air sample divided by the number of particles in an equal volume of ambient air at the sample location averaged over the same time that the sample is taken.)

ROTOROD SAMPLING

The Rotorod consists of 2 thin metal rods coated with silicone grease that are attached to the shaft of a small electric motor by a cross arm (Leighton and others 1965). As the rods move through the air, particles touch their surfaces and are retained by the silicone grease. The sampler described by Leighton and others (1965) had a pair of 0.38 x 60-mm collecting surfaces, a rotation radius of 60 mm, and a rotation speed of 2,400 rpm.

The sampling rate of the Rotorod sampler is the volume of air swept out by the sampling rods per unit time. Thus, it is equal to the rod cross-sectional area times its tangential speed—41 L/min for the sampler described by Leighton and others. Correction of Rotorod particle counts for collection efficiency is essential because the collection efficiency of this sampler is generally lower than that of filter sampling and is a strong function of particle size. The collection efficiency can be determined by sampling ZnCdS aerosols with both a Rotorod sampler and a sampler with known collection efficiency. The Rotorod collection efficiency is the uncorrected concentration measured with the Rotorod divided by the efficiency-corrected concentration measured by the other method. For several lots of ZnCdS 2266, collection efficiency ranged from 28% for a lot with a mass median diameter (MMD) of 1.8 µm and 7.9 x 1010 particles per gram to 73% for a lot with an MMD of 3.1 µm and 1.6 x 1010 particles per gram (Leighton and others 1965).

Suggested Citation:"F: Sampling and Analytic Methods for Zinc Cadmium Sulfide." National Research Council. 1997. Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests. Washington, DC: The National Academies Press. doi: 10.17226/5739.
×

TAPE SAMPLING

Gelman paper tape samplers were used for some of the Army experiments. The air sample is drawn through a paper filter tape. Periodically, the tape advances, collecting a series of sequential particle samples. Particles in each sampling ''spot'' on the tape are counted.

PARTICLE COUNTING

Collection media are illuminated with ultraviolet light, usually from a mercury-arc lamp, providing high-intensity light at about 366-nm wavelength. For counting, a microscope with 100 x magnification is usually used. Counting fields are established with an eyepiece reticule, and the number of particles is counted separately for each field.

The size of the smallest particle discernible with this method is a function of the illumination, the background characteristics, the visual acuity of the counter, and the microscope configuration. A typical lower limit of particle diameter detectable by the ultraviolet-illumination and fluorescent-counting method described by Leighton and others (1965) is 0.5 µm. Thus, no particles smaller than that size were counted in these experiments. But particles smaller than 0.5 µm make up only a small fraction of the ZnCdS mass, and on the basis of the particle size distribution of the ZnCdS used at Corpus Christi (Smith and Wolf 1963), this should not create more than a 1% negative bias in the estimation of particle concentration.

REFERENCES

Leighton, P.A., W.A. Perkins, S.W. Grinnell, and F.X. Webster. 1965. The fluorescent particle atmospheric tracer. J. Appl. Meteorol. 4:334-348.


Smith, T.B., and M.A. Wolf. 1963. Vertical Diffusion from an Elevated Line Source over a Variety of Terrains. Part A. Final Report. Contract DA-42-007-CML-545. Prepared by Meteorology Research, 2420 North

Suggested Citation:"F: Sampling and Analytic Methods for Zinc Cadmium Sulfide." National Research Council. 1997. Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests. Washington, DC: The National Academies Press. doi: 10.17226/5739.
×

Lake Ave., Altadena, Calif., for the U.S. Army Dugway Proving Ground, Dugway, Utah.

Suggested Citation:"F: Sampling and Analytic Methods for Zinc Cadmium Sulfide." National Research Council. 1997. Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests. Washington, DC: The National Academies Press. doi: 10.17226/5739.
×
Page 310
Suggested Citation:"F: Sampling and Analytic Methods for Zinc Cadmium Sulfide." National Research Council. 1997. Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests. Washington, DC: The National Academies Press. doi: 10.17226/5739.
×
Page 311
Suggested Citation:"F: Sampling and Analytic Methods for Zinc Cadmium Sulfide." National Research Council. 1997. Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests. Washington, DC: The National Academies Press. doi: 10.17226/5739.
×
Page 312
Suggested Citation:"F: Sampling and Analytic Methods for Zinc Cadmium Sulfide." National Research Council. 1997. Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests. Washington, DC: The National Academies Press. doi: 10.17226/5739.
×
Page 313
Suggested Citation:"F: Sampling and Analytic Methods for Zinc Cadmium Sulfide." National Research Council. 1997. Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests. Washington, DC: The National Academies Press. doi: 10.17226/5739.
×
Page 314
Next: G: Review of AEHA Risk Assessment Reports on Zinc Cadmium Sulfide »
Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests Get This Book
×
 Toxicologic Assessment of the Army's Zinc Cadmium Sulfide Dispersion Tests
Buy Paperback | $80.00 Buy Ebook | $64.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

During the 1950s and 1960s, the U.S. Army conducted atmospheric dispersion tests in many American cities using fluorescent particles of zinc cadmium sulfide (ZnCdS) to develop and verify meteorological models to estimate the dispersal of aerosols. Upon learning of the tests, many citizens and some public health officials in the affected cities raised concerns about the health consequences of the tests. This book assesses the public health effects of the Army's tests, including the toxicity of ZnCdS, the toxicity of surrogate cadmium compounds, the environmental fate of ZnCdS, the extent of public exposures from the dispersion tests, and the risks of such exposures.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!